[1992] | 1 | |
---|
[1403] | 2 | ! $Id: thermcell.F90 1999 2014-03-20 09:57:19Z acaubel $ |
---|
[878] | 3 | |
---|
[1992] | 4 | SUBROUTINE calcul_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, pu, & |
---|
| 5 | pv, pt, po, zmax, wmax, zw2, lmix & ! s |
---|
| 6 | ! ,pu_therm,pv_therm |
---|
| 7 | , r_aspect, l_mix, w2di, tho) |
---|
[542] | 8 | |
---|
[1992] | 9 | USE dimphy |
---|
| 10 | IMPLICIT NONE |
---|
[542] | 11 | |
---|
[1992] | 12 | ! ======================================================================= |
---|
[542] | 13 | |
---|
[1992] | 14 | ! Calcul du transport verticale dans la couche limite en presence |
---|
| 15 | ! de "thermiques" explicitement representes |
---|
[542] | 16 | |
---|
[1992] | 17 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
[542] | 18 | |
---|
[1992] | 19 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 20 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 21 | ! mélange |
---|
[542] | 22 | |
---|
[1992] | 23 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 24 | ! en compte: |
---|
| 25 | ! 1. un flux de masse montant |
---|
| 26 | ! 2. un flux de masse descendant |
---|
| 27 | ! 3. un entrainement |
---|
| 28 | ! 4. un detrainement |
---|
[542] | 29 | |
---|
[1992] | 30 | ! ======================================================================= |
---|
[542] | 31 | |
---|
[1992] | 32 | ! ----------------------------------------------------------------------- |
---|
| 33 | ! declarations: |
---|
| 34 | ! ------------- |
---|
[542] | 35 | |
---|
[1992] | 36 | include "dimensions.h" |
---|
| 37 | ! ccc#include "dimphy.h" |
---|
| 38 | include "YOMCST.h" |
---|
[542] | 39 | |
---|
[1992] | 40 | ! arguments: |
---|
| 41 | ! ---------- |
---|
[878] | 42 | |
---|
[1992] | 43 | INTEGER ngrid, nlay, w2di |
---|
| 44 | REAL tho |
---|
| 45 | REAL ptimestep, l_mix, r_aspect |
---|
| 46 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
| 47 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
| 48 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
| 49 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
| 50 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 51 | REAL pphi(ngrid, nlay) |
---|
[542] | 52 | |
---|
[1992] | 53 | INTEGER idetr |
---|
| 54 | SAVE idetr |
---|
| 55 | DATA idetr/3/ |
---|
| 56 | !$OMP THREADPRIVATE(idetr) |
---|
| 57 | ! local: |
---|
| 58 | ! ------ |
---|
[542] | 59 | |
---|
[1992] | 60 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
| 61 | REAL zsortie1d(klon) |
---|
| 62 | ! CR: on remplace lmax(klon,klev+1) |
---|
| 63 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
| 64 | REAL linter(klon) |
---|
| 65 | REAL zmix(klon), fracazmix(klon) |
---|
| 66 | ! RC |
---|
| 67 | REAL zmax(klon), zw, zw2(klon, klev+1), ztva(klon, klev) |
---|
[542] | 68 | |
---|
[1992] | 69 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
| 70 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
| 71 | REAL ztv(klon, klev) |
---|
| 72 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
| 73 | REAL wh(klon, klev+1) |
---|
| 74 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
| 75 | REAL zla(klon, klev+1) |
---|
| 76 | REAL zwa(klon, klev+1) |
---|
| 77 | REAL zld(klon, klev+1) |
---|
| 78 | ! real zwd(klon,klev+1) |
---|
| 79 | REAL zsortie(klon, klev) |
---|
| 80 | REAL zva(klon, klev) |
---|
| 81 | REAL zua(klon, klev) |
---|
| 82 | REAL zoa(klon, klev) |
---|
[1403] | 83 | |
