[1632] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE advx(limit,dtx,pbaru,sm,s0, |
---|
| 5 | $ sx,sy,sz,lati,latf) |
---|
| 6 | IMPLICIT NONE |
---|
| 7 | |
---|
| 8 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 9 | C C |
---|
| 10 | C first-order moments (FOM) advection of tracer in X direction C |
---|
| 11 | C C |
---|
| 12 | C Source : Pascal Simon (Meteo,CNRM) C |
---|
| 13 | C Adaptation : A.Armengaud (LGGE) juin 94 C |
---|
| 14 | C C |
---|
| 15 | C limit,dtx,pbaru,pbarv,sm,s0,sx,sy,sz C |
---|
| 16 | C sont des arguments d'entree pour le s-pg... C |
---|
| 17 | C C |
---|
| 18 | C sm,s0,sx,sy,sz C |
---|
| 19 | C sont les arguments de sortie pour le s-pg C |
---|
| 20 | C C |
---|
| 21 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
| 22 | C |
---|
| 23 | C parametres principaux du modele |
---|
| 24 | C |
---|
| 25 | #include "dimensions.h" |
---|
| 26 | #include "paramet.h" |
---|
| 27 | #include "comconst.h" |
---|
| 28 | #include "comvert.h" |
---|
| 29 | |
---|
| 30 | C Arguments : |
---|
| 31 | C ----------- |
---|
| 32 | C dtx : frequence fictive d'appel du transport |
---|
| 33 | C pbaru, pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
| 34 | |
---|
| 35 | INTEGER ntra |
---|
| 36 | PARAMETER (ntra = 1) |
---|
| 37 | |
---|
| 38 | C ATTENTION partout ou on trouve ntra, insertion de boucle |
---|
| 39 | C possible dans l'avenir. |
---|
| 40 | |
---|
| 41 | REAL dtx |
---|
| 42 | REAL pbaru ( iip1,jjp1,llm ) |
---|
| 43 | |
---|
| 44 | C moments: SM total mass in each grid box |
---|
| 45 | C S0 mass of tracer in each grid box |
---|
| 46 | C Si 1rst order moment in i direction |
---|
| 47 | C |
---|
| 48 | REAL SM(iip1,jjp1,llm),S0(iip1,jjp1,llm,ntra) |
---|
| 49 | REAL sx(iip1,jjp1,llm,ntra) |
---|
| 50 | $ ,sy(iip1,jjp1,llm,ntra) |
---|
| 51 | REAL sz(iip1,jjp1,llm,ntra) |
---|
| 52 | |
---|
| 53 | C Local : |
---|
| 54 | C ------- |
---|
| 55 | |
---|
| 56 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
| 57 | C mass fluxes in kg |
---|
| 58 | C declaration : |
---|
| 59 | |
---|
| 60 | REAL UGRI(iip1,jjp1,llm) |
---|
| 61 | |
---|
| 62 | C Rem : VGRI et WGRI ne sont pas utilises dans |
---|
| 63 | C cette subroutine ( advection en x uniquement ) |
---|
| 64 | C |
---|
| 65 | C Ti are the moments for the current latitude and level |
---|
| 66 | C |
---|
| 67 | REAL TM(iim) |
---|
