[1992] | 1 | |
---|
[1403] | 2 | ! $Id: wake.F90 1999 2014-03-20 09:57:19Z acaubel $ |
---|
[879] | 3 | |
---|
[1992] | 4 | SUBROUTINE wake(p, ph, pi, dtime, sigd_con, te0, qe0, omgb, dtdwn, dqdwn, & |
---|
| 5 | amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, deltaqw, & |
---|
| 6 | dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, dp_omgb, & |
---|
| 7 | wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & |
---|
| 8 | d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
[1146] | 9 | |
---|
[974] | 10 | |
---|
[1992] | 11 | ! ************************************************************** |
---|
| 12 | ! * |
---|
| 13 | ! WAKE * |
---|
| 14 | ! retour a un Pupper fixe * |
---|
| 15 | ! * |
---|
| 16 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 17 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 18 | ! ************************************************************** |
---|
[974] | 19 | |
---|
[1992] | 20 | USE dimphy |
---|
| 21 | IMPLICIT NONE |
---|
| 22 | ! ============================================================================ |
---|
[974] | 23 | |
---|
| 24 | |
---|
[1992] | 25 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 26 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 27 | ! le declenchement de nouvelles colonnes convectives. |
---|
[974] | 28 | |
---|
[1992] | 29 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
| 30 | ! area |
---|
| 31 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 32 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
[974] | 33 | |
---|
[1992] | 34 | ! Variable de sortie : |
---|
[974] | 35 | |
---|
[1992] | 36 | ! wape : WAke Potential Energy |
---|
| 37 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 38 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 39 | ! dtls : large scale temperature tendency due to wake |
---|
| 40 | ! dqls : large scale humidity tendency due to wake |
---|
| 41 | ! hw : hauteur de la poche |
---|
| 42 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 43 | ! wdens : densite de poches |
---|
| 44 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 45 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 46 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 47 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 48 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 49 | ! spread : spreading term in dt_wake and dq_wake |
---|
| 50 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 51 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 52 | ! sigmaw : updated wake fractional area. |
---|
| 53 | ! d_deltat_gw : delta T tendency due to GW |
---|
[974] | 54 | |
---|
[1992] | 55 | ! Variables d'entree : |
---|
[974] | 56 | |
---|
[1992] | 57 | ! aire : aire de la maille |
---|
| 58 | ! te0 : temperature dans l'environnement (K) |
---|
| 59 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 60 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 61 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 62 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 63 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 64 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 65 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 66 | ! surface de la maille (kg/m2/s) |
---|
| 67 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 68 | ! surface de la maille (kg/m2/s) |
---|
| 69 | ! p : pressions aux milieux des couches (Pa) |
---|
| 70 | ! ph : pressions aux interfaces (Pa) |
---|
| 71 | ! pi : (p/p_0)**kapa (adim) |
---|
| 72 | ! dtime: increment temporel (s) |
---|
[974] | 73 | |
---|
[1992] | 74 | ! Variables internes : |
---|
[974] | 75 | |
---|
[1992] | 76 | ! rhow : masse volumique de la poche froide |
---|
| 77 | ! rho : environment density at P levels |
---|
| 78 | ! rhoh : environment density at Ph levels |
---|
| 79 | ! te : environment temperature | may change within |
---|
| 80 | ! qe : environment humidity | sub-time-stepping |
---|
| 81 | ! the : environment potential temperature |
---|
| 82 | ! thu : potential temperature in undisturbed area |
---|
| 83 | ! tu : temperature in undisturbed area |
---|
| 84 | ! qu : humidity in undisturbed area |
---|
| 85 | ! dp_omgb: vertical gradient og LS omega |
---|
| 86 | ! omgbw : wake average vertical omega |
---|
| 87 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 88 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 89 | ! dth : potential temperature diff. wake-undist. |
---|
| 90 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 91 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 92 | ! q1 : first humidity for vertical advection |
---|
| 93 | ! q2 : second humidity for vertical advection |
---|
| 94 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 95 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 96 | ! deltatw0 : deltatw initial |
---|
| 97 | ! deltaqw0 : deltaqw initial |
---|
| 98 | ! hw0 : hw initial |
---|
| 99 | ! sigmaw0: sigmaw initial |
---|
| 100 | ! amflux : horizontal mass flux through wake boundary |
---|
| 101 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 102 | ! unit length (2D), at the beginning of each time step |
---|
| 103 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 104 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 105 | ! LL : distance entre 2 poches |
---|
[974] | 106 | |
---|
[1992] | 107 | ! ------------------------------------------------------------------------- |
---|
| 108 | ! Déclaration de variables |
---|
| 109 | ! ------------------------------------------------------------------------- |
---|
[1146] | 110 | |
---|
[1992] | 111 | include "dimensions.h" |
---|
| 112 | include "YOMCST.h" |
---|
| 113 | include "cvthermo.h" |
---|
| 114 | include "iniprint.h" |
---|
[974] | 115 | |
---|
[1992] | 116 | ! Arguments en entree |
---|
| 117 | ! -------------------- |
---|
[974] | 118 | |
---|
[1992] | 119 | REAL, DIMENSION (klon, klev) :: p, pi |
---|
| 120 | REAL, DIMENSION (klon, klev+1) :: ph, omgb |
---|
| 121 | REAL dtime |
---|
| 122 | REAL, DIMENSION (klon, klev) :: te0, qe0 |
---|
| 123 | REAL, DIMENSION (klon, klev) :: dtdwn, dqdwn |
---|
| 124 | REAL, DIMENSION (klon, klev) :: wdtpbl, wdqpbl |
---|
| 125 | REAL, DIMENSION (klon, klev) :: udtpbl, udqpbl |
---|
| 126 | REAL, DIMENSION (klon, klev) :: amdwn, amup |
---|
| 127 | REAL, DIMENSION (klon, klev) :: dta, dqa |
---|
| 128 | REAL, DIMENSION (klon) :: sigd_con |
---|
[974] | 129 | |
---|
[1992] | 130 | ! Sorties |
---|
| 131 | ! -------- |
---|
[974] | 132 | |
---|
[1992] | 133 | REAL, DIMENSION (klon, klev) :: deltatw, deltaqw, dth |
---|
| 134 | REAL, DIMENSION (klon, klev) :: tu, qu |
---|
| 135 | REAL, DIMENSION (klon, klev) :: dtls, dqls |
---|
| 136 | REAL, DIMENSION (klon, klev) :: dtke, dqke |
---|
| 137 | REAL, DIMENSION (klon, klev) :: dtpbl, dqpbl |
---|
| 138 | REAL, DIMENSION (klon, klev) :: spread |
---|
| 139 | REAL, DIMENSION (klon, klev) :: d_deltatgw |
---|
| 140 | REAL, DIMENSION (klon, klev) :: d_deltatw2, d_deltaqw2 |
---|
| 141 | REAL, DIMENSION (klon, klev+1) :: omgbdth, omg |
---|
| 142 | REAL, DIMENSION (klon, klev) :: dp_omgb, dp_deltomg |
---|
| 143 | REAL, DIMENSION (klon, klev) :: d_deltat_gw |
---|
| 144 | REAL, DIMENSION (klon) :: hw, sigmaw, wape, fip, gfl, cstar |
---|
| 145 | REAL, DIMENSION (klon) :: wdens |
---|
| 146 | INTEGER, DIMENSION (klon) :: ktopw |
---|
[974] | 147 | |
---|
[1992] | 148 | ! Variables internes |
---|
| 149 | ! ------------------- |
---|
[974] | 150 | |
---|
[1992] | 151 | ! Variables à fixer |
---|
| 152 | REAL alon |
---|
| 153 | REAL coefgw |
---|
| 154 | REAL :: wdens_ref |
---|
| 155 | REAL stark |
---|
| 156 | REAL alpk |
---|
| 157 | REAL delta_t_min |
---|
| 158 | INTEGER nsub |
---|
| 159 | REAL dtimesub |
---|
| 160 | REAL sigmad, hwmin, wapecut |
---|
| 161 | REAL :: sigmaw_max |
---|
| 162 | REAL :: dens_rate |
---|
| 163 | REAL wdens0 |
---|
| 164 | ! IM 080208 |
---|
| 165 | LOGICAL, DIMENSION (klon) :: gwake |
---|
[974] | 166 | |
---|
[1992] | 167 | ! Variables de sauvegarde |
---|
| 168 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 169 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 170 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
| 171 | REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 |
---|
[974] | 172 | |
---|
[1992] | 173 | ! Variables pour les GW |
---|
| 174 | REAL, DIMENSION (klon) :: ll |
---|
| 175 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 176 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 177 | REAL, DIMENSION (klon, klev) :: tgw |
---|
[1403] | 178 | |
---|
[1992] | 179 | ! Variables liées au calcul de hw |
---|
| 180 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 181 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 182 | REAL, DIMENSION (klon) :: dthmin |
---|
| 183 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 184 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
[1403] | 185 | |
---|
[1992] | 186 | ! Sub-timestep tendencies and related variables |
---|
| 187 | REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) |
---|
| 188 | REAL d_te(klon, klev), d_qe(klon, klev) |
---|
| 189 | REAL d_sigmaw(klon), alpha(klon) |
---|
| 190 | REAL q0_min(klon), q1_min(klon) |
---|
| 191 | LOGICAL wk_adv(klon), ok_qx_qw(klon) |
---|
| 192 | REAL epsilon |
---|
| 193 | DATA epsilon/1.E-15/ |
---|
[974] | 194 | |
---|
[1992] | 195 | ! Autres variables internes |
---|
| 196 | INTEGER isubstep, k, i |
---|
[974] | 197 | |
---|
[1992] | 198 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 199 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 200 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 201 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 202 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 203 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
[974] | 204 | |
---|
[1992] | 205 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 206 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 207 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 208 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 209 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 210 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
[974] | 211 | |
---|
[1992] | 212 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
[974] | 213 | |
---|
[1992] | 214 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
[974] | 215 | |
---|
[1992] | 216 | REAL, DIMENSION (klon, klev+1) :: omgbw |
---|
| 217 | REAL, DIMENSION (klon) :: pupper |
---|
| 218 | REAL, DIMENSION (klon) :: omgtop |
---|
| 219 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 220 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 221 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
[974] | 222 | |
---|
[1992] | 223 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 224 | REAL :: rrd1, rrd2 |
---|
| 225 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 226 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 227 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 228 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
[974] | 229 | |
---|
[1992] | 230 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 231 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
[974] | 232 | |
---|
[1992] | 233 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 234 | REAL crep_upper, crep_sol |
---|
[974] | 235 | |
---|
[1992] | 236 | REAL, DIMENSION (klon, klev) :: ppi |
---|
[974] | 237 | |
---|
[1992] | 238 | ! cc nrlmd |
---|
| 239 | REAL, DIMENSION (klon) :: death_rate, nat_rate |
---|
| 240 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 241 | REAL, DIMENSION (klon, klev) :: detr |
---|
[974] | 242 | |
---|
[1992] | 243 | ! ------------------------------------------------------------------------- |
---|
| 244 | ! Initialisations |
---|
| 245 | ! ------------------------------------------------------------------------- |
---|
[974] | 246 | |
---|
[1992] | 247 | ! print*, 'wake initialisations' |
---|
[974] | 248 | |
---|
[1992] | 249 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 250 | ! ------------------------------------------------------------------------- |
---|
[974] | 251 | |
---|
[1992] | 252 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 253 | ! cc nrlmd |
---|
| 254 | DATA sigmaw_max/0.4/ |
---|
| 255 | DATA dens_rate/0.1/ |
---|
| 256 | ! cc |
---|
| 257 | ! Longueur de maille (en m) |
---|
| 258 | ! ------------------------------------------------------------------------- |
---|
[974] | 259 | |
---|
[1992] | 260 | ! ALON = 3.e5 |
---|
| 261 | alon = 1.E6 |
---|
[974] | 262 | |
---|
| 263 | |
---|
[1992] | 264 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[974] | 265 | |
---|
[1992] | 266 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 267 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 268 | ! wdens : Densité de poche froide par maille |
---|
| 269 | ! ------------------------------------------------------------------------- |
---|
[974] | 270 | |
---|
[1992] | 271 | ! cc nrlmd coefgw=10 |
---|
| 272 | ! coefgw=1 |
---|
| 273 | ! wdens0 = 1.0/(alon**2) |
---|
| 274 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 275 | ! cc nrlmd stark = 0.50 |
---|
| 276 | ! CRtest |
---|
| 277 | ! cc nrlmd alpk=0.1 |
---|
| 278 | ! alpk = 1.0 |
---|
| 279 | ! alpk = 0.5 |
---|
| 280 | ! alpk = 0.05 |
---|
[1146] | 281 | |
---|
[1992] | 282 | stark = 0.33 |
---|
| 283 | alpk = 0.25 |
---|
| 284 | wdens_ref = 8.E-12 |
---|
| 285 | coefgw = 4. |
---|
| 286 | crep_upper = 0.9 |
---|
| 287 | crep_sol = 1.0 |
---|
[974] | 288 | |
---|
[1992] | 289 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
| 290 | OPEN (99, FILE='wake_param.data', STATUS='old', FORM='formatted', ERR=9999) |
---|
| 291 | READ (99, *, END=9998) stark |
---|
| 292 | READ (99, *, END=9998) alpk |
---|
| 293 | READ (99, *, END=9998) wdens_ref |
---|
| 294 | READ (99, *, END=9998) coefgw |
---|
| 295 | 9998 CONTINUE |
---|
| 296 | CLOSE (99) |
---|
| 297 | 9999 CONTINUE |
---|
[974] | 298 | |
---|
[1992] | 299 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 300 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 301 | ! (voir au tout debut de la boucle sur les substeps) |
