1 | !--------------------------------------------------------------------- |
---|
2 | ! Interpolation forcing in time and onto model levels |
---|
3 | !--------------------------------------------------------------------- |
---|
4 | if (forcing_GCSSold) then |
---|
5 | |
---|
6 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, |
---|
7 | : ht_gcssold,hq_gcssold,hw_gcssold, |
---|
8 | : hu_gcssold,hv_gcssold, |
---|
9 | : hthturb_gcssold,hqturb_gcssold,Ts_gcssold, |
---|
10 | : imp_fcg_gcssold,ts_fcg_gcssold, |
---|
11 | : Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
12 | if (prt_level.ge.1) then |
---|
13 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
14 | endif |
---|
15 | ! large-scale forcing : |
---|
16 | !!! tsurf = ts_gcssold |
---|
17 | do l = 1, llm |
---|
18 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
19 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
20 | ! omega(l) = hw_gcssold(l) |
---|
21 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
22 | ! omega2(l)=-rho(l)*omega(l) |
---|
23 | omega(l) = hw_gcssold(l) |
---|
24 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
25 | |
---|
26 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
27 | d_th_adv(l) = ht_gcssold(l) |
---|
28 | d_q_adv(l,1) = hq_gcssold(l) |
---|
29 | dt_cooling(l) = 0.0 |
---|
30 | enddo |
---|
31 | |
---|
32 | endif ! forcing_GCSSold |
---|
33 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
34 | !--------------------------------------------------------------------- |
---|
35 | ! Interpolation Toga forcing |
---|
36 | !--------------------------------------------------------------------- |
---|
37 | if (forcing_toga) then |
---|
38 | |
---|
39 | if (prt_level.ge.1) then |
---|
40 | print*, |
---|
41 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', |
---|
42 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
43 | endif |
---|
44 | |
---|
45 | ! time interpolation: |
---|
46 | CALL interp_toga_time(daytime,day1,annee_ref |
---|
47 | i ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga |
---|
48 | i ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga |
---|
49 | i ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga |
---|
50 | o ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof |
---|
51 | o ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
52 | |
---|
53 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
54 | |
---|
55 | ! vertical interpolation: |
---|
56 | CALL interp_toga_vertical(play,nlev_toga,plev_prof |
---|
57 | : ,t_prof,q_prof,u_prof,v_prof,w_prof |
---|
58 | : ,ht_prof,vt_prof,hq_prof,vq_prof |
---|
59 | : ,t_mod,q_mod,u_mod,v_mod,w_mod |
---|
60 | : ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
61 | |
---|
62 | ! large-scale forcing : |
---|
63 | tsurf = ts_prof |
---|
64 | do l = 1, llm |
---|
65 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
66 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
67 | ! omega(l) = w_prof(l) |
---|
68 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
69 | ! omega2(l)=-rho(l)*omega(l) |
---|
70 | omega(l) = w_mod(l) |
---|
71 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
72 | |
---|
73 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
74 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
75 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
76 | dt_cooling(l) = 0.0 |
---|
77 | enddo |
---|
78 | |
---|
79 | endif ! forcing_toga |
---|
80 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
81 | !--------------------------------------------------------------------- |
---|
82 | ! Interpolation forcing TWPice |
---|
83 | !--------------------------------------------------------------------- |
---|
84 | if (forcing_twpice) then |
---|
85 | |
---|
86 | print*, |
---|
87 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', |
---|
88 | : daytime,day1,(daytime-day1)*86400., |
---|
89 | : (daytime-day1)*86400/dt_twpi |
---|
90 | |
---|
91 | ! time interpolation: |
---|
92 | CALL interp_toga_time(daytime,day1,annee_ref |
---|
93 | i ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi |
---|
94 | i ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi |
---|
95 | i ,ht_twpi,vt_twpi,hq_twpi,vq_twpi |
---|
96 | o ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp |
---|
97 | o ,v_proftwp,w_proftwp |
---|
98 | o ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
99 | |
---|
100 | ! vertical interpolation: |
---|
101 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp |
---|
102 | : ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp |
---|
103 | : ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp |
---|
104 | : ,t_mod,q_mod,u_mod,v_mod,w_mod |
---|
105 | : ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
106 | |
---|
107 | |
---|
108 | !calcul de l'advection verticale a partir du omega |
---|
109 | cCalcul des gradients verticaux |
---|
110 | cinitialisation |
---|
111 | d_t_z(:)=0. |
---|
112 | d_q_z(:)=0. |
---|
113 | d_t_dyn_z(:)=0. |
---|
114 | d_q_dyn_z(:)=0. |
---|
115 | DO l=2,llm-1 |
---|
116 | d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
117 | & /(play(l+1)-play(l-1)) |
---|
118 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
119 | & /(play(l+1)-play(l-1)) |
---|
120 | ENDDO |
---|
121 | d_t_z(1)=d_t_z(2) |
---|
122 | d_q_z(1)=d_q_z(2) |
---|
123 | d_t_z(llm)=d_t_z(llm-1) |
---|
124 | d_q_z(llm)=d_q_z(llm-1) |
---|
125 | |
---|
126 | cCalcul de l advection verticale |