| 68 | REAL T0(iim,ntra),TX(iim,ntra) |
---|
| 69 | REAL TY(iim,ntra),TZ(iim,ntra) |
---|
| 70 | REAL TEMPTM ! just a temporary variable |
---|
| 71 | C |
---|
| 72 | C the moments F are similarly defined and used as temporary |
---|
| 73 | C storage for portions of the grid boxes in transit |
---|
| 74 | C |
---|
| 75 | REAL FM(iim) |
---|
| 76 | REAL F0(iim,ntra),FX(iim,ntra) |
---|
| 77 | REAL FY(iim,ntra),FZ(iim,ntra) |
---|
| 78 | C |
---|
| 79 | C work arrays |
---|
| 80 | C |
---|
| 81 | REAL ALF(iim),ALF1(iim),ALFQ(iim),ALF1Q(iim) |
---|
| 82 | C |
---|
| 83 | REAL SMNEW(iim),UEXT(iim) |
---|
| 84 | C |
---|
| 85 | REAL sqi,sqf |
---|
| 86 | |
---|
| 87 | LOGICAL LIMIT |
---|
| 88 | INTEGER NUM(jjp1),LONK,NUMK |
---|
| 89 | INTEGER lon,lati,latf,niv |
---|
| 90 | INTEGER i,i2,i3,j,jv,l,k,itrac |
---|
| 91 | |
---|
| 92 | lon = iim |
---|
| 93 | niv = llm |
---|
| 94 | |
---|
| 95 | C *** Test de passage d'arguments ****** |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | C ------------------------------------- |
---|
| 99 | DO 300 j = 1,jjp1 |
---|
| 100 | NUM(j) = 1 |
---|
| 101 | 300 CONTINUE |
---|
| 102 | sqi = 0. |
---|
| 103 | sqf = 0. |
---|
| 104 | |
---|
| 105 | DO l = 1,llm |
---|
| 106 | DO j = 1,jjp1 |
---|
| 107 | DO i = 1,iim |
---|
| 108 | sqi = sqi + S0(i,j,l,ntra) |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | PRINT*,'-------- DIAG DANS ADVX - ENTREE ---------' |
---|
| 113 | PRINT*,'sqi=',sqi |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | C Interface : adaptation nouveau modele |
---|
| 117 | C ------------------------------------- |
---|
| 118 | C |
---|
| 119 | C --------------------------------------------------------- |
---|
| 120 | C Conversion des flux de masses en kg/s |
---|
| 121 | C pbaru est en N/s d'ou : |
---|
| 122 | C ugri est en kg/s |
---|
| 123 | |
---|
| 124 | DO 500 l = 1,llm |
---|
| 125 | DO 500 j = 1,jjm+1 |
---|
| 126 | DO 500 i = 1,iip1 |
---|
| 127 | C ugri (i,j,llm+1-l) = pbaru (i,j,l) * ( dsig(l) / g ) |
---|
| 128 | ugri (i,j,llm+1-l) = pbaru (i,j,l) |
---|
| 129 | 500 CONTINUE |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | C --------------------------------------------------------- |
---|
| 133 | C --------------------------------------------------------- |
---|
| 134 | C --------------------------------------------------------- |
---|
| 135 | |
---|
| 136 | C start here |