---|
| 302 | wdens = wdens_ref |
---|
[974] | 303 | |
---|
[1992] | 304 | ! print*,'stark',stark |
---|
| 305 | ! print*,'alpk',alpk |
---|
| 306 | ! print*,'wdens',wdens |
---|
| 307 | ! print*,'coefgw',coefgw |
---|
| 308 | ! cc |
---|
| 309 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 310 | ! ------------------------------------------------------------------------- |
---|
[974] | 311 | |
---|
[1992] | 312 | delta_t_min = 0.2 |
---|
[974] | 313 | |
---|
[1992] | 314 | ! 1. - Save initial values and initialize tendencies |
---|
| 315 | ! -------------------------------------------------- |
---|
[974] | 316 | |
---|
[1992] | 317 | DO k = 1, klev |
---|
| 318 | DO i = 1, klon |
---|
| 319 | ppi(i, k) = pi(i, k) |
---|
| 320 | deltatw0(i, k) = deltatw(i, k) |
---|
| 321 | deltaqw0(i, k) = deltaqw(i, k) |
---|
| 322 | te(i, k) = te0(i, k) |
---|
| 323 | qe(i, k) = qe0(i, k) |
---|
| 324 | dtls(i, k) = 0. |
---|
| 325 | dqls(i, k) = 0. |
---|
| 326 | d_deltat_gw(i, k) = 0. |
---|
| 327 | d_te(i, k) = 0. |
---|
| 328 | d_qe(i, k) = 0. |
---|
| 329 | d_deltatw(i, k) = 0. |
---|
| 330 | d_deltaqw(i, k) = 0. |
---|
| 331 | ! IM 060508 beg |
---|
| 332 | d_deltatw2(i, k) = 0. |
---|
| 333 | d_deltaqw2(i, k) = 0. |
---|
| 334 | ! IM 060508 end |
---|
| 335 | END DO |
---|
| 336 | END DO |
---|
| 337 | ! sigmaw1=sigmaw |
---|
| 338 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 339 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 340 | ! ENDIF |
---|
| 341 | DO i = 1, klon |
---|
| 342 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 343 | sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 344 | sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 345 | sigmaw0(i) = sigmaw(i) |
---|
| 346 | wape(i) = 0. |
---|
| 347 | wape2(i) = 0. |
---|
| 348 | d_sigmaw(i) = 0. |
---|
| 349 | ktopw(i) = 0 |
---|
| 350 | END DO |
---|
[974] | 351 | |
---|
| 352 | |
---|
[1992] | 353 | ! 2. - Prognostic part |
---|
| 354 | ! -------------------- |
---|
[974] | 355 | |
---|
| 356 | |
---|
[1992] | 357 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 358 | ! --------------------------------------------------------- |
---|
[974] | 359 | |
---|
[1992] | 360 | DO i = 1, klon |
---|
| 361 | z(i) = 0. |
---|
| 362 | ktop(i) = 0 |
---|
| 363 | kupper(i) = 0 |
---|
| 364 | sum_thu(i) = 0. |
---|
| 365 | sum_tu(i) = 0. |
---|
| 366 | sum_qu(i) = 0. |
---|
| 367 | sum_thvu(i) = 0. |
---|
| 368 | sum_dth(i) = 0. |
---|
| 369 | sum_dq(i) = 0. |
---|
| 370 | sum_rho(i) = 0. |
---|
| 371 | sum_dtdwn(i) = 0. |
---|
| 372 | sum_dqdwn(i) = 0. |
---|
[974] | 373 | |
---|
[1992] | 374 | av_thu(i) = 0. |
---|
| 375 | av_tu(i) = 0. |
---|
| 376 | av_qu(i) = 0. |
---|
| 377 | av_thvu(i) = 0. |
---|
| 378 | av_dth(i) = 0. |
---|
| 379 | av_dq(i) = 0. |
---|
| 380 | av_rho(i) = 0. |
---|
| 381 | av_dtdwn(i) = 0. |
---|
| 382 | av_dqdwn(i) = 0. |
---|
| 383 | END DO |
---|
[974] | 384 | |
---|
[1992] | 385 | ! Distance between wakes |
---|
| 386 | DO i = 1, klon |
---|
| 387 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 388 | END DO |
---|
| 389 | ! Potential temperatures and humidity |
---|
| 390 | ! ---------------------------------------------------------- |
---|
| 391 | DO k = 1, klev |
---|
| 392 | DO i = 1, klon |
---|
| 393 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 394 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 395 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 396 | IF (k==1) THEN |
---|
| 397 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 398 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 399 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 400 | zhh(i, k) = 0 |
---|
| 401 | ELSE |
---|
| 402 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 403 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 404 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 405 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 406 | END IF |
---|
| 407 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 408 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 409 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 410 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 411 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 412 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 413 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 414 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 415 | END DO |
---|
| 416 | END DO |
---|
[1403] | 417 | |
---|
[1992] | 418 | DO k = 1, klev - 1 |
---|
| 419 | DO i = 1, klon |
---|
| 420 | IF (k==1) THEN |
---|
| 421 | n2(i, k) = 0 |
---|
| 422 | ELSE |
---|
| 423 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & |
---|
| 424 | k-1))/(p(i,k+1)-p(i,k-1))) |
---|
| 425 | END IF |
---|
| 426 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
[1403] | 427 | |
---|
[1992] | 428 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 429 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 430 | END DO |
---|
| 431 | END DO |
---|
[974] | 432 | |
---|
[1992] | 433 | DO i = 1, klon |
---|
| 434 | n2(i, klev) = 0 |
---|
| 435 | zh(i, klev) = 0 |
---|
| 436 | cgw(i, klev) = 0 |
---|
| 437 | tgw(i, klev) = 0 |
---|
| 438 | END DO |
---|
[974] | 439 | |
---|
[1992] | 440 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 441 | ! ----------------------------------------------------------------- |
---|
[974] | 442 | |
---|
[1992] | 443 | DO k = 1, klev |
---|
| 444 | DO i = 1, klon |
---|
| 445 | epaisseur1(i, k) = 0. |
---|
| 446 | epaisseur2(i, k) = 0. |
---|
| 447 | END DO |
---|
| 448 | END DO |
---|
[974] | 449 | |
---|
[1992] | 450 | DO i = 1, klon |
---|
| 451 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 452 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 453 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 454 | END DO |
---|
[974] | 455 | |
---|
[1992] | 456 | DO k = 2, klev |
---|
| 457 | DO i = 1, klon |
---|
| 458 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 459 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 460 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 461 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 462 | END DO |
---|
| 463 | END DO |
---|
[974] | 464 | |
---|
| 465 | |
---|
[1992] | 466 | ! Choose an integration bound well above wake top |
---|
| 467 | ! ----------------------------------------------------------------- |
---|
[974] | 468 | |
---|
[1992] | 469 | ! Pupper = 50000. ! melting level |
---|
| 470 | ! Pupper = 60000. |
---|
| 471 | ! Pupper = 80000. ! essais pour case_e |
---|
| 472 | DO i = 1, klon |
---|
| 473 | pupper(i) = 0.6*ph(i, 1) |
---|
| 474 | pupper(i) = max(pupper(i), 45000.) |
---|
| 475 | ! cc Pupper(i) = 60000. |
---|
| 476 | END DO |
---|
[1146] | 477 | |
---|
[1403] | 478 | |
---|
[1992] | 479 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 480 | ! -------------------------------------------------------- |
---|
[1403] | 481 | |
---|
[1992] | 482 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 483 | |
---|
| 484 | DO i = 1, klon |
---|
| 485 | ptop_provis(i) = ph(i, 1) |
---|
| 486 | END DO |
---|
| 487 | DO k = 2, klev |
---|
| 488 | DO i = 1, klon |
---|
| 489 | |
---|
| 490 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 491 | |
---|
| 492 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 493 | ptop_provis(i)==ph(i,1)) THEN |
---|
| 494 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 495 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 496 | END IF |
---|
| 497 | END DO |
---|
| 498 | END DO |
---|
| 499 | |
---|
| 500 | ! -2/ dth integral |
---|
| 501 | |
---|
| 502 | DO i = 1, klon |
---|
| 503 | sum_dth(i) = 0. |
---|
| 504 | dthmin(i) = -delta_t_min |
---|
| 505 | z(i) = 0. |
---|
| 506 | END DO |
---|
| 507 | |
---|
| 508 | DO k = 1, klev |
---|
| 509 | DO i = 1, klon |
---|
| 510 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 511 | IF (dz(i)>0) THEN |
---|
| 512 | z(i) = z(i) + dz(i) |
---|
| 513 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 514 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 515 | END IF |
---|
| 516 | END DO |
---|
| 517 | END DO |
---|
| 518 | |
---|
| 519 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 520 | |
---|
| 521 | DO i = 1, klon |
---|
| 522 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 523 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 524 | END DO |
---|
| 525 | |
---|
| 526 | ! -4/ now, get Ptop |
---|
| 527 | |
---|
| 528 | DO i = 1, klon |
---|
| 529 | z(i) = 0. |
---|
| 530 | ptop(i) = ph(i, 1) |
---|
| 531 | END DO |
---|
| 532 | |
---|
| 533 | DO k = 1, klev |
---|
| 534 | DO i = 1, klon |
---|
| 535 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 536 | IF (dz(i)>0) THEN |
---|
| 537 | z(i) = z(i) + dz(i) |
---|
| 538 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 539 | END IF |
---|
| 540 | END DO |
---|
| 541 | END DO |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | ! -5/ Determination de ktop et kupper |
---|
| 545 | |
---|
| 546 | DO k = klev, 1, -1 |
---|
| 547 | DO i = 1, klon |
---|
| 548 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 549 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 550 | END DO |
---|
| 551 | END DO |
---|
| 552 | |
---|
| 553 | ! On evite kupper = 1 et kupper = klev |
---|
| 554 | DO i = 1, klon |
---|
| 555 | kupper(i) = max(kupper(i), 2) |
---|
| 556 | kupper(i) = min(kupper(i), klev-1) |
---|
| 557 | END DO |
---|
| 558 | |
---|
| 559 | |
---|
| 560 | ! -6/ Correct ktop and ptop |
---|
| 561 | |
---|
| 562 | DO i = 1, klon |
---|
| 563 | ptop_new(i) = ptop(i) |
---|
| 564 | END DO |
---|
| 565 | DO k = klev, 2, -1 |
---|
| 566 | DO i = 1, klon |
---|
| 567 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 568 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 569 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 570 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 571 | END IF |
---|
| 572 | END DO |
---|
| 573 | END DO |
---|
| 574 | |
---|
| 575 | DO i = 1, klon |
---|
| 576 | ptop(i) = ptop_new(i) |
---|
| 577 | END DO |
---|
| 578 | |
---|
| 579 | DO k = klev, 1, -1 |
---|
| 580 | DO i = 1, klon |
---|
| 581 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 582 | END DO |
---|
| 583 | END DO |
---|
| 584 | |
---|
| 585 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 586 | |
---|
| 587 | DO k = 1, klev |
---|
| 588 | DO i = 1, klon |
---|
| 589 | IF (k>=kupper(i)) THEN |
---|
| 590 | deltatw(i, k) = 0. |
---|
| 591 | deltaqw(i, k) = 0. |
---|
| 592 | END IF |
---|
| 593 | END DO |
---|
| 594 | END DO |
---|
| 595 | |
---|
| 596 | |
---|
| 597 | ! Vertical gradient of LS omega |
---|
| 598 | |
---|
| 599 | DO k = 1, klev |
---|
| 600 | DO i = 1, klon |
---|
| 601 | IF (k<=kupper(i)) THEN |
---|
| 602 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 603 | END IF |
---|
| 604 | END DO |
---|
| 605 | END DO |
---|
| 606 | |
---|
| 607 | ! Integrals (and wake top level number) |
---|
| 608 | ! -------------------------------------- |
---|
| 609 | |
---|
| 610 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 611 | |
---|
| 612 | DO i = 1, klon |
---|
| 613 | z(i) = 1. |
---|
| 614 | dz(i) = 1. |
---|
| 615 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 616 | sum_dth(i) = 0. |
---|
| 617 | END DO |
---|
| 618 | |
---|
| 619 | DO k = 1, klev |
---|
| 620 | DO i = 1, klon |
---|
| 621 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 622 | IF (dz(i)>0) THEN |
---|
| 623 | z(i) = z(i) + dz(i) |
---|
| 624 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 625 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 626 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 627 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 628 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 629 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 630 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 631 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 632 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 633 | END IF |
---|
| 634 | END DO |
---|
| 635 | END DO |
---|
| 636 | |
---|
| 637 | DO i = 1, klon |
---|
| 638 | hw0(i) = z(i) |
---|
| 639 | END DO |
---|
| 640 | |
---|
| 641 | |
---|
| 642 | ! 2.1 - WAPE and mean forcing computation |
---|
| 643 | ! --------------------------------------- |
---|
| 644 | |
---|
| 645 | ! --------------------------------------- |
---|
| 646 | |
---|
| 647 | ! Means |
---|
| 648 | |
---|
| 649 | DO i = 1, klon |
---|
| 650 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 651 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 652 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 653 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 654 | ! av_thve = sum_thve/hw0 |
---|
| 655 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 656 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 657 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 658 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 659 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 660 | |
---|
| 661 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & |
---|
| 662 | )+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 663 | END DO |
---|
| 664 | |
---|
| 665 | ! 2.2 Prognostic variable update |
---|
| 666 | ! ------------------------------ |
---|
| 667 | |
---|
| 668 | ! Filter out bad wakes |
---|
| 669 | |
---|
| 670 | DO k = 1, klev |
---|
| 671 | DO i = 1, klon |
---|
| 672 | IF (wape(i)<0.) THEN |
---|
| 673 | deltatw(i, k) = 0. |
---|
| 674 | deltaqw(i, k) = 0. |
---|
| 675 | dth(i, k) = 0. |
---|
| 676 | END IF |
---|
| 677 | END DO |
---|
| 678 | END DO |
---|
| 679 | |
---|
| 680 | DO i = 1, klon |
---|
| 681 | IF (wape(i)<0.) THEN |
---|
| 682 | wape(i) = 0. |
---|
| 683 | cstar(i) = 0. |
---|
| 684 | hw(i) = hwmin |
---|
| 685 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 686 | fip(i) = 0. |
---|
| 687 | gwake(i) = .FALSE. |
---|
| 688 | ELSE |
---|
| 689 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 690 | gwake(i) = .TRUE. |
---|
| 691 | END IF |
---|
| 692 | END DO |