---|
[1992] | 84 | REAL zha(klon, klev) |
---|
| 85 | REAL wa_moy(klon, klev+1) |
---|
| 86 | REAL fraca(klon, klev+1) |
---|
| 87 | REAL fracc(klon, klev+1) |
---|
| 88 | REAL zf, zf2 |
---|
| 89 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
| 90 | ! common/comtherm/thetath2,wth2 |
---|
[1403] | 91 | |
---|
[1992] | 92 | REAL count_time |
---|
| 93 | ! integer isplit,nsplit |
---|
| 94 | INTEGER isplit, nsplit, ialt |
---|
| 95 | PARAMETER (nsplit=10) |
---|
| 96 | DATA isplit/0/ |
---|
| 97 | SAVE isplit |
---|
| 98 | !$OMP THREADPRIVATE(isplit) |
---|
[542] | 99 | |
---|
[1992] | 100 | LOGICAL sorties |
---|
| 101 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
| 102 | REAL zpspsk(klon, klev) |
---|
[542] | 103 | |
---|
[1992] | 104 | ! real wmax(klon,klev),wmaxa(klon) |
---|
| 105 | REAL wmax(klon), wmaxa(klon) |
---|
| 106 | REAL wa(klon, klev, klev+1) |
---|
| 107 | REAL wd(klon, klev+1) |
---|
| 108 | REAL larg_part(klon, klev, klev+1) |
---|
| 109 | REAL fracd(klon, klev+1) |
---|
| 110 | REAL xxx(klon, klev+1) |
---|
| 111 | REAL larg_cons(klon, klev+1) |
---|
| 112 | REAL larg_detr(klon, klev+1) |
---|
| 113 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
| 114 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
| 115 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
| 116 | REAL fmc(klon, klev+1) |
---|
[542] | 117 | |
---|
[1992] | 118 | ! CR:nouvelles variables |
---|
| 119 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
| 120 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
| 121 | REAL zalim(klon) |
---|
| 122 | INTEGER lalim(klon) |
---|
| 123 | REAL norme(klon) |
---|
| 124 | REAL f(klon), f0(klon) |
---|
| 125 | REAL zlevinter(klon) |
---|
| 126 | LOGICAL therm |
---|
| 127 | LOGICAL first |
---|
| 128 | DATA first/.FALSE./ |
---|
| 129 | SAVE first |
---|
| 130 | !$OMP THREADPRIVATE(first) |
---|
| 131 | ! RC |
---|
[542] | 132 | |
---|
[1992] | 133 | CHARACTER *2 str2 |
---|
| 134 | CHARACTER *10 str10 |
---|
[542] | 135 | |
---|
[1992] | 136 | CHARACTER (LEN=20) :: modname = 'calcul_sec' |
---|
| 137 | CHARACTER (LEN=80) :: abort_message |
---|
[542] | 138 | |
---|
| 139 | |
---|
[1992] | 140 | ! LOGICAL vtest(klon),down |
---|
[542] | 141 | |
---|
[1992] | 142 | EXTERNAL scopy |
---|
[542] | 143 | |
---|
[1992] | 144 | INTEGER ncorrec |
---|
| 145 | SAVE ncorrec |
---|
| 146 | DATA ncorrec/0/ |
---|
| 147 | !$OMP THREADPRIVATE(ncorrec) |
---|
[542] | 148 | |
---|
| 149 | |
---|
[1992] | 150 | ! ----------------------------------------------------------------------- |
---|
| 151 | ! initialisation: |
---|
| 152 | ! --------------- |
---|
[542] | 153 | |
---|
[1992] | 154 | sorties = .TRUE. |
---|
| 155 | IF (ngrid/=klon) THEN |
---|
| 156 | PRINT * |
---|
| 157 | PRINT *, 'STOP dans convadj' |
---|
| 158 | PRINT *, 'ngrid =', ngrid |
---|
| 159 | PRINT *, 'klon =', klon |
---|
| 160 | END IF |
---|
[542] | 161 | |
---|
[1992] | 162 | ! ----------------------------------------------------------------------- |
---|
| 163 | ! incrementation eventuelle de tendances precedentes: |
---|
| 164 | ! --------------------------------------------------- |
---|
[542] | 165 | |
---|
[1992] | 166 | ! print*,'0 OK convect8' |
---|
[542] | 167 | |
---|
[1992] | 168 | DO l = 1, nlay |
---|
| 169 | DO ig = 1, ngrid |
---|
| 170 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
| 171 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