---|
| 137 | C |
---|
| 138 | C boucle principale sur les niveaux et les latitudes |
---|
| 139 | C |
---|
| 140 | DO 1 L=1,NIV |
---|
| 141 | DO 1 K=lati,latf |
---|
| 142 | C |
---|
| 143 | C initialisation |
---|
| 144 | C |
---|
| 145 | C program assumes periodic boundaries in X |
---|
| 146 | C |
---|
| 147 | DO 10 I=2,LON |
---|
| 148 | SMNEW(I)=SM(I,K,L)+(UGRI(I-1,K,L)-UGRI(I,K,L))*DTX |
---|
| 149 | 10 CONTINUE |
---|
| 150 | SMNEW(1)=SM(1,K,L)+(UGRI(LON,K,L)-UGRI(1,K,L))*DTX |
---|
| 151 | C |
---|
| 152 | C modifications for extended polar zones |
---|
| 153 | C |
---|
| 154 | NUMK=NUM(K) |
---|
| 155 | LONK=LON/NUMK |
---|
| 156 | C |
---|
| 157 | IF(NUMK.GT.1) THEN |
---|
| 158 | C |
---|
| 159 | DO 111 I=1,LON |
---|
| 160 | TM(I)=0. |
---|
| 161 | 111 CONTINUE |
---|
| 162 | DO 112 JV=1,NTRA |
---|
| 163 | DO 1120 I=1,LON |
---|
| 164 | T0(I,JV)=0. |
---|
| 165 | TX(I,JV)=0. |
---|
| 166 | TY(I,JV)=0. |
---|
| 167 | TZ(I,JV)=0. |
---|
| 168 | 1120 CONTINUE |
---|
| 169 | 112 CONTINUE |
---|
| 170 | C |
---|
| 171 | DO 11 I2=1,NUMK |
---|
| 172 | C |
---|
| 173 | DO 113 I=1,LONK |
---|
| 174 | I3=(I-1)*NUMK+I2 |
---|
| 175 | TM(I)=TM(I)+SM(I3,K,L) |
---|
| 176 | ALF(I)=SM(I3,K,L)/TM(I) |
---|
| 177 | ALF1(I)=1.-ALF(I) |
---|
| 178 | 113 CONTINUE |
---|
| 179 | C |
---|
| 180 | DO JV=1,NTRA |
---|
| 181 | DO I=1,LONK |
---|
| 182 | I3=(I-1)*NUMK+I2 |
---|
| 183 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I) |
---|
| 184 | $ *S0(I3,K,L,JV) |
---|
| 185 | T0(I,JV)=T0(I,JV)+S0(I3,K,L,JV) |
---|
| 186 | TX(I,JV)=ALF(I) *sx(I3,K,L,JV)+ |
---|
| 187 | $ ALF1(I)*TX(I,JV) +3.*TEMPTM |
---|
| 188 | TY(I,JV)=TY(I,JV)+sy(I3,K,L,JV) |
---|
| 189 | TZ(I,JV)=TZ(I,JV)+sz(I3,K,L,JV) |
---|
| 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | C |
---|
| 193 | 11 CONTINUE |
---|
| 194 | C |
---|
| 195 | ELSE |
---|
| 196 | C |
---|
| 197 | DO 115 I=1,LON |
---|
| 198 | TM(I)=SM(I,K,L) |
---|
| 199 | 115 CONTINUE |
---|
| 200 | DO 116 JV=1,NTRA |
---|
| 201 | DO 1160 I=1,LON |
---|
| 202 | T0(I,JV)=S0(I,K,L,JV) |
---|
| 203 | TX(I,JV)=sx(I,K,L,JV) |
---|
| 204 | TY(I,JV)=sy(I,K,L,JV) |
---|
| 205 | TZ(I,JV)=sz(I,K,L,JV) |
---|
| 206 | 1160 CONTINUE |
---|
| 207 | 116 CONTINUE |
---|
| 208 | C |
---|
| 209 | ENDIF |
---|
| 210 | C |
---|
| 211 | DO 117 I=1,LONK |
---|
| 212 | UEXT(I)=UGRI(I*NUMK,K,L) |
---|
| 213 | 117 CONTINUE |