---|
| 693 | |
---|
| 694 | |
---|
| 695 | ! Check qx and qw positivity |
---|
| 696 | ! -------------------------- |
---|
| 697 | DO i = 1, klon |
---|
| 698 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & |
---|
| 699 | 1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
| 700 | END DO |
---|
| 701 | DO k = 2, klev |
---|
| 702 | DO i = 1, klon |
---|
| 703 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & |
---|
| 704 | k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
| 705 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 706 | q0_min(i) = q1_min(i) |
---|
| 707 | END IF |
---|
| 708 | END DO |
---|
| 709 | END DO |
---|
| 710 | |
---|
| 711 | DO i = 1, klon |
---|
| 712 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 713 | alpha(i) = 1. |
---|
| 714 | END DO |
---|
| 715 | |
---|
| 716 | ! C ----------------------------------------------------------------- |
---|
| 717 | ! Sub-time-stepping |
---|
| 718 | ! ----------------- |
---|
| 719 | |
---|
| 720 | nsub = 10 |
---|
| 721 | dtimesub = dtime/nsub |
---|
| 722 | |
---|
| 723 | ! ------------------------------------------------------------ |
---|
| 724 | DO isubstep = 1, nsub |
---|
| 725 | ! ------------------------------------------------------------ |
---|
| 726 | |
---|
| 727 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 728 | ! loop |
---|
| 729 | DO i = 1, klon |
---|
| 730 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 731 | END DO |
---|
| 732 | |
---|
| 733 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 734 | ! négatif de ktop à kupper -------- |
---|
| 735 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 736 | ! aurait un entrainement nul --- |
---|
| 737 | DO i = 1, klon |
---|
| 738 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 739 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 740 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 741 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 742 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 743 | wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & |
---|
| 744 | ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
| 745 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 746 | wdens(i) = wdens0 |
---|
| 747 | END IF |
---|
| 748 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 749 | ! c $ ,ph(i,1)-pupper(i)', |
---|
| 750 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 751 | ! c $ ,ph(i,1)-pupper(i) |
---|
| 752 | END IF |
---|
| 753 | END DO |
---|
| 754 | |
---|
| 755 | ! cc nrlmd |
---|
| 756 | |
---|
| 757 | DO i = 1, klon |
---|
| 758 | IF (wk_adv(i)) THEN |
---|
[1403] | 759 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
[1992] | 760 | sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 761 | END IF |
---|
| 762 | END DO |
---|
| 763 | DO i = 1, klon |
---|
| 764 | IF (wk_adv(i)) THEN |
---|
| 765 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 766 | ! test sur sigmaw_max=0.4 |
---|
| 767 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 768 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 769 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 770 | ELSE |
---|
| 771 | death_rate(i) = 0. |
---|
| 772 | END IF |
---|
| 773 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 774 | dtimesub |
---|
| 775 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 776 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 777 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 778 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 779 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
[1403] | 780 | |
---|
[1992] | 781 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 782 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 783 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 784 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 785 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 786 | END IF |
---|
| 787 | END DO |
---|
| 788 | |
---|
| 789 | |
---|
| 790 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 791 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 792 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on |
---|
| 793 | ! definit |
---|
| 794 | ! IM 060208 au niveau k=1..? |
---|
| 795 | DO k = 1, klev |
---|
| 796 | DO i = 1, klon |
---|
| 797 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 798 | dp_deltomg(i, k) = 0. |
---|
| 799 | END IF |
---|
| 800 | END DO |
---|
| 801 | END DO |
---|
| 802 | DO k = 1, klev + 1 |
---|
| 803 | DO i = 1, klon |
---|
| 804 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 805 | omg(i, k) = 0. |
---|
| 806 | END IF |
---|
| 807 | END DO |
---|
| 808 | END DO |
---|
| 809 | |
---|
| 810 | DO i = 1, klon |
---|
| 811 | IF (wk_adv(i)) THEN |
---|
| 812 | z(i) = 0. |
---|
| 813 | omg(i, 1) = 0. |
---|
| 814 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 815 | END IF |
---|
| 816 | END DO |
---|
| 817 | |
---|
| 818 | DO k = 2, klev |
---|
| 819 | DO i = 1, klon |
---|
| 820 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
[974] | 821 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
[1992] | 822 | z(i) = z(i) + dz(i) |
---|
| 823 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 824 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 825 | END IF |
---|
| 826 | END DO |
---|
| 827 | END DO |
---|
| 828 | |
---|
| 829 | DO i = 1, klon |
---|
| 830 | IF (wk_adv(i)) THEN |
---|
| 831 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 832 | ztop(i) = z(i) + dztop(i) |
---|
| 833 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 834 | END IF |
---|
| 835 | END DO |
---|
| 836 | |
---|
| 837 | ! ----------------- |
---|
| 838 | ! From m/s to Pa/s |
---|
| 839 | ! ----------------- |
---|
| 840 | |
---|
| 841 | DO i = 1, klon |
---|
| 842 | IF (wk_adv(i)) THEN |
---|
| 843 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 844 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 845 | END IF |
---|
| 846 | END DO |
---|
| 847 | |
---|
| 848 | DO k = 1, klev |
---|
| 849 | DO i = 1, klon |
---|
| 850 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 851 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 852 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 853 | END IF |
---|
| 854 | END DO |
---|
| 855 | END DO |
---|
| 856 | |
---|
| 857 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 858 | |
---|
| 859 | DO i = 1, klon |
---|
| 860 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 861 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 862 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 863 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 864 | (ptop(i)-pupper(i)) |
---|
| 865 | END IF |
---|
| 866 | END DO |
---|
| 867 | |
---|
| 868 | ! c DO i=1,klon |
---|
| 869 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 870 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 871 | ! c print*,'Pente entre ktop et kupper' |
---|
| 872 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 873 | ! c ENDDO |
---|
| 874 | ! c |
---|
| 875 | DO k = 1, klev |
---|
| 876 | DO i = 1, klon |
---|
| 877 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 878 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 879 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 880 | END IF |
---|
| 881 | END DO |
---|
| 882 | END DO |
---|
| 883 | ! cc nrlmd |
---|
| 884 | ! c DO i=1,klon |
---|
| 885 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 886 | ! c END DO |
---|
| 887 | ! cc |
---|
| 888 | |
---|
| 889 | |
---|
| 890 | ! -- Compute wake average vertical velocity omgbw |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | DO k = 1, klev + 1 |
---|
| 894 | DO i = 1, klon |
---|
[1146] | 895 | IF (wk_adv(i)) THEN |
---|
[1992] | 896 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 897 | END IF |
---|
| 898 | END DO |
---|
| 899 | END DO |
---|
| 900 | ! -- and its vertical gradient dp_omgbw |
---|
| 901 | |
---|
| 902 | DO k = 1, klev |
---|
| 903 | DO i = 1, klon |
---|
[1146] | 904 | IF (wk_adv(i)) THEN |
---|
[1992] | 905 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 906 | END IF |
---|
| 907 | END DO |
---|
| 908 | END DO |
---|
[974] | 909 | |
---|
[1992] | 910 | ! -- Upstream coefficients for omgb velocity |
---|
| 911 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 912 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 913 | DO k = 1, klev |
---|
| 914 | DO i = 1, klon |
---|
| 915 | IF (wk_adv(i)) THEN |
---|
| 916 | alpha_up(i, k) = 0. |
---|
| 917 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 918 | END IF |
---|
| 919 | END DO |
---|
| 920 | END DO |
---|
[974] | 921 | |
---|
[1992] | 922 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[974] | 923 | |
---|
[1992] | 924 | DO i = 1, klon |
---|
| 925 | IF (wk_adv(i)) THEN |
---|
| 926 | rre1(i) = 1. - sigmaw(i) |
---|
| 927 | rre2(i) = sigmaw(i) |
---|
| 928 | END IF |
---|
| 929 | END DO |
---|
| 930 | rrd1 = -1. |
---|
| 931 | rrd2 = 1. |
---|
[974] | 932 | |
---|
[1992] | 933 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
[974] | 934 | |
---|
[1992] | 935 | DO k = 1, klev |
---|
| 936 | DO i = 1, klon |
---|
| 937 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 938 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 939 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 940 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 941 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 942 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 943 | END IF |
---|
| 944 | END DO |
---|
| 945 | END DO |
---|
[974] | 946 | |
---|
[1992] | 947 | DO i = 1, klon |
---|
| 948 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 949 | d_th1(i, 1) = 0. |
---|
| 950 | d_th2(i, 1) = 0. |
---|
| 951 | d_dth(i, 1) = 0. |
---|
| 952 | d_q1(i, 1) = 0. |
---|
| 953 | d_q2(i, 1) = 0. |
---|
| 954 | d_dq(i, 1) = 0. |
---|
| 955 | END IF |
---|
| 956 | END DO |
---|
[974] | 957 | |
---|
[1992] | 958 | DO k = 2, klev |
---|
| 959 | DO i = 1, klon |
---|
| 960 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 961 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 962 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 963 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 964 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 965 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 966 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 967 | END IF |
---|
| 968 | END DO |
---|
| 969 | END DO |
---|
[1146] | 970 | |
---|
[1992] | 971 | DO i = 1, klon |
---|
| 972 | IF (wk_adv(i)) THEN |
---|
| 973 | omgbdth(i, 1) = 0. |
---|
| 974 | omgbdq(i, 1) = 0. |
---|
| 975 | END IF |
---|
| 976 | END DO |
---|
[1277] | 977 | |
---|
[1992] | 978 | DO k = 2, klev |
---|
| 979 | DO i = 1, klon |
---|
| 980 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 981 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 982 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 983 | END IF |
---|
| 984 | END DO |
---|
| 985 | END DO |
---|
[1403] | 986 | |
---|
[1992] | 987 | ! ----------------------------------------------------------------- |
---|
| 988 | DO k = 1, klev |
---|
| 989 | DO i = 1, klon |
---|
| 990 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 991 | ! ----------------------------------------------------------------- |
---|
[974] | 992 | |
---|
[1992] | 993 | ! Compute redistribution (advective) term |
---|
[1403] | 994 | |
---|
[1992] | 995 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 996 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 997 | i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & |
---|
| 998 | omgbdth(i,k+1))*ppi(i, k) |
---|
| 999 | ! print*,'d_deltatw=',d_deltatw(i,k) |
---|
[1403] | 1000 | |
---|
[1992] | 1001 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1002 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 1003 | i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & |
---|
| 1004 | omgbdq(i,k+1)) |
---|
| 1005 | ! print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
[974] | 1006 | |
---|
[1992] | 1007 | ! and increment large scale tendencies |
---|
[974] | 1008 | |
---|
| 1009 | |
---|
| 1010 | |
---|
| 1011 | |
---|
[1992] | 1012 | ! C |
---|
| 1013 | ! ----------------------------------------------------------------- |
---|
| 1014 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1015 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1016 | k+1)) & ! cc nrlmd $ |
---|
| 1017 | ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
| 1018 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & |
---|
| 1019 | k)-ph(i,k+1)) & ! cc |
---|
| 1020 | )*ppi(i, k) |
---|
[974] | 1021 | |
---|
[1992] | 1022 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1023 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1024 | k+1)) & ! cc nrlmd $ |
---|
| 1025 | ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
| 1026 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & |
---|
| 1027 | k+1))/(ph(i,k)-ph(i,k+1)) & ! cc |
---|
| 1028 | ) |
---|
| 1029 | ! cc nrlmd |
---|
| 1030 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
| 1031 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1032 | k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) |
---|
[1403] | 1033 | |
---|
[1992] | 1034 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1035 | k)/(ph(i,k)-ph(i,k+1)))) |
---|
[1403] | 1036 | |
---|
[1992] | 1037 | END IF |
---|
| 1038 | ! cc |
---|
| 1039 | END DO |
---|
| 1040 | END DO |
---|
| 1041 | ! ------------------------------------------------------------------ |
---|
[974] | 1042 | |
---|
[1992] | 1043 | ! Increment state variables |
---|
[974] | 1044 | |
---|
[1992] | 1045 | DO k = 1, klev |
---|
| 1046 | DO i = 1, klon |
---|
| 1047 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1048 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1049 | ! cc |
---|
[974] | 1050 | |
---|
[1146] | 1051 | |
---|
[974] | 1052 | |
---|
[1992] | 1053 | ! Coefficient de répartition |
---|
[974] | 1054 | |
---|
[1992] | 1055 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1056 | (ph(i,kupper(i))-ph(i,1)) |
---|
