[1793] | 1 | ! |
---|
| 2 | ! $Id: top_bound.F 1907 2013-11-26 13:10:46Z jbmadeleine $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE top_bound(vcov,ucov,teta,masse,dt) |
---|
[999] | 5 | IMPLICIT NONE |
---|
| 6 | c |
---|
| 7 | #include "dimensions.h" |
---|
| 8 | #include "paramet.h" |
---|
| 9 | #include "comconst.h" |
---|
[1279] | 10 | #include "comvert.h" |
---|
| 11 | #include "comgeom2.h" |
---|
[999] | 12 | |
---|
| 13 | |
---|
| 14 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
| 15 | C F. LOTT DEC. 2006 |
---|
| 16 | c ( 10/12/06 ) |
---|
| 17 | |
---|
| 18 | c======================================================================= |
---|
| 19 | c |
---|
| 20 | c Auteur: F. LOTT |
---|
| 21 | c ------- |
---|
| 22 | c |
---|
| 23 | c Objet: |
---|
| 24 | c ------ |
---|
| 25 | c |
---|
| 26 | c Dissipation linéaire (ex top_bound de la physique) |
---|
| 27 | c |
---|
| 28 | c======================================================================= |
---|
| 29 | |
---|
[1793] | 30 | ! top_bound sponge layer model: |
---|
| 31 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
| 32 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
| 33 | ! of the characteristic quenching/relaxation time scale |
---|
| 34 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
| 35 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
| 36 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
| 37 | ! can be toward the average zonal field or just zero (see below). |
---|
| 38 | |
---|
| 39 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
| 40 | |
---|
| 41 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst.h) |
---|
| 42 | ! iflag_top_bound=0 for no sponge |
---|
| 43 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
| 44 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
| 45 | ! mode_top_bound=0: no relaxation |
---|
| 46 | ! mode_top_bound=1: u and v relax towards 0 |
---|
| 47 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
| 48 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
| 49 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
| 50 | ! the topmost layer (Hz) |
---|
| 51 | |
---|
| 52 | |
---|
[999] | 53 | #include "comdissipn.h" |
---|
[1793] | 54 | #include "iniprint.h" |
---|
[999] | 55 | |
---|
| 56 | c Arguments: |
---|
| 57 | c ---------- |
---|
| 58 | |
---|
[1793] | 59 | real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
---|
| 60 | real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
---|
| 61 | real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
---|
| 62 | real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
---|
| 63 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
[999] | 64 | |
---|
| 65 | c Local: |
---|
| 66 | c ------ |
---|
| 67 | |
---|
[1279] | 68 | REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
---|
[999] | 69 | REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
---|
| 70 | |
---|
[1279] | 71 | integer i |
---|
[1793] | 72 | REAL,SAVE :: rdamp(llm) ! quenching coefficient |
---|
| 73 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
[999] | 74 | |
---|
[1279] | 75 | LOGICAL,SAVE :: first=.true. |
---|
| 76 | |
---|
[999] | 77 | INTEGER j,l |
---|
| 78 | |
---|
[1279] | 79 | if (iflag_top_bound.eq.0) return |
---|
| 80 | |
---|
| 81 | if (first) then |
---|
| 82 | if (iflag_top_bound.eq.1) then |
---|
[1793] | 83 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
| 84 | lambda(:)=0. |
---|
| 85 | lambda(llm)=tau_top_bound |
---|
| 86 | lambda(llm-1)=tau_top_bound/2. |
---|
| 87 | lambda(llm-2)=tau_top_bound/4. |
---|
| 88 | lambda(llm-3)=tau_top_bound/8. |
---|
[1279] | 89 | else if (iflag_top_bound.eq.2) then |
---|
[1793] | 90 | ! sponge quenching over topmost layers down to pressures which are |
---|
| 91 | ! higher than 100 times the topmost layer pressure |
---|
| 92 | lambda(:)=tau_top_bound |
---|