---|
| 214 | C |
---|
| 215 | C place limits on appropriate moments before transport |
---|
| 216 | C (if flux-limiting is to be applied) |
---|
| 217 | C |
---|
| 218 | IF(.NOT.LIMIT) GO TO 13 |
---|
| 219 | C |
---|
| 220 | DO 12 JV=1,NTRA |
---|
| 221 | DO 120 I=1,LONK |
---|
| 222 | TX(I,JV)=SIGN(AMIN1(AMAX1(T0(I,JV),0.),ABS(TX(I,JV))),TX(I,JV)) |
---|
| 223 | 120 CONTINUE |
---|
| 224 | 12 CONTINUE |
---|
| 225 | C |
---|
| 226 | 13 CONTINUE |
---|
| 227 | C |
---|
| 228 | C calculate flux and moments between adjacent boxes |
---|
| 229 | C 1- create temporary moments/masses for partial boxes in transit |
---|
| 230 | C 2- reajusts moments remaining in the box |
---|
| 231 | C |
---|
| 232 | C flux from IP to I if U(I).lt.0 |
---|
| 233 | C |
---|
| 234 | DO 140 I=1,LONK-1 |
---|
| 235 | IF(UEXT(I).LT.0.) THEN |
---|
| 236 | FM(I)=-UEXT(I)*DTX |
---|
| 237 | ALF(I)=FM(I)/TM(I+1) |
---|
| 238 | TM(I+1)=TM(I+1)-FM(I) |
---|
| 239 | ENDIF |
---|
| 240 | 140 CONTINUE |
---|
| 241 | C |
---|
| 242 | I=LONK |
---|
| 243 | IF(UEXT(I).LT.0.) THEN |
---|
| 244 | FM(I)=-UEXT(I)*DTX |
---|
| 245 | ALF(I)=FM(I)/TM(1) |
---|
| 246 | TM(1)=TM(1)-FM(I) |
---|
| 247 | ENDIF |
---|
| 248 | C |
---|
| 249 | C flux from I to IP if U(I).gt.0 |
---|
| 250 | C |
---|
| 251 | DO 141 I=1,LONK |
---|
| 252 | IF(UEXT(I).GE.0.) THEN |
---|
| 253 | FM(I)=UEXT(I)*DTX |
---|
| 254 | ALF(I)=FM(I)/TM(I) |
---|
| 255 | TM(I)=TM(I)-FM(I) |
---|
| 256 | ENDIF |
---|
| 257 | 141 CONTINUE |
---|
| 258 | C |
---|
| 259 | DO 142 I=1,LONK |
---|
| 260 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 261 | ALF1(I)=1.-ALF(I) |
---|
| 262 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 263 | 142 CONTINUE |
---|
| 264 | C |
---|
| 265 | DO 150 JV=1,NTRA |
---|
| 266 | DO 1500 I=1,LONK-1 |
---|
| 267 | C |
---|
| 268 | IF(UEXT(I).LT.0.) THEN |
---|
| 269 | C |
---|
| 270 | F0(I,JV)=ALF (I)* ( T0(I+1,JV)-ALF1(I)*TX(I+1,JV) ) |
---|
| 271 | FX(I,JV)=ALFQ(I)*TX(I+1,JV) |
---|
| 272 | FY(I,JV)=ALF (I)*TY(I+1,JV) |
---|
| 273 | FZ(I,JV)=ALF (I)*TZ(I+1,JV) |
---|
| 274 | C |
---|
| 275 | T0(I+1,JV)=T0(I+1,JV)-F0(I,JV) |
---|
| 276 | TX(I+1,JV)=ALF1Q(I)*TX(I+1,JV) |
---|
| 277 | TY(I+1,JV)=TY(I+1,JV)-FY(I,JV) |
---|
| 278 | TZ(I+1,JV)=TZ(I+1,JV)-FZ(I,JV) |
---|
| 279 | C |
---|
| 280 | ENDIF |
---|
| 281 | C |
---|
| 282 | 1500 CONTINUE |
---|
| 283 | 150 CONTINUE |
---|