| 1057 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & |
---|
| 1058 | ,kupper(i))) |
---|
[974] | 1059 | |
---|
| 1060 | |
---|
[1992] | 1061 | ! Reintroduce compensating subsidence term. |
---|
[1146] | 1062 | |
---|
[1992] | 1063 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1064 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1065 | ! . /(1-sigmaw) |
---|
| 1066 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1067 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1068 | ! . /(1-sigmaw) |
---|
[974] | 1069 | |
---|
[1992] | 1070 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1071 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1072 | ! . /(1-sigmaw) |
---|
| 1073 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1074 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1075 | ! . /(1-sigmaw) |
---|
[974] | 1076 | |
---|
[1992] | 1077 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1078 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1079 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
[974] | 1080 | |
---|
[1992] | 1081 | dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1082 | dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1083 | ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
[1146] | 1084 | |
---|
[1992] | 1085 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1086 | ! cc Définitions de entr, detr |
---|
| 1087 | detr(i, k) = 0. |
---|
[1146] | 1088 | |
---|
[1992] | 1089 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1090 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
[1146] | 1091 | |
---|
[1992] | 1092 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1093 | ! cc spread(i,k) = |
---|
| 1094 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1095 | ! cc $ sigmaw(i) |
---|
[1146] | 1096 | |
---|
| 1097 | |
---|
[1992] | 1098 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1099 | ! Jingmei |
---|
[1146] | 1100 | |
---|
[1992] | 1101 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1102 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1103 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1104 | dtimesub |
---|
| 1105 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1106 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
[1403] | 1107 | |
---|
[1992] | 1108 | ! Sans GW |
---|
[1403] | 1109 | |
---|
[1992] | 1110 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
[974] | 1111 | |
---|
[1992] | 1112 | ! GW formule 1 |
---|
| 1113 | |
---|
| 1114 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1115 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1116 | |
---|
| 1117 | ! GW formule 2 |
---|
| 1118 | |
---|
| 1119 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
| 1120 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc |
---|
| 1121 | ! $ |
---|
| 1122 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1123 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1124 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1125 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1126 | ELSE |
---|
| 1127 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & |
---|
| 1128 | k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ |
---|
| 1129 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1130 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1131 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1132 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1133 | END IF |
---|
| 1134 | |
---|
| 1135 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1136 | |
---|
| 1137 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1138 | |
---|
| 1139 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ |
---|
| 1140 | ! -spread(i,k)*deltaqw(i,k)) |
---|
| 1141 | -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & |
---|
| 1142 | i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
| 1143 | ! cc |
---|
| 1144 | |
---|
| 1145 | ! cc nrlmd |
---|
| 1146 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1147 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1148 | ! cc |
---|
| 1149 | END IF |
---|
| 1150 | END DO |
---|
| 1151 | END DO |
---|
| 1152 | |
---|
| 1153 | |
---|
| 1154 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1155 | |
---|
| 1156 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1157 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1158 | |
---|
| 1159 | ! cc nrlmd |
---|
| 1160 | ! c print*,'alpha' |
---|
| 1161 | ! c do i=1,klon |
---|
| 1162 | ! c print*,alpha(i) |
---|
| 1163 | ! c end do |
---|
| 1164 | ! cc |
---|
| 1165 | DO k = 1, klev |
---|
| 1166 | DO i = 1, klon |
---|
| 1167 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1168 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1169 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1170 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1171 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1172 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1173 | END IF |
---|
| 1174 | END DO |
---|
| 1175 | END DO |
---|
| 1176 | DO i = 1, klon |
---|
| 1177 | IF (wk_adv(i)) THEN |
---|
| 1178 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1179 | END IF |
---|
| 1180 | END DO |
---|
| 1181 | |
---|
| 1182 | ! Update large scale variables and wake variables |
---|
| 1183 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1184 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1185 | DO k = 1, klev |
---|
| 1186 | DO i = 1, klon |
---|
| 1187 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1188 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1189 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1190 | ! cc nrlmd |
---|
| 1191 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1192 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1193 | ! cc |
---|
| 1194 | END IF |
---|
| 1195 | END DO |
---|
| 1196 | END DO |
---|
| 1197 | DO k = 1, klev |
---|
| 1198 | DO i = 1, klon |
---|
| 1199 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1200 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1201 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1202 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1203 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1204 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1205 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1206 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1207 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1208 | END IF |
---|
| 1209 | END DO |
---|
| 1210 | END DO |
---|
| 1211 | DO i = 1, klon |
---|
| 1212 | IF (wk_adv(i)) THEN |
---|
| 1213 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
| 1214 | END IF |
---|
| 1215 | END DO |
---|
| 1216 | |
---|
| 1217 | |
---|
| 1218 | ! Determine Ptop from buoyancy integral |
---|
| 1219 | ! --------------------------------------- |
---|
| 1220 | |
---|
| 1221 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1222 | |
---|
| 1223 | DO i = 1, klon |
---|
| 1224 | IF (wk_adv(i)) THEN |
---|
| 1225 | ptop_provis(i) = ph(i, 1) |
---|
| 1226 | END IF |
---|
| 1227 | END DO |
---|
| 1228 | |
---|
| 1229 | DO k = 2, klev |
---|
| 1230 | DO i = 1, klon |
---|
| 1231 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1232 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1233 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1234 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1235 | END IF |
---|
| 1236 | END DO |
---|
| 1237 | END DO |
---|
| 1238 | |
---|
| 1239 | ! - 2/ dth integral |
---|
| 1240 | |
---|
| 1241 | DO i = 1, klon |
---|
| 1242 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1243 | sum_dth(i) = 0. |
---|
| 1244 | dthmin(i) = -delta_t_min |
---|
[974] | 1245 | z(i) = 0. |
---|
[1992] | 1246 | END IF |
---|
| 1247 | END DO |
---|
| 1248 | |
---|
| 1249 | DO k = 1, klev |
---|
| 1250 | DO i = 1, klon |
---|
| 1251 | IF (wk_adv(i)) THEN |
---|
| 1252 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1253 | IF (dz(i)>0) THEN |
---|
| 1254 | z(i) = z(i) + dz(i) |
---|
| 1255 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1256 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1257 | END IF |
---|
| 1258 | END IF |
---|
| 1259 | END DO |
---|
| 1260 | END DO |
---|
| 1261 | |
---|
| 1262 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1263 | |
---|
| 1264 | DO i = 1, klon |
---|
| 1265 | IF (wk_adv(i)) THEN |
---|
| 1266 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1267 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1268 | END IF |
---|
| 1269 | END DO |
---|
| 1270 | |
---|
| 1271 | ! - 4/ now, get Ptop |
---|
| 1272 | |
---|
| 1273 | DO i = 1, klon |
---|
| 1274 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1275 | ktop(i) = 0 |
---|
| 1276 | z(i) = 0. |
---|
| 1277 | END IF |
---|
| 1278 | END DO |
---|
| 1279 | |
---|
| 1280 | DO k = 1, klev |
---|
| 1281 | DO i = 1, klon |
---|
| 1282 | IF (wk_adv(i)) THEN |
---|
| 1283 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1284 | IF (dz(i)>0) THEN |
---|
| 1285 | z(i) = z(i) + dz(i) |
---|
| 1286 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1287 | ktop(i) = k |
---|
| 1288 | END IF |
---|
| 1289 | END IF |
---|
| 1290 | END DO |
---|
| 1291 | END DO |
---|
| 1292 | |
---|
| 1293 | ! 4.5/Correct ktop and ptop |
---|
| 1294 | |
---|
| 1295 | DO i = 1, klon |
---|
| 1296 | IF (wk_adv(i)) THEN |
---|
| 1297 | ptop_new(i) = ptop(i) |
---|
| 1298 | END IF |
---|
| 1299 | END DO |
---|
| 1300 | |
---|
| 1301 | DO k = klev, 2, -1 |
---|
| 1302 | DO i = 1, klon |
---|
| 1303 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1304 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1305 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1306 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1307 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1308 | END IF |
---|
| 1309 | END DO |
---|
| 1310 | END DO |
---|
| 1311 | |
---|
| 1312 | |
---|
| 1313 | DO i = 1, klon |
---|
| 1314 | IF (wk_adv(i)) THEN |
---|
| 1315 | ptop(i) = ptop_new(i) |
---|
| 1316 | END IF |
---|
| 1317 | END DO |
---|
| 1318 | |
---|
| 1319 | DO k = klev, 1, -1 |
---|
| 1320 | DO i = 1, klon |
---|
| 1321 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1322 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1323 | END IF |
---|
| 1324 | END DO |
---|
| 1325 | END DO |
---|
| 1326 | |
---|
| 1327 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1328 | |
---|
| 1329 | DO k = 1, klev |
---|
| 1330 | DO i = 1, klon |
---|
| 1331 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 1332 | deltatw(i, k) = 0. |
---|
| 1333 | deltaqw(i, k) = 0. |
---|
| 1334 | END IF |
---|
| 1335 | END DO |
---|
| 1336 | END DO |
---|
| 1337 | |
---|
| 1338 | |
---|
| 1339 | ! -------------Cstar computation--------------------------------- |
---|
| 1340 | DO i = 1, klon |
---|
| 1341 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1342 | sum_thu(i) = 0. |
---|
| 1343 | sum_tu(i) = 0. |
---|
| 1344 | sum_qu(i) = 0. |
---|
| 1345 | sum_thvu(i) = 0. |
---|
| 1346 | sum_dth(i) = 0. |
---|
| 1347 | sum_dq(i) = 0. |
---|
| 1348 | sum_rho(i) = 0. |
---|
| 1349 | sum_dtdwn(i) = 0. |
---|
| 1350 | sum_dqdwn(i) = 0. |
---|
| 1351 | |
---|
| 1352 | av_thu(i) = 0. |
---|
[1992] | 1353 | av_tu(i) = 0. |
---|
| 1354 | av_qu(i) = 0. |
---|
[974] | 1355 | av_thvu(i) = 0. |
---|
| 1356 | av_dth(i) = 0. |
---|
| 1357 | av_dq(i) = 0. |
---|
[1992] | 1358 | av_rho(i) = 0. |
---|
| 1359 | av_dtdwn(i) = 0. |
---|
[974] | 1360 | av_dqdwn(i) = 0. |
---|
[1992] | 1361 | END IF |
---|
| 1362 | END DO |
---|
[974] | 1363 | |
---|
[1992] | 1364 | ! Integrals (and wake top level number) |
---|
| 1365 | ! -------------------------------------- |
---|
[974] | 1366 | |
---|
[1992] | 1367 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[974] | 1368 | |
---|
[1992] | 1369 | DO i = 1, klon |
---|
| 1370 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1371 | z(i) = 1. |
---|
| 1372 | dz(i) = 1. |
---|
[1992] | 1373 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
[974] | 1374 | sum_dth(i) = 0. |
---|
[1992] | 1375 | END IF |
---|
| 1376 | END DO |
---|
[974] | 1377 | |
---|
[1992] | 1378 | DO k = 1, klev |
---|
| 1379 | DO i = 1, klon |
---|
| 1380 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1381 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1382 | IF (dz(i)>0) THEN |
---|
| 1383 | z(i) = z(i) + dz(i) |
---|
| 1384 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1385 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1386 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1387 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 1388 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1389 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1390 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1391 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1392 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1393 | END IF |
---|
| 1394 | END IF |
---|
| 1395 | END DO |
---|
| 1396 | END DO |
---|
| 1397 | |
---|
| 1398 | DO i = 1, klon |
---|
| 1399 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1400 | hw0(i) = z(i) |
---|
[1992] | 1401 | END IF |
---|
| 1402 | END DO |
---|
[974] | 1403 | |
---|
| 1404 | |
---|
[1992] | 1405 | ! - WAPE and mean forcing computation |
---|
| 1406 | ! --------------------------------------- |
---|
| 1407 | |
---|
| 1408 | ! --------------------------------------- |
---|
| 1409 | |
---|
| 1410 | ! Means |
---|
| 1411 | |
---|
| 1412 | DO i = 1, klon |
---|
| 1413 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1414 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1415 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1416 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1417 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1418 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1419 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1420 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1421 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1422 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1423 | |
---|