[1279] | 93 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
| 94 | endif |
---|
[1793] | 95 | |
---|
| 96 | ! quenching coefficient rdamp(:) |
---|
| 97 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
| 98 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
| 99 | |
---|
| 100 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
| 101 | write(lunout,*)'Sponge layer coefficients' |
---|
| 102 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
| 103 | do l=1,llm |
---|
| 104 | if (rdamp(l).ne.0.) then |
---|
| 105 | write(lunout,'(6(1pe12.4,1x))') |
---|
| 106 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
| 107 | & 1./lambda(l),lambda(l) |
---|
| 108 | endif |
---|
| 109 | enddo |
---|
[1279] | 110 | first=.false. |
---|
[1793] | 111 | endif ! of if (first) |
---|
[1279] | 112 | |
---|
| 113 | CALL massbar(masse,massebx,masseby) |
---|
| 114 | |
---|
[1793] | 115 | ! compute zonal average of vcov and u |
---|
| 116 | if (mode_top_bound.ge.2) then |
---|
| 117 | do l=1,llm |
---|
[999] | 118 | do j=1,jjm |
---|
| 119 | vzon(j,l)=0. |
---|
[1279] | 120 | zm=0. |
---|
[999] | 121 | do i=1,iim |
---|
[1793] | 122 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
| 123 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
[1279] | 124 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
| 125 | zm=zm+masseby(i,j,l) |
---|
[999] | 126 | enddo |
---|
[1279] | 127 | vzon(j,l)=vzon(j,l)/zm |
---|
[999] | 128 | enddo |
---|
[1793] | 129 | enddo |
---|
[999] | 130 | |
---|
[1793] | 131 | do l=1,llm |
---|
| 132 | do j=2,jjm ! excluding poles |
---|
[999] | 133 | uzon(j,l)=0. |
---|
[1279] | 134 | zm=0. |
---|
| 135 | do i=1,iim |
---|
| 136 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
| 137 | zm=zm+massebx(i,j,l) |
---|
| 138 | enddo |
---|
| 139 | uzon(j,l)=uzon(j,l)/zm |
---|
| 140 | enddo |
---|
[1793] | 141 | enddo |
---|
| 142 | else ! ucov and vcov will relax towards 0 |
---|
| 143 | vzon(:,:)=0. |
---|
| 144 | uzon(:,:)=0. |
---|
| 145 | endif ! of if (mode_top_bound.ge.2) |
---|
[1279] | 146 | |
---|
[1793] | 147 | ! compute zonal average of potential temperature, if necessary |
---|
| 148 | if (mode_top_bound.ge.3) then |
---|
| 149 | do l=1,llm |
---|
| 150 | do j=2,jjm ! excluding poles |
---|
[1279] | 151 | zm=0. |
---|
[999] | 152 | tzon(j,l)=0. |
---|
| 153 | do i=1,iim |
---|
[1279] | 154 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
| 155 | zm=zm+masse(i,j,l) |
---|
[999] | 156 | enddo |
---|
[1279] | 157 | tzon(j,l)=tzon(j,l)/zm |
---|
[999] | 158 | enddo |
---|
[1793] | 159 | enddo |
---|
| 160 | endif ! of if (mode_top_bound.ge.3) |
---|
[999] | 161 | |
---|
[1793] | 162 | if (mode_top_bound.ge.1) then |
---|
| 163 | ! Apply sponge quenching on vcov: |
---|
| 164 | do l=1,llm |
---|
| 165 | do i=1,iip1 |
---|
| 166 | do j=1,jjm |
---|
| 167 | vcov(i,j,l)=vcov(i,j,l) |
---|
| 168 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
| 169 | enddo |
---|
| 170 | enddo |
---|
| 171 | enddo |
---|
[999] | 172 | |
---|
[1793] | 173 | ! Apply sponge quenching on ucov: |
---|
| 174 | do l=1,llm |
---|
[999] | 175 | do i=1,iip1 |
---|
[1793] | 176 | do j=2,jjm ! excluding poles |
---|
| 177 | ucov(i,j,l)=ucov(i,j,l) |
---|
| 178 | & -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
[999] | 179 | enddo |
---|
| 180 | enddo |
---|
[1793] | 181 | enddo |
---|
| 182 | endif ! of if (mode_top_bound.ge.1) |
---|
[999] | 183 | |
---|
[1793] | 184 | if (mode_top_bound.ge.3) then |
---|
| 185 | ! Apply sponge quenching on teta: |
---|
| 186 | do l=1,llm |
---|
| 187 | do i=1,iip1 |
---|
| 188 | do j=2,jjm ! excluding poles |
---|
| 189 | teta(i,j,l)=teta(i,j,l) |
---|
| 190 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
| 191 | enddo |
---|
| 192 | enddo |
---|
| 193 | enddo |
---|
| 194 | endif ! of if (mode_top_bound.ge.3) |
---|
| 195 | |
---|
[999] | 196 | END |
---|