| 284 | C |
---|
| 285 | I=LONK |
---|
| 286 | IF(UEXT(I).LT.0.) THEN |
---|
| 287 | C |
---|
| 288 | DO 151 JV=1,NTRA |
---|
| 289 | C |
---|
| 290 | F0 (I,JV)=ALF (I)* ( T0(1,JV)-ALF1(I)*TX(1,JV) ) |
---|
| 291 | FX (I,JV)=ALFQ(I)*TX(1,JV) |
---|
| 292 | FY (I,JV)=ALF (I)*TY(1,JV) |
---|
| 293 | FZ (I,JV)=ALF (I)*TZ(1,JV) |
---|
| 294 | C |
---|
| 295 | T0(1,JV)=T0(1,JV)-F0(I,JV) |
---|
| 296 | TX(1,JV)=ALF1Q(I)*TX(1,JV) |
---|
| 297 | TY(1,JV)=TY(1,JV)-FY(I,JV) |
---|
| 298 | TZ(1,JV)=TZ(1,JV)-FZ(I,JV) |
---|
| 299 | C |
---|
| 300 | 151 CONTINUE |
---|
| 301 | C |
---|
| 302 | ENDIF |
---|
| 303 | C |
---|
| 304 | DO 152 JV=1,NTRA |
---|
| 305 | DO 1520 I=1,LONK |
---|
| 306 | C |
---|
| 307 | IF(UEXT(I).GE.0.) THEN |
---|
| 308 | C |
---|
| 309 | F0(I,JV)=ALF (I)* ( T0(I,JV)+ALF1(I)*TX(I,JV) ) |
---|
| 310 | FX(I,JV)=ALFQ(I)*TX(I,JV) |
---|
| 311 | FY(I,JV)=ALF (I)*TY(I,JV) |
---|
| 312 | FZ(I,JV)=ALF (I)*TZ(I,JV) |
---|
| 313 | C |
---|
| 314 | T0(I,JV)=T0(I,JV)-F0(I,JV) |
---|
| 315 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
| 316 | TY(I,JV)=TY(I,JV)-FY(I,JV) |
---|
| 317 | TZ(I,JV)=TZ(I,JV)-FZ(I,JV) |
---|
| 318 | C |
---|
| 319 | ENDIF |
---|
| 320 | C |
---|
| 321 | 1520 CONTINUE |
---|
| 322 | 152 CONTINUE |
---|
| 323 | C |
---|
| 324 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
| 325 | C |
---|
| 326 | DO 160 I=1,LONK |
---|
| 327 | IF(UEXT(I).LT.0.) THEN |
---|
| 328 | TM(I)=TM(I)+FM(I) |
---|
| 329 | ALF(I)=FM(I)/TM(I) |
---|
| 330 | ENDIF |
---|
| 331 | 160 CONTINUE |
---|
| 332 | C |
---|
| 333 | DO 161 I=1,LONK-1 |
---|
| 334 | IF(UEXT(I).GE.0.) THEN |
---|
| 335 | TM(I+1)=TM(I+1)+FM(I) |
---|
| 336 | ALF(I)=FM(I)/TM(I+1) |
---|
| 337 | ENDIF |
---|
| 338 | 161 CONTINUE |
---|
| 339 | C |
---|
| 340 | I=LONK |
---|
| 341 | IF(UEXT(I).GE.0.) THEN |
---|
| 342 | TM(1)=TM(1)+FM(I) |
---|
| 343 | ALF(I)=FM(I)/TM(1) |
---|
| 344 | ENDIF |
---|
| 345 | C |
---|
| 346 | DO 162 I=1,LONK |
---|
| 347 | ALF1(I)=1.-ALF(I) |
---|
| 348 | 162 CONTINUE |
---|
| 349 | C |
---|
| 350 | DO 170 JV=1,NTRA |
---|
| 351 | DO 1700 I=1,LONK |
---|
| 352 | C |
---|
| 353 | IF(UEXT(I).LT.0.) THEN |
---|
| 354 | C |
---|
| 355 | TEMPTM=-ALF(I)*T0(I,JV)+ALF1(I)*F0(I,JV) |
---|
| 356 | T0(I,JV)=T0(I,JV)+F0(I,JV) |
---|
| 357 | TX(I,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I,JV)+3.*TEMPTM |
---|
| 358 | TY(I,JV)=TY(I,JV)+FY(I,JV) |