---|
127 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
128 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
129 | |
---|
130 | !wind nudging above 500m with a 2h time scale |
---|
131 | do l=1,llm |
---|
132 | if (nudge_wind) then |
---|
133 | ! if (phi(l).gt.5000.) then |
---|
134 | if (phi(l).gt.0.) then |
---|
135 | u(l)=u(l) |
---|
136 | . +timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
137 | v(l)=v(l) |
---|
138 | . +timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
139 | endif |
---|
140 | else |
---|
141 | u(l) = u_mod(l) |
---|
142 | v(l) = v_mod(l) |
---|
143 | endif |
---|
144 | enddo |
---|
145 | |
---|
146 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
147 | if (nudge_thermo) then |
---|
148 | do l=1,llm |
---|
149 | zz(l)=phi(l)/9.8 |
---|
150 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
151 | zfact=(zz(l)-15000.)/1000. |
---|
152 | q(l,1)=q(l,1) |
---|
153 | . +timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
154 | temp(l)=temp(l) |
---|
155 | . +timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
156 | else if (zz(l).gt.16000.) then |
---|
157 | q(l,1)=q(l,1) |
---|
158 | . +timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
159 | temp(l)=temp(l) |
---|
160 | . +timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
161 | endif |
---|
162 | enddo |
---|
163 | endif |
---|
164 | |
---|
165 | do l = 1, llm |
---|
166 | omega(l) = w_mod(l) |
---|
167 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
168 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
169 | !calcul de l'advection totale |
---|
170 | if (cptadvw) then |
---|
171 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
172 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
173 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
174 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
175 | else |
---|
176 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
177 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
178 | endif |
---|
179 | dt_cooling(l) = 0.0 |
---|
180 | enddo |
---|
181 | |
---|
182 | endif ! forcing_twpice |
---|
183 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
184 | !--------------------------------------------------------------------- |
---|
185 | ! Interpolation forcing Rico |
---|
186 | !--------------------------------------------------------------------- |
---|
187 | if (forcing_rico) then |
---|
188 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
---|
189 | ! : q,temp,u,v,play) |
---|
190 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn, |
---|
191 | : q,temp,u,v,play) |
---|
192 | |
---|
193 | do l=1,llm |
---|
194 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
195 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
196 | d_q_adv(l,2) = 0. |
---|
197 | enddo |
---|
198 | endif ! forcing_rico |
---|
199 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
200 | !--------------------------------------------------------------------- |
---|
201 | ! Interpolation forcing Arm_cu |
---|
202 | !--------------------------------------------------------------------- |
---|
203 | if (forcing_armcu) then |
---|
204 | |
---|
205 | print*, |
---|
206 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', |
---|
207 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
208 | |
---|
209 | ! time interpolation: |
---|
210 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
211 | ! revoir 1DUTILS.h et les arguments |
---|
212 | CALL interp_armcu_time(daytime,day1,annee_ref |
---|
213 | i ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu |
---|
214 | i ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu |
---|
215 | i ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof |
---|
216 | i ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
217 | |
---|
218 | ! vertical interpolation: |
---|
219 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
220 | |
---|
221 | ! For this case, fluxes are imposed |
---|
222 | fsens=-1*sens_prof |
---|
223 | flat=-1*flat_prof |
---|
224 | |
---|
225 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
226 | do l = 1, llm |
---|
227 | ug(l)= u_mod(l) |
---|
228 | vg(l)= v_mod(l) |
---|
229 | IF((phi(l)/RG).LT.1000) THEN |
---|
230 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
231 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
232 | d_q_adv(l,2) = 0.0 |
---|
233 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
234 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
235 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
236 | fact=((phi(l)/RG)-1000.)/2000. |
---|
237 | fact=1-fact |
---|
238 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
239 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
240 | d_q_adv(l,2) = 0.0 |
---|
241 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
242 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
243 | ELSE |
---|
244 | d_th_adv(l) = 0.0 |
---|
245 | d_q_adv(l,1) = 0.0 |
---|
246 | d_q_adv(l,2) = 0.0 |
---|
247 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
248 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
249 | ENDIF |
---|
250 | dt_cooling(l) = 0.0 |
---|
251 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
252 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
253 | enddo |
---|
254 | endif ! forcing_armcu |
---|
255 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
256 | |
---|