[1992] | 1424 | wape(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1425 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1426 | END IF |
---|
| 1427 | END DO |
---|
[974] | 1428 | |
---|
[1992] | 1429 | ! Filter out bad wakes |
---|
[974] | 1430 | |
---|
[1992] | 1431 | DO k = 1, klev |
---|
| 1432 | DO i = 1, klon |
---|
| 1433 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1434 | IF (wape(i)<0.) THEN |
---|
| 1435 | deltatw(i, k) = 0. |
---|
| 1436 | deltaqw(i, k) = 0. |
---|
| 1437 | dth(i, k) = 0. |
---|
| 1438 | END IF |
---|
| 1439 | END IF |
---|
| 1440 | END DO |
---|
| 1441 | END DO |
---|
[974] | 1442 | |
---|
[1992] | 1443 | DO i = 1, klon |
---|
| 1444 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1445 | IF (wape(i)<0.) THEN |
---|
| 1446 | wape(i) = 0. |
---|
| 1447 | cstar(i) = 0. |
---|
| 1448 | hw(i) = hwmin |
---|
| 1449 | sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 1450 | fip(i) = 0. |
---|
| 1451 | gwake(i) = .FALSE. |
---|
| 1452 | ELSE |
---|
| 1453 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1454 | gwake(i) = .TRUE. |
---|
| 1455 | END IF |
---|
| 1456 | END IF |
---|
| 1457 | END DO |
---|
| 1458 | |
---|
| 1459 | END DO ! end sub-timestep loop |
---|
| 1460 | |
---|
| 1461 | ! ----------------------------------------------------------------- |
---|
| 1462 | ! Get back to tendencies per second |
---|
| 1463 | |
---|
| 1464 | DO k = 1, klev |
---|
| 1465 | DO i = 1, klon |
---|
| 1466 | |
---|
| 1467 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
| 1468 | IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 1469 | ! cc |
---|
| 1470 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 1471 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 1472 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 1473 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 1474 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 1475 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 1476 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 1477 | END IF |
---|
| 1478 | END DO |
---|
| 1479 | END DO |
---|
| 1480 | |
---|
| 1481 | |
---|
| 1482 | ! ---------------------------------------------------------- |
---|
| 1483 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1484 | ! filter out bad wakes. |
---|
| 1485 | ! ---------------------------------------------------------- |
---|
| 1486 | |
---|
| 1487 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 1488 | ! --------------------------------------------------------- |
---|
| 1489 | |
---|
| 1490 | DO i = 1, klon |
---|
| 1491 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 1492 | IF (ok_qx_qw(i)) THEN |
---|
| 1493 | ! cc |
---|
| 1494 | z(i) = 0. |
---|
| 1495 | sum_thu(i) = 0. |
---|
| 1496 | sum_tu(i) = 0. |
---|
| 1497 | sum_qu(i) = 0. |
---|
| 1498 | sum_thvu(i) = 0. |
---|
| 1499 | sum_dth(i) = 0. |
---|
| 1500 | sum_dq(i) = 0. |
---|
| 1501 | sum_rho(i) = 0. |
---|
| 1502 | sum_dtdwn(i) = 0. |
---|
| 1503 | sum_dqdwn(i) = 0. |
---|
| 1504 | |
---|
| 1505 | av_thu(i) = 0. |
---|
| 1506 | av_tu(i) = 0. |
---|
| 1507 | av_qu(i) = 0. |
---|
| 1508 | av_thvu(i) = 0. |
---|
| 1509 | av_dth(i) = 0. |
---|
| 1510 | av_dq(i) = 0. |
---|
| 1511 | av_rho(i) = 0. |
---|
| 1512 | av_dtdwn(i) = 0. |
---|
| 1513 | av_dqdwn(i) = 0. |
---|
| 1514 | END IF |
---|
| 1515 | END DO |
---|
| 1516 | ! Potential temperatures and humidity |
---|
| 1517 | ! ---------------------------------------------------------- |
---|
| 1518 | |
---|
| 1519 | DO k = 1, klev |
---|
| 1520 | DO i = 1, klon |
---|
| 1521 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1522 | IF (ok_qx_qw(i)) THEN |
---|
| 1523 | ! cc |
---|
| 1524 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 1525 | IF (k==1) THEN |
---|
| 1526 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 1527 | zhh(i, k) = 0 |
---|
| 1528 | ELSE |
---|
| 1529 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1530 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 1531 | END IF |
---|
| 1532 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1533 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 1534 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 1535 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 1536 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1537 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1538 | END IF |
---|
| 1539 | END DO |
---|
| 1540 | END DO |
---|
| 1541 | |
---|
| 1542 | ! Integrals (and wake top level number) |
---|
| 1543 | ! ----------------------------------------------------------- |
---|
| 1544 | |
---|
| 1545 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1546 | |
---|
| 1547 | DO i = 1, klon |
---|
| 1548 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1549 | IF (ok_qx_qw(i)) THEN |
---|
| 1550 | ! cc |
---|
| 1551 | z(i) = 1. |
---|
| 1552 | dz(i) = 1. |
---|
| 1553 | sum_thvu(i) = thu(i, 1)*(1.+eps*qu(i,1))*dz(i) |
---|
| 1554 | sum_dth(i) = 0. |
---|
| 1555 | END IF |
---|
| 1556 | END DO |
---|
| 1557 | |
---|
| 1558 | DO k = 1, klev |
---|
| 1559 | DO i = 1, klon |
---|
| 1560 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1561 | IF (ok_qx_qw(i)) THEN |
---|
| 1562 | ! cc |
---|
| 1563 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1564 | IF (dz(i)>0) THEN |
---|
| 1565 | z(i) = z(i) + dz(i) |
---|
| 1566 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1567 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1568 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1569 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+eps*qu(i,k))*dz(i) |
---|
| 1570 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1571 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1572 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1573 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1574 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1575 | END IF |
---|
| 1576 | END IF |
---|
| 1577 | END DO |
---|
| 1578 | END DO |
---|
| 1579 | |
---|
| 1580 | DO i = 1, klon |
---|
| 1581 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1582 | IF (ok_qx_qw(i)) THEN |
---|
| 1583 | ! cc |
---|
| 1584 | hw0(i) = z(i) |
---|
| 1585 | END IF |
---|
| 1586 | END DO |
---|
| 1587 | |
---|
| 1588 | ! - WAPE and mean forcing computation |
---|
| 1589 | ! ------------------------------------------------------------- |
---|
| 1590 | |
---|
| 1591 | ! Means |
---|
| 1592 | |
---|
| 1593 | DO i = 1, klon |
---|
| 1594 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1595 | IF (ok_qx_qw(i)) THEN |
---|
| 1596 | ! cc |
---|
| 1597 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1598 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1599 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1600 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1601 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1602 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1603 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1604 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1605 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1606 | |
---|
| 1607 | wape2(i) = -rg*hw0(i)*(av_dth(i)+eps*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1608 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1609 | END IF |
---|
| 1610 | END DO |
---|
| 1611 | |
---|
| 1612 | ! Prognostic variable update |
---|
| 1613 | ! ------------------------------------------------------------ |
---|
| 1614 | |
---|
| 1615 | ! Filter out bad wakes |
---|
| 1616 | |
---|
| 1617 | DO k = 1, klev |
---|
| 1618 | DO i = 1, klon |
---|
| 1619 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 1620 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 1621 | ! cc |
---|
| 1622 | deltatw(i, k) = 0. |
---|
| 1623 | deltaqw(i, k) = 0. |
---|
| 1624 | dth(i, k) = 0. |
---|
| 1625 | END IF |
---|
| 1626 | END DO |
---|
| 1627 | END DO |
---|
| 1628 | |
---|
| 1629 | |
---|
| 1630 | DO i = 1, klon |
---|
| 1631 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1632 | IF (ok_qx_qw(i)) THEN |
---|
| 1633 | ! cc |
---|
| 1634 | IF (wape2(i)<0.) THEN |
---|
[974] | 1635 | wape2(i) = 0. |
---|
[1992] | 1636 | cstar2(i) = 0. |
---|
[974] | 1637 | hw(i) = hwmin |
---|
[1992] | 1638 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
[974] | 1639 | fip(i) = 0. |
---|
| 1640 | gwake(i) = .FALSE. |
---|
| 1641 | ELSE |
---|
[1992] | 1642 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 1643 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
[974] | 1644 | gwake(i) = .TRUE. |
---|
[1992] | 1645 | END IF |
---|
| 1646 | END IF |
---|
| 1647 | END DO |
---|
[974] | 1648 | |
---|
[1992] | 1649 | DO i = 1, klon |
---|
| 1650 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1651 | IF (ok_qx_qw(i)) THEN |
---|
| 1652 | ! cc |
---|
| 1653 | ktopw(i) = ktop(i) |
---|
| 1654 | END IF |
---|
| 1655 | END DO |
---|
[974] | 1656 | |
---|
[1992] | 1657 | DO i = 1, klon |
---|
| 1658 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1659 | IF (ok_qx_qw(i)) THEN |
---|
| 1660 | ! cc |
---|
| 1661 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
[1403] | 1662 | |
---|
[1992] | 1663 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 1664 | ! cc heff = 600. |
---|
| 1665 | ! Utilisation de la hauteur hw |
---|
| 1666 | ! c heff = 0.7*hw |
---|
| 1667 | heff(i) = hw(i) |
---|
[1403] | 1668 | |
---|
[1992] | 1669 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 1670 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 1671 | fip(i) = alpk*fip(i) |
---|
| 1672 | ! jyg2 |
---|
| 1673 | ELSE |
---|
| 1674 | fip(i) = 0. |
---|
| 1675 | END IF |
---|
| 1676 | END IF |
---|
| 1677 | END DO |
---|
[1146] | 1678 | |
---|
[1992] | 1679 | ! Limitation de sigmaw |
---|
| 1680 | |
---|
| 1681 | ! cc nrlmd |
---|
| 1682 | ! DO i=1,klon |
---|
| 1683 | ! IF (OK_qx_qw(i)) THEN |
---|
| 1684 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 1685 | ! ENDIF |
---|
| 1686 | ! ENDDO |
---|
| 1687 | ! cc |
---|
| 1688 | DO k = 1, klev |
---|
| 1689 | DO i = 1, klon |
---|
| 1690 | |
---|
| 1691 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
| 1692 | ! permanent |
---|
| 1693 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
| 1694 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1695 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1696 | ! cc |
---|
| 1697 | dtls(i, k) = 0. |
---|
| 1698 | dqls(i, k) = 0. |
---|
| 1699 | deltatw(i, k) = 0. |
---|
| 1700 | deltaqw(i, k) = 0. |
---|
| 1701 | END IF |
---|
| 1702 | END DO |
---|
| 1703 | END DO |
---|
| 1704 | |
---|
| 1705 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
| 1706 | DO i = 1, klon |
---|
| 1707 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1708 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1709 | wape(i) = 0. |
---|
| 1710 | cstar(i) = 0. |
---|
| 1711 | hw(i) = hwmin |
---|
| 1712 | sigmaw(i) = sigmad |
---|
| 1713 | fip(i) = 0. |
---|
| 1714 | ELSE |
---|
| 1715 | wape(i) = wape2(i) |
---|
| 1716 | cstar(i) = cstar2(i) |
---|
| 1717 | END IF |
---|
| 1718 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 1719 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 1720 | END DO |
---|
| 1721 | |
---|
| 1722 | |
---|
| 1723 | RETURN |
---|
| 1724 | END SUBROUTINE wake |
---|
| 1725 | |
---|
| 1726 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1727 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1728 | ! ------------------------------------------------------ |
---|
| 1729 | ! Dtermination du coefficient alpha tel que les tendances |
---|
| 1730 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 1731 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 1732 | ! ------------------------------------------------------ |
---|
| 1733 | |
---|
| 1734 | |
---|
| 1735 | ! Input |
---|
| 1736 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 1737 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 1738 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 1739 | LOGICAL wk_adv(nlon) |
---|
| 1740 | INTEGER nl, nlon |
---|
| 1741 | ! Output |
---|
| 1742 | REAL alpha(nlon) |
---|
| 1743 | ! Internal variables |
---|
| 1744 | REAL zeta(nlon, nl) |
---|
| 1745 | REAL alpha1(nlon) |
---|
| 1746 | REAL x, a, b, c, discrim |
---|
| 1747 | REAL epsilon |
---|
| 1748 | ! DATA epsilon/1.e-15/ |
---|
| 1749 | |
---|
| 1750 | DO k = 1, nl |
---|
| 1751 | DO i = 1, nlon |
---|
| 1752 | IF (wk_adv(i)) THEN |
---|
| 1753 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 1754 | zeta(i, k) = 0. |
---|
[1146] | 1755 | ELSE |
---|
[1992] | 1756 | zeta(i, k) = 1. |
---|
[1146] | 1757 | END IF |
---|
[1992] | 1758 | END IF |
---|
| 1759 | END DO |
---|
| 1760 | DO i = 1, nlon |
---|
| 1761 | IF (wk_adv(i)) THEN |
---|
| 1762 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
| 1763 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & |
---|
| 1764 | d_deltaqw(i,k)) |
---|
| 1765 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 1766 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 1767 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 1768 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 1769 | discrim = b*b - 4.*a*c |
---|
| 1770 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 1771 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 1772 | alpha1(i) = 1. |
---|
[1146] | 1773 | ELSE |
---|
[1992] | 1774 | IF (x>=0.) THEN |
---|
| 1775 | alpha1(i) = 1. |
---|
| 1776 | ELSE |
---|
| 1777 | IF (a>0.) THEN |
---|
| 1778 | alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1779 | ))/(2.*a)) |
---|
| 1780 | ELSE IF (a==0.) THEN |
---|
| 1781 | alpha1(i) = 0.9*(-c/b) |
---|
| 1782 | ELSE |
---|
| 1783 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
| 1784 | alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1785 | ))/(2.*a)) |
---|
| 1786 | END IF |
---|
| 1787 | END IF |
---|
| 1788 | END IF |
---|
| 1789 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 1790 | END IF |
---|
| 1791 | END DO |
---|
| 1792 | END DO |
---|
[1146] | 1793 | |
---|
[1992] | 1794 | RETURN |
---|
| 1795 | END SUBROUTINE wake_vec_modulation |
---|
[974] | 1796 | |
---|
[1992] | 1797 | SUBROUTINE wake_scal(p, ph, ppi, dtime, sigd_con, te0, qe0, omgb, dtdwn, & |