---|
| 359 | TZ(I,JV)=TZ(I,JV)+FZ(I,JV) |
---|
| 360 | C |
---|
| 361 | ENDIF |
---|
| 362 | C |
---|
| 363 | 1700 CONTINUE |
---|
| 364 | 170 CONTINUE |
---|
| 365 | C |
---|
| 366 | DO 171 JV=1,NTRA |
---|
| 367 | DO 1710 I=1,LONK-1 |
---|
| 368 | C |
---|
| 369 | IF(UEXT(I).GE.0.) THEN |
---|
| 370 | C |
---|
| 371 | TEMPTM=ALF(I)*T0(I+1,JV)-ALF1(I)*F0(I,JV) |
---|
| 372 | T0(I+1,JV)=T0(I+1,JV)+F0(I,JV) |
---|
| 373 | TX(I+1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(I+1,JV)+3.*TEMPTM |
---|
| 374 | TY(I+1,JV)=TY(I+1,JV)+FY(I,JV) |
---|
| 375 | TZ(I+1,JV)=TZ(I+1,JV)+FZ(I,JV) |
---|
| 376 | C |
---|
| 377 | ENDIF |
---|
| 378 | C |
---|
| 379 | 1710 CONTINUE |
---|
| 380 | 171 CONTINUE |
---|
| 381 | C |
---|
| 382 | I=LONK |
---|
| 383 | IF(UEXT(I).GE.0.) THEN |
---|
| 384 | DO 172 JV=1,NTRA |
---|
| 385 | TEMPTM=ALF(I)*T0(1,JV)-ALF1(I)*F0(I,JV) |
---|
| 386 | T0(1,JV)=T0(1,JV)+F0(I,JV) |
---|
| 387 | TX(1,JV)=ALF(I)*FX(I,JV)+ALF1(I)*TX(1,JV)+3.*TEMPTM |
---|
| 388 | TY(1,JV)=TY(1,JV)+FY(I,JV) |
---|
| 389 | TZ(1,JV)=TZ(1,JV)+FZ(I,JV) |
---|
| 390 | 172 CONTINUE |
---|
| 391 | ENDIF |
---|
| 392 | C |
---|
| 393 | C retour aux mailles d'origine (passage des Tij aux Sij) |
---|
| 394 | C |
---|
| 395 | IF(NUMK.GT.1) THEN |
---|
| 396 | C |
---|
| 397 | DO 180 I2=1,NUMK |
---|
| 398 | C |
---|
| 399 | DO 180 I=1,LONK |
---|
| 400 | C |
---|
| 401 | I3=I2+(I-1)*NUMK |
---|
| 402 | SM(I3,K,L)=SMNEW(I3) |
---|
| 403 | ALF(I)=SMNEW(I3)/TM(I) |
---|
| 404 | TM(I)=TM(I)-SMNEW(I3) |
---|
| 405 | C |
---|
| 406 | ALFQ(I)=ALF(I)*ALF(I) |
---|
| 407 | ALF1(I)=1.-ALF(I) |
---|
| 408 | ALF1Q(I)=ALF1(I)*ALF1(I) |
---|
| 409 | C |
---|
| 410 | 180 CONTINUE |
---|
| 411 | C |
---|
| 412 | DO JV=1,NTRA |
---|
| 413 | DO I=1,LONK |
---|
| 414 | C |
---|
| 415 | I3=I2+(I-1)*NUMK |
---|
| 416 | S0(I3,K,L,JV)=ALF (I) |
---|
| 417 | $ * (T0(I,JV)-ALF1(I)*TX(I,JV)) |
---|
| 418 | sx(I3,K,L,JV)=ALFQ(I)*TX(I,JV) |
---|
| 419 | sy(I3,K,L,JV)=ALF (I)*TY(I,JV) |
---|
| 420 | sz(I3,K,L,JV)=ALF (I)*TZ(I,JV) |
---|
| 421 | C |
---|
| 422 | C reajusts moments remaining in the box |
---|
| 423 | C |
---|
| 424 | T0(I,JV)=T0(I,JV)-S0(I3,K,L,JV) |
---|
| 425 | TX(I,JV)=ALF1Q(I)*TX(I,JV) |
---|
| 426 | TY(I,JV)=TY(I,JV)-sy(I3,K,L,JV) |
---|
| 427 | TZ(I,JV)=TZ(I,JV)-sz(I3,K,L,JV) |
---|
| 428 | ENDDO |
---|
| 429 | ENDDO |
---|
| 430 | C |
---|
| 431 | C |
---|
| 432 | ELSE |
---|
| 433 | C |
---|
| 434 | DO 190 I=1,LON |
---|
| 435 | SM(I,K,L)=TM(I) |
---|
| 436 | 190 CONTINUE |
---|
| 437 | DO 191 JV=1,NTRA |
---|
| 438 | DO 1910 I=1,LON |
---|
| 439 | S0(I,K,L,JV)=T0(I,JV) |
---|
| 440 | sx(I,K,L,JV)=TX(I,JV) |
---|
| 441 | sy(I,K,L,JV)=TY(I,JV) |
---|
| 442 | sz(I,K,L,JV)=TZ(I,JV) |
---|
| 443 | 1910 CONTINUE |
---|
| 444 | 191 CONTINUE |
---|
| 445 | C |
---|
| 446 | ENDIF |
---|
| 447 | C |
---|
| 448 | 1 CONTINUE |
---|
| 449 | C |
---|
| 450 | C ----------- AA Test en fin de ADVX ------ Controle des S* |
---|
| 451 | c OK |
---|
| 452 | c DO 9998 l = 1, llm |
---|
| 453 | c DO 9998 j = 1, jjp1 |
---|
| 454 | c DO 9998 i = 1, iip1 |
---|
| 455 | c IF (S0(i,j,l,ntra).lt.0..and.LIMIT) THEN |
---|
| 456 | c PRINT*, '-------------------' |
---|
| 457 | c PRINT*, 'En fin de ADVX' |
---|
| 458 | c PRINT*,'SM(',i,j,l,')=',SM(i,j,l) |
---|
| 459 | c PRINT*,'S0(',i,j,l,')=',S0(i,j,l,ntra) |
---|
| 460 | c print*, 'sx(',i,j,l,')=',sx(i,j,l,ntra) |
---|
| 461 | c print*, 'sy(',i,j,l,')=',sy(i,j,l,ntra) |
---|
| 462 | c print*, 'sz(',i,j,l,')=',sz(i,j,l,ntra) |
---|
| 463 | c WRITE (*,*) 'On arrete !! - pbl en fin de ADVX1' |
---|
| 464 | cc STOP |
---|
| 465 | c ENDIF |
---|
| 466 | c 9998 CONTINUE |
---|
| 467 | c |
---|
| 468 | C ---------- bouclage cyclique |
---|
| 469 | DO itrac=1,ntra |
---|
| 470 | DO l = 1,llm |
---|
| 471 | DO j = lati,latf |
---|
| 472 | SM(iip1,j,l) = SM(1,j,l) |
---|
| 473 | S0(iip1,j,l,itrac) = S0(1,j,l,itrac) |
---|
| 474 | sx(iip1,j,l,itrac) = sx(1,j,l,itrac) |
---|
| 475 | sy(iip1,j,l,itrac) = sy(1,j,l,itrac) |
---|
| 476 | sz(iip1,j,l,itrac) = sz(1,j,l,itrac) |
---|
| 477 | END DO |
---|
| 478 | END DO |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | c ----------- qqtite totale de traceur dans tte l'atmosphere |
---|
| 482 | DO l = 1, llm |
---|
| 483 | DO j = 1, jjp1 |
---|
| 484 | DO i = 1, iim |
---|
| 485 | sqf = sqf + S0(i,j,l,ntra) |
---|
| 486 | END DO |
---|
| 487 | END DO |
---|
| 488 | END DO |
---|
| 489 | c |
---|
| 490 | PRINT*,'------ DIAG DANS ADVX - SORTIE -----' |
---|
| 491 | PRINT*,'sqf=',sqf |
---|
| 492 | c------------- |
---|
| 493 | |
---|
| 494 | RETURN |
---|
| 495 | END |
---|
| 496 | C_________________________________________________________________ |
---|
| 497 | C_________________________________________________________________ |
---|