---|
| 1798 | dqdwn, amdwn, amup, dta, dqa, wdtpbl, wdqpbl, udtpbl, udqpbl, deltatw, & |
---|
| 1799 | deltaqw, dth, hw, sigmaw, wape, fip, gfl, dtls, dqls, ktopw, omgbdth, & |
---|
| 1800 | dp_omgb, wdens, tu, qu, dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, & |
---|
| 1801 | spread, cstar, d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
[879] | 1802 | |
---|
[1992] | 1803 | ! ************************************************************** |
---|
| 1804 | ! * |
---|
| 1805 | ! WAKE * |
---|
| 1806 | ! retour a un Pupper fixe * |
---|
| 1807 | ! * |
---|
| 1808 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 1809 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 1810 | ! ************************************************************** |
---|
[879] | 1811 | |
---|
[1992] | 1812 | USE dimphy |
---|
| 1813 | IMPLICIT NONE |
---|
| 1814 | ! ============================================================================ |
---|
[879] | 1815 | |
---|
| 1816 | |
---|
[1992] | 1817 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 1818 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 1819 | ! le declenchement de nouvelles colonnes convectives. |
---|
[879] | 1820 | |
---|
[1992] | 1821 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
| 1822 | ! area |
---|
| 1823 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 1824 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
[879] | 1825 | |
---|
[1992] | 1826 | ! Variable de sortie : |
---|
[879] | 1827 | |
---|
[1992] | 1828 | ! wape : WAke Potential Energy |
---|
| 1829 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 1830 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 1831 | ! dtls : large scale temperature tendency due to wake |
---|
| 1832 | ! dqls : large scale humidity tendency due to wake |
---|
| 1833 | ! hw : hauteur de la poche |
---|
| 1834 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 1835 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 1836 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 1837 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 1838 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 1839 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 1840 | ! spread : spreading term in dt_wake and dq_wake |
---|
| 1841 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 1842 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 1843 | ! sigmaw : updated wake fractional area. |
---|
| 1844 | ! d_deltat_gw : delta T tendency due to GW |
---|
[879] | 1845 | |
---|
[1992] | 1846 | ! Variables d'entree : |
---|
[879] | 1847 | |
---|
[1992] | 1848 | ! aire : aire de la maille |
---|
| 1849 | ! te0 : temperature dans l'environnement (K) |
---|
| 1850 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 1851 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 1852 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 1853 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 1854 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 1855 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 1856 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 1857 | ! surface de la maille (kg/m2/s) |
---|
| 1858 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 1859 | ! surface de la maille (kg/m2/s) |
---|
| 1860 | ! p : pressions aux milieux des couches (Pa) |
---|
| 1861 | ! ph : pressions aux interfaces (Pa) |
---|
| 1862 | ! ppi : (p/p_0)**kapa (adim) |
---|
| 1863 | ! dtime: increment temporel (s) |
---|
[879] | 1864 | |
---|
[1992] | 1865 | ! Variables internes : |
---|
[879] | 1866 | |
---|
[1992] | 1867 | ! rhow : masse volumique de la poche froide |
---|
| 1868 | ! rho : environment density at P levels |
---|
| 1869 | ! rhoh : environment density at Ph levels |
---|
| 1870 | ! te : environment temperature | may change within |
---|
| 1871 | ! qe : environment humidity | sub-time-stepping |
---|
| 1872 | ! the : environment potential temperature |
---|
| 1873 | ! thu : potential temperature in undisturbed area |
---|
| 1874 | ! tu : temperature in undisturbed area |
---|
| 1875 | ! qu : humidity in undisturbed area |
---|
| 1876 | ! dp_omgb: vertical gradient og LS omega |
---|
| 1877 | ! omgbw : wake average vertical omega |
---|
| 1878 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 1879 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 1880 | ! dth : potential temperature diff. wake-undist. |
---|
| 1881 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 1882 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 1883 | ! q1 : first humidity for vertical advection |
---|
| 1884 | ! q2 : second humidity for vertical advection |
---|
| 1885 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 1886 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 1887 | ! deltatw0 : deltatw initial |
---|
| 1888 | ! deltaqw0 : deltaqw initial |
---|
| 1889 | ! hw0 : hw initial |
---|
| 1890 | ! sigmaw0: sigmaw initial |
---|
| 1891 | ! amflux : horizontal mass flux through wake boundary |
---|
| 1892 | ! wdens : number of wakes per unit area (3D) or per |
---|
| 1893 | ! unit length (2D) |
---|
| 1894 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 1895 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 1896 | ! LL : distance entre 2 poches |
---|
[879] | 1897 | |
---|
[1992] | 1898 | ! ------------------------------------------------------------------------- |
---|
| 1899 | ! Déclaration de variables |
---|
| 1900 | ! ------------------------------------------------------------------------- |
---|
[879] | 1901 | |
---|
[1992] | 1902 | include "dimensions.h" |
---|
| 1903 | ! ccc include "dimphy.h" |
---|
| 1904 | include "YOMCST.h" |
---|
| 1905 | include "cvthermo.h" |
---|
| 1906 | include "iniprint.h" |
---|
[879] | 1907 | |
---|
[1992] | 1908 | ! Arguments en entree |
---|
| 1909 | ! -------------------- |
---|
[879] | 1910 | |
---|
[1992] | 1911 | REAL p(klev), ph(klev+1), ppi(klev) |
---|
| 1912 | REAL dtime |
---|
| 1913 | REAL te0(klev), qe0(klev) |
---|
| 1914 | REAL omgb(klev+1) |
---|
| 1915 | REAL dtdwn(klev), dqdwn(klev) |
---|
| 1916 | REAL wdtpbl(klev), wdqpbl(klev) |
---|
| 1917 | REAL udtpbl(klev), udqpbl(klev) |
---|
| 1918 | REAL amdwn(klev), amup(klev) |
---|
| 1919 | REAL dta(klev), dqa(klev) |
---|
| 1920 | REAL sigd_con |
---|
[879] | 1921 | |
---|
[1992] | 1922 | ! Sorties |
---|
| 1923 | ! -------- |
---|
[879] | 1924 | |
---|
[1992] | 1925 | REAL deltatw(klev), deltaqw(klev), dth(klev) |
---|
| 1926 | REAL tu(klev), qu(klev) |
---|
| 1927 | REAL dtls(klev), dqls(klev) |
---|
| 1928 | REAL dtke(klev), dqke(klev) |
---|
| 1929 | REAL dtpbl(klev), dqpbl(klev) |
---|
| 1930 | REAL spread(klev) |
---|
| 1931 | REAL d_deltatgw(klev) |
---|
| 1932 | REAL d_deltatw2(klev), d_deltaqw2(klev) |
---|
| 1933 | REAL omgbdth(klev+1), omg(klev+1) |
---|
| 1934 | REAL dp_omgb(klev), dp_deltomg(klev) |
---|
| 1935 | REAL d_deltat_gw(klev) |
---|
| 1936 | REAL hw, sigmaw, wape, fip, gfl, cstar |
---|
| 1937 | INTEGER ktopw |
---|
[879] | 1938 | |
---|
[1992] | 1939 | ! Variables internes |
---|
| 1940 | ! ------------------- |
---|
[879] | 1941 | |
---|
[1992] | 1942 | ! Variables à fixer |
---|
| 1943 | REAL alon |
---|
| 1944 | REAL coefgw |
---|
| 1945 | REAL wdens0, wdens |
---|
| 1946 | REAL stark |
---|
| 1947 | REAL alpk |
---|
| 1948 | REAL delta_t_min |
---|
| 1949 | REAL pupper |
---|
| 1950 | INTEGER nsub |
---|
| 1951 | REAL dtimesub |
---|
| 1952 | REAL sigmad, hwmin |
---|
[879] | 1953 | |
---|
[1992] | 1954 | ! Variables de sauvegarde |
---|
| 1955 | REAL deltatw0(klev) |
---|
| 1956 | REAL deltaqw0(klev) |
---|
| 1957 | REAL te(klev), qe(klev) |
---|
| 1958 | REAL sigmaw0, sigmaw1 |
---|
[879] | 1959 | |
---|
[1992] | 1960 | ! Variables pour les GW |
---|
| 1961 | REAL ll |
---|
| 1962 | REAL n2(klev) |
---|
| 1963 | REAL cgw(klev) |
---|
| 1964 | REAL tgw(klev) |
---|
[879] | 1965 | |
---|
[1992] | 1966 | ! Variables liées au calcul de hw |
---|
| 1967 | REAL ptop_provis, ptop, ptop_new |
---|
| 1968 | REAL sum_dth |
---|
| 1969 | REAL dthmin |
---|
| 1970 | REAL z, dz, hw0 |
---|
| 1971 | INTEGER ktop, kupper |
---|
[879] | 1972 | |
---|
[1992] | 1973 | ! Autres variables internes |
---|
| 1974 | INTEGER isubstep, k |
---|
[879] | 1975 | |
---|
[1992] | 1976 | REAL sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 1977 | REAL sum_dq, sum_rho |
---|
| 1978 | REAL sum_dtdwn, sum_dqdwn |
---|
| 1979 | REAL av_thu, av_tu, av_qu, av_thvu |
---|
| 1980 | REAL av_dth, av_dq, av_rho |
---|
| 1981 | REAL av_dtdwn, av_dqdwn |
---|
[879] | 1982 | |
---|
[1992] | 1983 | REAL rho(klev), rhoh(klev+1), rhow(klev) |
---|
| 1984 | REAL rhow_moyen(klev) |
---|
| 1985 | REAL zh(klev), zhh(klev+1) |
---|
| 1986 | REAL epaisseur1(klev), epaisseur2(klev) |
---|
[879] | 1987 | |
---|
[1992] | 1988 | REAL the(klev), thu(klev) |
---|
[879] | 1989 | |
---|
[1992] | 1990 | REAL d_deltatw(klev), d_deltaqw(klev) |
---|
[879] | 1991 | |
---|
[1992] | 1992 | REAL omgbw(klev+1), omgtop |
---|
| 1993 | REAL dp_omgbw(klev) |
---|
| 1994 | REAL ztop, dztop |
---|
| 1995 | REAL alpha_up(klev) |
---|
[879] | 1996 | |
---|
[1992] | 1997 | REAL rre1, rre2, rrd1, rrd2 |
---|
| 1998 | REAL th1(klev), th2(klev), q1(klev), q2(klev) |
---|
| 1999 | REAL d_th1(klev), d_th2(klev), d_dth(klev) |
---|
| 2000 | REAL d_q1(klev), d_q2(klev), d_dq(klev) |
---|
| 2001 | REAL omgbdq(klev) |
---|
[879] | 2002 | |
---|
[1992] | 2003 | REAL ff, gg |
---|
| 2004 | REAL wape2, cstar2, heff |
---|
[879] | 2005 | |
---|
[1992] | 2006 | REAL crep(klev) |
---|
| 2007 | REAL crep_upper, crep_sol |
---|
[879] | 2008 | |
---|
[1992] | 2009 | ! ------------------------------------------------------------------------- |
---|
| 2010 | ! Initialisations |
---|
| 2011 | ! ------------------------------------------------------------------------- |
---|
[879] | 2012 | |
---|
[1992] | 2013 | ! print*, 'wake initialisations' |
---|
[879] | 2014 | |
---|
[1992] | 2015 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 2016 | ! ------------------------------------------------------------------------- |
---|
[879] | 2017 | |
---|
[1992] | 2018 | DATA sigmad, hwmin/.02, 10./ |
---|
[879] | 2019 | |
---|
[1992] | 2020 | ! Longueur de maille (en m) |
---|
| 2021 | ! ------------------------------------------------------------------------- |
---|
[879] | 2022 | |
---|
[1992] | 2023 | ! ALON = 3.e5 |
---|
| 2024 | alon = 1.E6 |
---|
[879] | 2025 | |
---|
| 2026 | |
---|
[1992] | 2027 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[879] | 2028 | |
---|
[1992] | 2029 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 2030 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 2031 | ! wdens : Densité de poche froide par maille |
---|
| 2032 | ! ------------------------------------------------------------------------- |
---|
[879] | 2033 | |
---|
[1992] | 2034 | coefgw = 10 |
---|
| 2035 | ! coefgw=1 |
---|
| 2036 | ! wdens0 = 1.0/(alon**2) |
---|
| 2037 | wdens = 1.0/(alon**2) |
---|
| 2038 | stark = 0.50 |
---|
| 2039 | ! CRtest |
---|
| 2040 | alpk = 0.1 |
---|
| 2041 | ! alpk = 1.0 |
---|
| 2042 | ! alpk = 0.5 |
---|
| 2043 | ! alpk = 0.05 |
---|
| 2044 | crep_upper = 0.9 |
---|
| 2045 | crep_sol = 1.0 |
---|
[879] | 2046 | |
---|
| 2047 | |
---|
[1992] | 2048 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 2049 | ! ------------------------------------------------------------------------- |
---|
[879] | 2050 | |
---|
[1992] | 2051 | delta_t_min = 0.2 |
---|
[879] | 2052 | |
---|
| 2053 | |
---|
[1992] | 2054 | ! 1. - Save initial values and initialize tendencies |
---|
| 2055 | ! -------------------------------------------------- |
---|
[879] | 2056 | |
---|
[1992] | 2057 | DO k = 1, klev |
---|
| 2058 | deltatw0(k) = deltatw(k) |
---|
| 2059 | deltaqw0(k) = deltaqw(k) |
---|
| 2060 | te(k) = te0(k) |
---|
| 2061 | qe(k) = qe0(k) |
---|
| 2062 | dtls(k) = 0. |
---|
| 2063 | dqls(k) = 0. |
---|
| 2064 | d_deltat_gw(k) = 0. |
---|
| 2065 | d_deltatw2(k) = 0. |
---|
| 2066 | d_deltaqw2(k) = 0. |
---|
| 2067 | END DO |
---|
| 2068 | ! sigmaw1=sigmaw |
---|
| 2069 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 2070 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 2071 | ! ENDIF |
---|
| 2072 | sigmaw = max(sigmaw, sigd_con) |
---|
| 2073 | sigmaw = max(sigmaw, sigmad) |
---|
| 2074 | sigmaw = min(sigmaw, 0.99) |
---|
| 2075 | sigmaw0 = sigmaw |
---|
| 2076 | ! wdens=wdens0/(10.*sigmaw) |
---|
| 2077 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 2078 | ! print*, 'sigmaw1,sigd1', sigmaw, sigd_con |
---|
| 2079 | ! ENDIF |
---|
[879] | 2080 | |
---|
[1992] | 2081 | ! 2. - Prognostic part |
---|
| 2082 | ! ========================================================= |
---|
[879] | 2083 | |
---|
[1992] | 2084 | ! print *, 'prognostic wake computation' |
---|
[879] | 2085 | |
---|
| 2086 | |
---|
[1992] | 2087 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2088 | ! --------------------------------------------------------- |
---|
[879] | 2089 | |
---|
[1992] | 2090 | z = 0. |
---|
| 2091 | ktop = 0 |
---|
| 2092 | kupper = 0 |
---|
| 2093 | sum_thu = 0. |
---|
| 2094 | sum_tu = 0. |
---|
| 2095 | sum_qu = 0. |
---|
| 2096 | sum_thvu = 0. |
---|
| 2097 | sum_dth = 0. |
---|
| 2098 | sum_dq = 0. |
---|
| 2099 | sum_rho = 0. |
---|
| 2100 | sum_dtdwn = 0. |
---|
| 2101 | sum_dqdwn = 0. |
---|
[879] | 2102 | |
---|
[1992] | 2103 | av_thu = 0. |
---|
| 2104 | av_tu = 0. |
---|
| 2105 | av_qu = 0. |
---|
| 2106 | av_thvu = 0. |
---|
| 2107 | av_dth = 0. |
---|
| 2108 | av_dq = 0. |
---|
| 2109 | av_rho = 0. |
---|
| 2110 | av_dtdwn = 0. |
---|
| 2111 | av_dqdwn = 0. |
---|
[879] | 2112 | |
---|
[1992] | 2113 | ! Potential temperatures and humidity |
---|
| 2114 | ! ---------------------------------------------------------- |
---|
[879] | 2115 | |
---|
[1992] | 2116 | DO k = 1, klev |
---|
| 2117 | rho(k) = p(k)/(rd*te(k)) |
---|
| 2118 | IF (k==1) THEN |
---|
| 2119 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 2120 | zhh(k) = 0 |
---|
| 2121 | ELSE |
---|
| 2122 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 2123 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
| 2124 | END IF |
---|
| 2125 | the(k) = te(k)/ppi(k) |
---|
| 2126 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
| 2127 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 2128 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 2129 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 2130 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2131 | ll = (1-sqrt(sigmaw))/sqrt(wdens) |
---|
| 2132 | END DO |
---|
[879] | 2133 | |
---|
[1992] | 2134 | DO k = 1, klev - 1 |
---|
| 2135 | IF (k==1) THEN |
---|
| 2136 | n2(k) = 0 |
---|
| 2137 | ELSE |
---|
| 2138 | n2(k) = max(0., -rg**2/the(k)*rho(k)*(the(k+1)-the(k-1))/(p(k+ & |
---|
| 2139 | 1)-p(k-1))) |
---|
| 2140 | END IF |
---|
| 2141 | zh(k) = (zhh(k)+zhh(k+1))/2 |
---|
[879] | 2142 | |
---|
[1992] | 2143 | cgw(k) = sqrt(n2(k))*zh(k) |
---|
| 2144 | tgw(k) = coefgw*cgw(k)/ll |
---|
| 2145 | END DO |
---|
[879] | 2146 | |
---|
[1992] | 2147 | n2(klev) = 0 |
---|
| 2148 | zh(klev) = 0 |
---|
| 2149 | cgw(klev) = 0 |
---|
| 2150 | tgw(klev) = 0 |
---|
[879] | 2151 | |
---|
[1992] | 2152 | ! Calcul de la masse volumique moyenne de la colonne |
---|
| 2153 | ! ----------------------------------------------------------------- |
---|
[879] | 2154 | |
---|
[1992] | 2155 | DO k = 1, klev |
---|
| 2156 | epaisseur1(k) = 0. |
---|
| 2157 | epaisseur2(k) = 0. |
---|
| 2158 | END DO |
---|
[879] | 2159 | |
---|
[1992] | 2160 | epaisseur1(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
| 2161 | epaisseur2(1) = -(ph(2)-ph(1))/(rho(1)*rg) + 1. |
---|
| 2162 | rhow_moyen(1) = rhow(1) |
---|
[879] | 2163 | |
---|
[1992] | 2164 | DO k = 2, klev |
---|
| 2165 | epaisseur1(k) = -(ph(k+1)-ph(k))/(rho(k)*rg) + 1. |
---|
| 2166 | epaisseur2(k) = epaisseur2(k-1) + epaisseur1(k) |
---|
| 2167 | rhow_moyen(k) = (rhow_moyen(k-1)*epaisseur2(k-1)+rhow(k)*epaisseur1(k))/ & |
---|
| 2168 | epaisseur2(k) |
---|
| 2169 | END DO |
---|
[879] | 2170 | |
---|
| 2171 | |
---|
[1992] | 2172 | ! Choose an integration bound well above wake top |
---|
| 2173 | ! ----------------------------------------------------------------- |
---|
[879] | 2174 | |
---|
[1992] | 2175 | ! Pupper = 50000. ! melting level |
---|
| 2176 | pupper = 60000. |
---|
| 2177 | ! Pupper = 70000. |
---|
[879] | 2178 | |
---|
| 2179 | |
---|
[1992] | 2180 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 2181 | ! ----------------------------------------------------------------- |
---|
[879] | 2182 | |
---|
[1992] | 2183 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
[879] | 2184 | |
---|
[1992] | 2185 | ptop_provis = ph(1) |
---|
| 2186 | DO k = 2, klev |
---|
| 2187 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2188 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
| 2189 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
| 2190 | GO TO 25 |
---|
| 2191 | END IF |
---|
| 2192 | END DO |
---|
| 2193 | 25 CONTINUE |
---|
[879] | 2194 | |
---|
[1992] | 2195 | ! -2/ dth integral |
---|
[879] | 2196 | |
---|
[1992] | 2197 | sum_dth = 0. |
---|
| 2198 | dthmin = -delta_t_min |
---|
| 2199 | z = 0. |
---|
[879] | 2200 | |
---|
[1992] | 2201 | DO k = 1, klev |
---|
| 2202 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
| 2203 | IF (dz<=0) GO TO 40 |
---|
| 2204 | z = z + dz |
---|
| 2205 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2206 | dthmin = min(dthmin, dth(k)) |
---|
| 2207 | END DO |
---|
| 2208 | 40 CONTINUE |
---|
[879] | 2209 | |
---|
[1992] | 2210 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
[879] | 2211 | |
---|
[1992] | 2212 | hw0 = 2.*sum_dth/min(dthmin, -0.5) |
---|
| 2213 | hw0 = max(hwmin, hw0) |
---|
[879] | 2214 | |
---|
[1992] | 2215 | ! -4/ now, get Ptop |
---|
[879] | 2216 | |
---|
[1992] | 2217 | z = 0. |
---|
| 2218 | ptop = ph(1) |
---|
[879] | 2219 | |
---|
[1992] | 2220 | DO k = 1, klev |
---|
| 2221 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw0-z) |
---|
| 2222 | IF (dz<=0) GO TO 45 |
---|
| 2223 | z = z + dz |
---|
| 2224 | ptop = ph(k) - rho(k)*rg*dz |
---|
| 2225 | END DO |
---|
| 2226 | 45 CONTINUE |
---|
[879] | 2227 | |
---|
| 2228 | |
---|
[1992] | 2229 | ! -5/ Determination de ktop et kupper |
---|
[879] | 2230 | |
---|
[1992] | 2231 | DO k = klev, 1, -1 |
---|
| 2232 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2233 | IF (ph(k+1)<pupper) kupper = k |
---|
| 2234 | END DO |
---|
[879] | 2235 | |
---|
[1992] | 2236 | ! -6/ Correct ktop and ptop |
---|
[879] | 2237 | |
---|
[1992] | 2238 | ptop_new = ptop |
---|
| 2239 | DO k = ktop, 2, -1 |
---|
| 2240 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2241 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
| 2242 | (dth(k)-dth(k-1)) |
---|
| 2243 | GO TO 225 |
---|
| 2244 | END IF |
---|
| 2245 | END DO |
---|
| 2246 | 225 CONTINUE |
---|
[879] | 2247 | |
---|
[1992] | 2248 | ptop = ptop_new |
---|
[879] | 2249 | |
---|
[1992] | 2250 | DO k = klev, 1, -1 |
---|
| 2251 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2252 | END DO |
---|
[879] | 2253 | |
---|
[1992] | 2254 | ! Set deltatw & deltaqw to 0 above kupper |
---|
| 2255 | ! ----------------------------------------------------------- |
---|
[879] | 2256 | |
---|
[1992] | 2257 | DO k = kupper, klev |
---|
| 2258 | deltatw(k) = 0. |
---|
| 2259 | deltaqw(k) = 0. |
---|
| 2260 | END DO |
---|
[879] | 2261 | |
---|
| 2262 | |
---|
[1992] | 2263 | ! Vertical gradient of LS omega |
---|
| 2264 | ! ------------------------------------------------------------ |
---|
[879] | 2265 | |
---|
[1992] | 2266 | DO k = 1, kupper |
---|
| 2267 | dp_omgb(k) = (omgb(k+1)-omgb(k))/(ph(k+1)-ph(k)) |
---|
| 2268 | END DO |
---|
[879] | 2269 | |
---|
| 2270 | |
---|
[1992] | 2271 | ! Integrals (and wake top level number) |
---|
| 2272 | ! ----------------------------------------------------------- |
---|
[879] | 2273 | |
---|
[1992] | 2274 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[879] | 2275 | |
---|
[1992] | 2276 | z = 1. |
---|
| 2277 | dz = 1. |
---|
| 2278 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 2279 | sum_dth = 0. |
---|
[879] | 2280 | |
---|
[1992] | 2281 | DO k = 1, klev |
---|
| 2282 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
| 2283 | IF (dz<=0) GO TO 50 |
---|
| 2284 | z = z + dz |
---|
| 2285 | sum_thu = sum_thu + thu(k)*dz |
---|
| 2286 | sum_tu = sum_tu + tu(k)*dz |
---|
| 2287 | sum_qu = sum_qu + qu(k)*dz |
---|
| 2288 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 2289 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2290 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 2291 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 2292 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 2293 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 2294 | END DO |
---|
| 2295 | 50 CONTINUE |
---|
[879] | 2296 | |
---|
[1992] | 2297 | hw0 = z |
---|
[879] | 2298 | |
---|
[1992] | 2299 | ! 2.1 - WAPE and mean forcing computation |
---|
| 2300 | ! ------------------------------------------------------------- |
---|
[879] | 2301 | |
---|
[1992] | 2302 | ! Means |
---|
[879] | 2303 | |
---|
[1992] | 2304 | av_thu = sum_thu/hw0 |
---|
| 2305 | av_tu = sum_tu/hw0 |
---|
| 2306 | av_qu = sum_qu/hw0 |
---|
| 2307 | av_thvu = sum_thvu/hw0 |
---|
| 2308 | ! av_thve = sum_thve/hw0 |
---|
| 2309 | av_dth = sum_dth/hw0 |
---|
| 2310 | av_dq = sum_dq/hw0 |
---|
| 2311 | av_rho = sum_rho/hw0 |
---|
| 2312 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 2313 | av_dqdwn = sum_dqdwn/hw0 |
---|
[879] | 2314 | |
---|
[1992] | 2315 | wape = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
| 2316 | av_thvu |
---|
[879] | 2317 | |
---|
[1992] | 2318 | ! 2.2 Prognostic variable update |
---|
| 2319 | ! ------------------------------------------------------------ |
---|
[879] | 2320 | |
---|
[1992] | 2321 | ! Filter out bad wakes |
---|
[879] | 2322 | |
---|
[1992] | 2323 | IF (wape<0.) THEN |
---|
| 2324 | IF (prt_level>=10) PRINT *, 'wape<0' |
---|
| 2325 | wape = 0. |
---|
| 2326 | hw = hwmin |
---|
| 2327 | sigmaw = max(sigmad, sigd_con) |
---|
| 2328 | fip = 0. |
---|
| 2329 | DO k = 1, klev |
---|
| 2330 | deltatw(k) = 0. |
---|
| 2331 | deltaqw(k) = 0. |
---|
| 2332 | dth(k) = 0. |
---|
| 2333 | END DO |
---|
| 2334 | ELSE |
---|
| 2335 | IF (prt_level>=10) PRINT *, 'wape>0' |
---|
| 2336 | cstar = stark*sqrt(2.*wape) |
---|
| 2337 | END IF |
---|
[879] | 2338 | |
---|
[1992] | 2339 | ! ------------------------------------------------------------------ |
---|
| 2340 | ! Sub-time-stepping |
---|
| 2341 | ! ------------------------------------------------------------------ |
---|
[879] | 2342 | |
---|
[1992] | 2343 | ! nsub=36 |
---|
| 2344 | nsub = 10 |
---|
| 2345 | dtimesub = dtime/nsub |
---|
[879] | 2346 | |
---|
[1992] | 2347 | ! ------------------------------------------------------------ |
---|
| 2348 | DO isubstep = 1, nsub |
---|
| 2349 | ! ------------------------------------------------------------ |
---|
[879] | 2350 | |
---|
[1992] | 2351 | ! print*,'---------------','substep=',isubstep,'-------------' |
---|
[879] | 2352 | |
---|
[1992] | 2353 | ! Evolution of sigmaw |
---|
[879] | 2354 | |
---|
| 2355 | |
---|
[1992] | 2356 | gfl = 2.*sqrt(3.14*wdens*sigmaw) |
---|
[879] | 2357 | |
---|
[1992] | 2358 | sigmaw = sigmaw + gfl*cstar*dtimesub |
---|
| 2359 | sigmaw = min(sigmaw, 0.99) !!!!!!!! |
---|
| 2360 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 2361 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 2362 | ! sigmaw =max(sigmaw,sigmad) |
---|
[879] | 2363 | |
---|
[1992] | 2364 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
[879] | 2365 | |
---|
[1992] | 2366 | z = 0. |
---|
| 2367 | dp_deltomg(1:klev) = 0. |
---|
| 2368 | omg(1:klev+1) = 0. |
---|
[879] | 2369 | |
---|
[1992] | 2370 | omg(1) = 0. |
---|
| 2371 | dp_deltomg(1) = -(gfl*cstar)/(sigmaw*(1-sigmaw)) |
---|
[879] | 2372 | |
---|
[1992] | 2373 | DO k = 2, ktop |
---|
| 2374 | dz = -(ph(k)-ph(k-1))/(rho(k-1)*rg) |
---|
| 2375 | z = z + dz |
---|
| 2376 | dp_deltomg(k) = dp_deltomg(1) |
---|
| 2377 | omg(k) = dp_deltomg(1)*z |
---|
| 2378 | END DO |
---|
[879] | 2379 | |
---|
[1992] | 2380 | dztop = -(ptop-ph(ktop))/(rho(ktop)*rg) |
---|
| 2381 | ztop = z + dztop |
---|
| 2382 | omgtop = dp_deltomg(1)*ztop |
---|
[879] | 2383 | |
---|
| 2384 | |
---|
[1992] | 2385 | ! Conversion de la vitesse verticale de m/s a Pa/s |
---|
[879] | 2386 | |
---|
[1992] | 2387 | omgtop = -rho(ktop)*rg*omgtop |
---|
| 2388 | dp_deltomg(1) = omgtop/(ptop-ph(1)) |
---|
[879] | 2389 | |
---|
[1992] | 2390 | DO k = 1, ktop |
---|
| 2391 | omg(k) = -rho(k)*rg*omg(k) |
---|
| 2392 | dp_deltomg(k) = dp_deltomg(1) |
---|
| 2393 | END DO |
---|
[879] | 2394 | |
---|
[1992] | 2395 | ! raccordement lineaire de omg de ptop a pupper |
---|
[879] | 2396 | |
---|
[1992] | 2397 | IF (kupper>ktop) THEN |
---|
| 2398 | omg(kupper+1) = -rg*amdwn(kupper+1)/sigmaw + rg*amup(kupper+1)/(1.- & |
---|
| 2399 | sigmaw) |
---|
| 2400 | dp_deltomg(kupper) = (omgtop-omg(kupper+1))/(ptop-pupper) |
---|
| 2401 | DO k = ktop + 1, kupper |
---|
| 2402 | dp_deltomg(k) = dp_deltomg(kupper) |
---|
| 2403 | omg(k) = omgtop + (ph(k)-ptop)*dp_deltomg(kupper) |
---|
| 2404 | END DO |
---|
| 2405 | END IF |
---|
[879] | 2406 | |
---|
[1992] | 2407 | ! Compute wake average vertical velocity omgbw |
---|
[879] | 2408 | |
---|
[1992] | 2409 | DO k = 1, klev + 1 |
---|
| 2410 | omgbw(k) = omgb(k) + (1.-sigmaw)*omg(k) |
---|
| 2411 | END DO |
---|
[879] | 2412 | |
---|
[1992] | 2413 | ! and its vertical gradient dp_omgbw |
---|
[879] | 2414 | |
---|
[1992] | 2415 | DO k = 1, klev |
---|
| 2416 | dp_omgbw(k) = (omgbw(k+1)-omgbw(k))/(ph(k+1)-ph(k)) |
---|
| 2417 | END DO |
---|
[879] | 2418 | |
---|
| 2419 | |
---|
[1992] | 2420 | ! Upstream coefficients for omgb velocity |
---|
| 2421 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 2422 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
[879] | 2423 | |
---|
[1992] | 2424 | DO k = 1, klev |
---|
| 2425 | alpha_up(k) = 0. |
---|
| 2426 | IF (omgb(k)>0.) alpha_up(k) = 1. |
---|
| 2427 | END DO |
---|
[879] | 2428 | |
---|
[1992] | 2429 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[879] | 2430 | |
---|
[1992] | 2431 | rre1 = 1. - sigmaw |
---|
| 2432 | rre2 = sigmaw |
---|
| 2433 | rrd1 = -1. |
---|
| 2434 | rrd2 = 1. |
---|
[879] | 2435 | |
---|
[1992] | 2436 | ! Get [Th1,Th2], dth and [q1,q2] |
---|
[879] | 2437 | |
---|
[1992] | 2438 | DO k = 1, kupper + 1 |
---|
| 2439 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2440 | th1(k) = the(k) - sigmaw*dth(k) ! undisturbed area |
---|
| 2441 | th2(k) = the(k) + (1.-sigmaw)*dth(k) ! wake |
---|
| 2442 | q1(k) = qe(k) - sigmaw*deltaqw(k) ! undisturbed area |
---|
| 2443 | q2(k) = qe(k) + (1.-sigmaw)*deltaqw(k) ! wake |
---|
| 2444 | END DO |
---|
[879] | 2445 | |
---|
[1992] | 2446 | d_th1(1) = 0. |
---|
| 2447 | d_th2(1) = 0. |
---|
| 2448 | d_dth(1) = 0. |
---|
| 2449 | d_q1(1) = 0. |
---|
| 2450 | d_q2(1) = 0. |
---|
| 2451 | d_dq(1) = 0. |
---|
[879] | 2452 | |
---|
[1992] | 2453 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
| 2454 | d_th1(k) = th1(k-1) - th1(k) |
---|
| 2455 | d_th2(k) = th2(k-1) - th2(k) |
---|
| 2456 | d_dth(k) = dth(k-1) - dth(k) |
---|
| 2457 | d_q1(k) = q1(k-1) - q1(k) |
---|
| 2458 | d_q2(k) = q2(k-1) - q2(k) |
---|
| 2459 | d_dq(k) = deltaqw(k-1) - deltaqw(k) |
---|
| 2460 | END DO |
---|
[879] | 2461 | |
---|
[1992] | 2462 | omgbdth(1) = 0. |
---|
| 2463 | omgbdq(1) = 0. |
---|
[879] | 2464 | |
---|
[1992] | 2465 | DO k = 2, kupper + 1 ! loop on interfaces |
---|
| 2466 | omgbdth(k) = omgb(k)*(dth(k-1)-dth(k)) |
---|
| 2467 | omgbdq(k) = omgb(k)*(deltaqw(k-1)-deltaqw(k)) |
---|
| 2468 | END DO |
---|
[879] | 2469 | |
---|
| 2470 | |
---|
[1992] | 2471 | ! ----------------------------------------------------------------- |
---|
| 2472 | DO k = 1, kupper - 1 |
---|
| 2473 | ! ----------------------------------------------------------------- |
---|
[879] | 2474 | |
---|
[1992] | 2475 | ! Compute redistribution (advective) term |
---|
[879] | 2476 | |
---|
[1992] | 2477 | d_deltatw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_th1(k)- & |
---|
| 2478 | rrd2*omg(k+1)*(1.-sigmaw)*d_th2(k+1)-(1.-alpha_up( & |
---|
| 2479 | k))*omgbdth(k)-alpha_up(k+1)*omgbdth(k+1))*ppi(k) |
---|
| 2480 | ! print*,'d_deltatw=',d_deltatw(k) |
---|
[879] | 2481 | |
---|
[1992] | 2482 | d_deltaqw(k) = dtimesub/(ph(k)-ph(k+1))*(rrd1*omg(k)*sigmaw*d_q1(k)- & |
---|
| 2483 | rrd2*omg(k+1)*(1.-sigmaw)*d_q2(k+1)-(1.-alpha_up( & |
---|
| 2484 | k))*omgbdq(k)-alpha_up(k+1)*omgbdq(k+1)) |
---|
| 2485 | ! print*,'d_deltaqw=',d_deltaqw(k) |
---|
[879] | 2486 | |
---|
[1992] | 2487 | ! and increment large scale tendencies |
---|
[879] | 2488 | |
---|
[1992] | 2489 | dtls(k) = dtls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_th1(k)-rre2*omg(k+ & |
---|
| 2490 | 1)*(1.-sigmaw)*d_th2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*dth(k)* & |
---|
| 2491 | dp_deltomg(k))*ppi(k) |
---|
| 2492 | ! print*,'dtls=',dtls(k) |
---|
[879] | 2493 | |
---|
[1992] | 2494 | dqls(k) = dqls(k) + dtimesub*((rre1*omg(k)*sigmaw*d_q1(k)-rre2*omg(k+ & |
---|
| 2495 | 1)*(1.-sigmaw)*d_q2(k+1))/(ph(k)-ph(k+1))-sigmaw*(1.-sigmaw)*deltaqw( & |
---|
| 2496 | k)*dp_deltomg(k)) |
---|
| 2497 | ! print*,'dqls=',dqls(k) |
---|
[879] | 2498 | |
---|
[1992] | 2499 | ! ------------------------------------------------------------------- |
---|
| 2500 | END DO |
---|
| 2501 | ! ------------------------------------------------------------------ |
---|
| 2502 | |
---|
| 2503 | ! Increment state variables |
---|
| 2504 | |
---|
| 2505 | DO k = 1, kupper - 1 |
---|
| 2506 | |
---|
| 2507 | ! Coefficient de répartition |
---|
| 2508 | |
---|
| 2509 | crep(k) = crep_sol*(ph(kupper)-ph(k))/(ph(kupper)-ph(1)) |
---|
| 2510 | crep(k) = crep(k) + crep_upper*(ph(1)-ph(k))/(p(1)-ph(kupper)) |
---|
| 2511 | |
---|
| 2512 | |
---|
| 2513 | ! Reintroduce compensating subsidence term. |
---|
| 2514 | |
---|
| 2515 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 2516 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 2517 | ! . /(1-sigmaw) |
---|
| 2518 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 2519 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 2520 | ! . /(1-sigmaw) |
---|
| 2521 | |
---|
| 2522 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 2523 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 2524 | ! . /(1-sigmaw) |
---|
| 2525 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 2526 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 2527 | ! . /(1-sigmaw) |
---|
| 2528 | |
---|
| 2529 | dtke(k) = (dtdwn(k)/sigmaw-dta(k)/(1.-sigmaw)) |
---|
| 2530 | dqke(k) = (dqdwn(k)/sigmaw-dqa(k)/(1.-sigmaw)) |
---|
| 2531 | ! print*,'dtKE=',dtKE(k) |
---|
| 2532 | ! print*,'dqKE=',dqKE(k) |
---|
| 2533 | |
---|
| 2534 | dtpbl(k) = (wdtpbl(k)/sigmaw-udtpbl(k)/(1.-sigmaw)) |
---|
| 2535 | dqpbl(k) = (wdqpbl(k)/sigmaw-udqpbl(k)/(1.-sigmaw)) |
---|
| 2536 | |
---|
| 2537 | spread(k) = (1.-sigmaw)*dp_deltomg(k) + gfl*cstar/sigmaw |
---|
| 2538 | ! print*,'spread=',spread(k) |
---|
| 2539 | |
---|
| 2540 | |
---|
| 2541 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 2542 | ! Jingmei |
---|
| 2543 | |
---|
| 2544 | d_deltat_gw(k) = d_deltat_gw(k) - tgw(k)*deltatw(k)*dtimesub |
---|
| 2545 | ! print*,'d_delta_gw=',d_deltat_gw(k) |
---|
| 2546 | ff = d_deltatw(k)/dtimesub |
---|
| 2547 | |
---|
| 2548 | ! Sans GW |
---|
| 2549 | |
---|
| 2550 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 2551 | |
---|
| 2552 | ! GW formule 1 |
---|
| 2553 | |
---|
| 2554 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 2555 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 2556 | |
---|
| 2557 | ! GW formule 2 |
---|
| 2558 | |
---|
| 2559 | IF (dtimesub*tgw(k)<1.E-10) THEN |
---|
| 2560 | deltatw(k) = deltatw(k) + dtimesub*(ff+dtke(k)+dtpbl(k)-spread(k)* & |
---|
| 2561 | deltatw(k)-tgw(k)*deltatw(k)) |
---|
| 2562 | ELSE |
---|
| 2563 | deltatw(k) = deltatw(k) + 1/tgw(k)*(1-exp(-dtimesub*tgw(k)))*(ff+dtke & |
---|
| 2564 | (k)+dtpbl(k)-spread(k)*deltatw(k)-tgw(k)*deltatw(k)) |
---|
| 2565 | END IF |
---|
| 2566 | |
---|
| 2567 | dth(k) = deltatw(k)/ppi(k) |
---|
| 2568 | |
---|
| 2569 | gg = d_deltaqw(k)/dtimesub |
---|
| 2570 | |
---|
| 2571 | deltaqw(k) = deltaqw(k) + dtimesub*(gg+dqke(k)+dqpbl(k)-spread(k)* & |
---|
| 2572 | deltaqw(k)) |
---|
| 2573 | |
---|
| 2574 | d_deltatw2(k) = d_deltatw2(k) + d_deltatw(k) |
---|
| 2575 | d_deltaqw2(k) = d_deltaqw2(k) + d_deltaqw(k) |
---|
| 2576 | END DO |
---|
| 2577 | |
---|
| 2578 | ! And update large scale variables |
---|
| 2579 | |
---|
| 2580 | DO k = 1, kupper |
---|
| 2581 | te(k) = te0(k) + dtls(k) |
---|
| 2582 | qe(k) = qe0(k) + dqls(k) |
---|
| 2583 | the(k) = te(k)/ppi(k) |
---|
| 2584 | END DO |
---|
| 2585 | |
---|
| 2586 | ! Determine Ptop from buoyancy integral |
---|
| 2587 | ! ---------------------------------------------------------------------- |
---|
| 2588 | |
---|
| 2589 | ! -1/ Pressure of the level where dth changes sign. |
---|
| 2590 | |
---|
| 2591 | ptop_provis = ph(1) |
---|
| 2592 | |
---|
| 2593 | DO k = 2, klev |
---|
| 2594 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2595 | ptop_provis = ((dth(k)+delta_t_min)*p(k-1)-(dth(k- & |
---|
| 2596 | 1)+delta_t_min)*p(k))/(dth(k)-dth(k-1)) |
---|
[879] | 2597 | GO TO 65 |
---|
[1992] | 2598 | END IF |
---|
| 2599 | END DO |
---|
| 2600 | 65 CONTINUE |
---|
[879] | 2601 | |
---|
[1992] | 2602 | ! -2/ dth integral |
---|
[879] | 2603 | |
---|
[1992] | 2604 | sum_dth = 0. |
---|
| 2605 | dthmin = -delta_t_min |
---|
| 2606 | z = 0. |
---|
[879] | 2607 | |
---|
[1992] | 2608 | DO k = 1, klev |
---|
| 2609 | dz = -(max(ph(k+1),ptop_provis)-ph(k))/(rho(k)*rg) |
---|
| 2610 | IF (dz<=0) GO TO 70 |
---|
| 2611 | z = z + dz |
---|
| 2612 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2613 | dthmin = min(dthmin, dth(k)) |
---|
| 2614 | END DO |
---|
| 2615 | 70 CONTINUE |
---|
[879] | 2616 | |
---|
[1992] | 2617 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
[879] | 2618 | |
---|
[1992] | 2619 | hw = 2.*sum_dth/min(dthmin, -0.5) |
---|
| 2620 | hw = max(hwmin, hw) |
---|
[879] | 2621 | |
---|
[1992] | 2622 | ! -4/ now, get Ptop |
---|
[879] | 2623 | |
---|
[1992] | 2624 | ktop = 0 |
---|
| 2625 | z = 0. |
---|
[879] | 2626 | |
---|
[1992] | 2627 | DO k = 1, klev |
---|
| 2628 | dz = min(-(ph(k+1)-ph(k))/(rho(k)*rg), hw-z) |
---|
| 2629 | IF (dz<=0) GO TO 75 |
---|
| 2630 | z = z + dz |
---|
| 2631 | ptop = ph(k) - rho(k)*rg*dz |
---|
| 2632 | ktop = k |
---|
| 2633 | END DO |
---|
| 2634 | 75 CONTINUE |
---|
[879] | 2635 | |
---|
[1992] | 2636 | ! -5/Correct ktop and ptop |
---|
[879] | 2637 | |
---|
[1992] | 2638 | ptop_new = ptop |
---|
[879] | 2639 | |
---|
[1992] | 2640 | DO k = ktop, 2, -1 |
---|
| 2641 | IF (dth(k)>-delta_t_min .AND. dth(k-1)<-delta_t_min) THEN |
---|
| 2642 | ptop_new = ((dth(k)+delta_t_min)*p(k-1)-(dth(k-1)+delta_t_min)*p(k))/ & |
---|
| 2643 | (dth(k)-dth(k-1)) |
---|
| 2644 | GO TO 275 |
---|
| 2645 | END IF |
---|
| 2646 | END DO |
---|
| 2647 | 275 CONTINUE |
---|
[879] | 2648 | |
---|
[1992] | 2649 | ptop = ptop_new |
---|
[879] | 2650 | |
---|
[1992] | 2651 | DO k = klev, 1, -1 |
---|
| 2652 | IF (ph(k+1)<ptop) ktop = k |
---|
| 2653 | END DO |
---|
[879] | 2654 | |
---|
[1992] | 2655 | ! -6/ Set deltatw & deltaqw to 0 above kupper |
---|
[879] | 2656 | |
---|
[1992] | 2657 | DO k = kupper, klev |
---|
| 2658 | deltatw(k) = 0. |
---|
| 2659 | deltaqw(k) = 0. |
---|
| 2660 | END DO |
---|
[879] | 2661 | |
---|
[1992] | 2662 | ! ------------------------------------------------------------------ |
---|
| 2663 | END DO ! end sub-timestep loop |
---|
| 2664 | ! ----------------------------------------------------------------- |
---|
[879] | 2665 | |
---|
[1992] | 2666 | ! Get back to tendencies per second |
---|
[879] | 2667 | |
---|
[1992] | 2668 | DO k = 1, kupper - 1 |
---|
| 2669 | dtls(k) = dtls(k)/dtime |
---|
| 2670 | dqls(k) = dqls(k)/dtime |
---|
| 2671 | d_deltatw2(k) = d_deltatw2(k)/dtime |
---|
| 2672 | d_deltaqw2(k) = d_deltaqw2(k)/dtime |
---|
| 2673 | d_deltat_gw(k) = d_deltat_gw(k)/dtime |
---|
| 2674 | END DO |
---|
[879] | 2675 | |
---|
[1992] | 2676 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 2677 | ! --------------------------------------------------------- |
---|
[879] | 2678 | |
---|
[1992] | 2679 | z = 0. |
---|
| 2680 | sum_thu = 0. |
---|
| 2681 | sum_tu = 0. |
---|
| 2682 | sum_qu = 0. |
---|
| 2683 | sum_thvu = 0. |
---|
| 2684 | sum_dth = 0. |
---|
| 2685 | sum_dq = 0. |
---|
| 2686 | sum_rho = 0. |
---|
| 2687 | sum_dtdwn = 0. |
---|
| 2688 | sum_dqdwn = 0. |
---|
[879] | 2689 | |
---|
[1992] | 2690 | av_thu = 0. |
---|
| 2691 | av_tu = 0. |
---|
| 2692 | av_qu = 0. |
---|
| 2693 | av_thvu = 0. |
---|
| 2694 | av_dth = 0. |
---|
| 2695 | av_dq = 0. |
---|
| 2696 | av_rho = 0. |
---|
| 2697 | av_dtdwn = 0. |
---|
| 2698 | av_dqdwn = 0. |
---|
[879] | 2699 | |
---|
[1992] | 2700 | ! Potential temperatures and humidity |
---|
| 2701 | ! ---------------------------------------------------------- |
---|
[879] | 2702 | |
---|
[1992] | 2703 | DO k = 1, klev |
---|
| 2704 | rho(k) = p(k)/(rd*te(k)) |
---|
| 2705 | IF (k==1) THEN |
---|
| 2706 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
| 2707 | zhh(k) = 0 |
---|
| 2708 | ELSE |
---|
| 2709 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
| 2710 | zhh(k) = (ph(k)-ph(k-1))/(-rhoh(k)*rg) + zhh(k-1) |
---|
| 2711 | END IF |
---|
| 2712 | the(k) = te(k)/ppi(k) |
---|
| 2713 | thu(k) = (te(k)-deltatw(k)*sigmaw)/ppi(k) |
---|
| 2714 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
| 2715 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
| 2716 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
| 2717 | dth(k) = deltatw(k)/ppi(k) |
---|
[879] | 2718 | |
---|
[1992] | 2719 | END DO |
---|
[879] | 2720 | |
---|
[1992] | 2721 | ! Integrals (and wake top level number) |
---|
| 2722 | ! ----------------------------------------------------------- |
---|
[879] | 2723 | |
---|
[1992] | 2724 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[879] | 2725 | |
---|
[1992] | 2726 | z = 1. |
---|
| 2727 | dz = 1. |
---|
| 2728 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
| 2729 | sum_dth = 0. |
---|
[879] | 2730 | |
---|
[1992] | 2731 | DO k = 1, klev |
---|
| 2732 | dz = -(max(ph(k+1),ptop)-ph(k))/(rho(k)*rg) |
---|
[879] | 2733 | |
---|
[1992] | 2734 | IF (dz<=0) GO TO 51 |
---|
| 2735 | z = z + dz |
---|
| 2736 | sum_thu = sum_thu + thu(k)*dz |
---|
| 2737 | sum_tu = sum_tu + tu(k)*dz |
---|
| 2738 | sum_qu = sum_qu + qu(k)*dz |
---|
| 2739 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
| 2740 | sum_dth = sum_dth + dth(k)*dz |
---|
| 2741 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
| 2742 | sum_rho = sum_rho + rhow(k)*dz |
---|
| 2743 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
| 2744 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
| 2745 | END DO |
---|
| 2746 | 51 CONTINUE |
---|
[879] | 2747 | |
---|
[1992] | 2748 | hw0 = z |
---|
[879] | 2749 | |
---|
[1992] | 2750 | ! 2.1 - WAPE and mean forcing computation |
---|
| 2751 | ! ------------------------------------------------------------- |
---|
[879] | 2752 | |
---|
[1992] | 2753 | ! Means |
---|
[879] | 2754 | |
---|
[1992] | 2755 | av_thu = sum_thu/hw0 |
---|
| 2756 | av_tu = sum_tu/hw0 |
---|
| 2757 | av_qu = sum_qu/hw0 |
---|
| 2758 | av_thvu = sum_thvu/hw0 |
---|
| 2759 | av_dth = sum_dth/hw0 |
---|
| 2760 | av_dq = sum_dq/hw0 |
---|
| 2761 | av_rho = sum_rho/hw0 |
---|
| 2762 | av_dtdwn = sum_dtdwn/hw0 |
---|
| 2763 | av_dqdwn = sum_dqdwn/hw0 |
---|
[879] | 2764 | |
---|
[1992] | 2765 | wape2 = -rg*hw0*(av_dth+eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq))/ & |
---|
| 2766 | av_thvu |
---|
[879] | 2767 | |
---|
| 2768 | |
---|
[1992] | 2769 | ! 2.2 Prognostic variable update |
---|
| 2770 | ! ------------------------------------------------------------ |
---|
[879] | 2771 | |
---|
[1992] | 2772 | ! Filter out bad wakes |
---|
[879] | 2773 | |
---|
[1992] | 2774 | IF (wape2<0.) THEN |
---|
| 2775 | IF (prt_level>=10) PRINT *, 'wape2<0' |
---|
| 2776 | wape2 = 0. |
---|
| 2777 | hw = hwmin |
---|
| 2778 | sigmaw = max(sigmad, sigd_con) |
---|
| 2779 | fip = 0. |
---|
| 2780 | DO k = 1, klev |
---|
| 2781 | deltatw(k) = 0. |
---|
| 2782 | deltaqw(k) = 0. |
---|
| 2783 | dth(k) = 0. |
---|
| 2784 | END DO |
---|
| 2785 | ELSE |
---|
| 2786 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 2787 | cstar2 = stark*sqrt(2.*wape2) |
---|
[879] | 2788 | |
---|
[1992] | 2789 | END IF |
---|
[879] | 2790 | |
---|
[1992] | 2791 | ktopw = ktop |
---|
[879] | 2792 | |
---|
[1992] | 2793 | IF (ktopw>0) THEN |
---|
[879] | 2794 | |
---|
[1992] | 2795 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 2796 | ! cc heff = 600. |
---|
| 2797 | ! Utilisation de la hauteur hw |
---|
| 2798 | ! c heff = 0.7*hw |
---|
| 2799 | heff = hw |
---|
[879] | 2800 | |
---|
[1992] | 2801 | fip = 0.5*rho(ktopw)*cstar2**3*heff*2*sqrt(sigmaw*wdens*3.14) |
---|
| 2802 | fip = alpk*fip |
---|
| 2803 | ! jyg2 |
---|
| 2804 | ELSE |
---|
| 2805 | fip = 0. |
---|
| 2806 | END IF |
---|
[879] | 2807 | |
---|
| 2808 | |
---|
[1992] | 2809 | ! Limitation de sigmaw |
---|
[879] | 2810 | |
---|
[1992] | 2811 | ! sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
| 2812 | ! alors il disparait en se mélangeant à la partie undisturbed |
---|
[879] | 2813 | |
---|
[1992] | 2814 | ! correction NICOLAS . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
| 2815 | IF ((sigmaw>0.9) .OR. ((wape>=wape2) .AND. (wape2<= & |
---|
| 2816 | 1.0)) .OR. (ktopw<=2)) THEN |
---|
| 2817 | ! IM cf NR/JYG 251108 . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
| 2818 | ! IF (sigmaw.GT.0.9) THEN |
---|
| 2819 | DO k = 1, klev |
---|
| 2820 | dtls(k) = 0. |
---|
| 2821 | dqls(k) = 0. |
---|
| 2822 | deltatw(k) = 0. |
---|
| 2823 | deltaqw(k) = 0. |
---|
| 2824 | END DO |
---|
| 2825 | wape = 0. |
---|
| 2826 | hw = hwmin |
---|
| 2827 | sigmaw = sigmad |
---|
| 2828 | fip = 0. |
---|
| 2829 | END IF |
---|
[879] | 2830 | |
---|
[1992] | 2831 | RETURN |
---|
| 2832 | END SUBROUTINE wake_scal |
---|
[879] | 2833 | |
---|
[1992] | 2834 | |
---|
| 2835 | |
---|