| 172 | zu(ig, l) = pu(ig, l) |
---|
| 173 | zv(ig, l) = pv(ig, l) |
---|
| 174 | zo(ig, l) = po(ig, l) |
---|
| 175 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
| 176 | END DO |
---|
| 177 | END DO |
---|
[542] | 178 | |
---|
[1992] | 179 | ! print*,'1 OK convect8' |
---|
| 180 | ! -------------------- |
---|
[542] | 181 | |
---|
| 182 | |
---|
[1992] | 183 | ! + + + + + + + + + + + |
---|
[542] | 184 | |
---|
| 185 | |
---|
[1992] | 186 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 187 | ! wh,wt,wo ... |
---|
[542] | 188 | |
---|
[1992] | 189 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
[542] | 190 | |
---|
| 191 | |
---|
[1992] | 192 | ! -------------------- zlev(1) |
---|
| 193 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
[542] | 194 | |
---|
| 195 | |
---|
| 196 | |
---|
[1992] | 197 | ! ----------------------------------------------------------------------- |
---|
| 198 | ! Calcul des altitudes des couches |
---|
| 199 | ! ----------------------------------------------------------------------- |
---|
[542] | 200 | |
---|
[1992] | 201 | DO l = 2, nlay |
---|
| 202 | DO ig = 1, ngrid |
---|
| 203 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
| 204 | END DO |
---|
| 205 | END DO |
---|
| 206 | DO ig = 1, ngrid |
---|
| 207 | zlev(ig, 1) = 0. |
---|
| 208 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
| 209 | END DO |
---|
| 210 | DO l = 1, nlay |
---|
| 211 | DO ig = 1, ngrid |
---|
| 212 | zlay(ig, l) = pphi(ig, l)/rg |
---|
| 213 | END DO |
---|
| 214 | END DO |
---|
[542] | 215 | |
---|
[1992] | 216 | ! print*,'2 OK convect8' |
---|
| 217 | ! ----------------------------------------------------------------------- |
---|
| 218 | ! Calcul des densites |
---|
| 219 | ! ----------------------------------------------------------------------- |
---|
[542] | 220 | |
---|
[1992] | 221 | DO l = 1, nlay |
---|
| 222 | DO ig = 1, ngrid |
---|
| 223 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
| 224 | END DO |
---|
| 225 | END DO |
---|
[542] | 226 | |
---|
[1992] | 227 | DO l = 2, nlay |
---|
| 228 | DO ig = 1, ngrid |
---|
| 229 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
| 230 | END DO |
---|
| 231 | END DO |
---|
[1403] | 232 | |
---|
[1992] | 233 | DO k = 1, nlay |
---|
| 234 | DO l = 1, nlay + 1 |
---|
| 235 | DO ig = 1, ngrid |
---|
| 236 | wa(ig, k, l) = 0. |
---|
| 237 | END DO |
---|
| 238 | END DO |
---|
| 239 | END DO |
---|
[542] | 240 | |
---|
[1992] | 241 | ! print*,'3 OK convect8' |
---|
| 242 | ! ------------------------------------------------------------------ |
---|
| 243 | ! Calcul de w2, quarre de w a partir de la cape |
---|
| 244 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
[542] | 245 | |
---|
[1992] | 246 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
| 247 | ! w2 est stoke dans wa |
---|
[542] | 248 | |
---|
[1992] | 249 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
| 250 | ! independants par couches que pour calculer l'entrainement |
---|
| 251 | ! a la base et la hauteur max de l'ascendance. |
---|
[542] | 252 | |
---|
[1992] | 253 | ! Indicages: |
---|
| 254 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
| 255 | ! une vitesse wa(k,l). |
---|
[542] | 256 | |
---|
[1992] | 257 | ! -------------------- |
---|
[542] | 258 | |
---|
[1992] | 259 | ! + + + + + + + + + + |
---|
[542] | 260 | |
---|
[1992] | 261 | ! wa(k,l) ---- -------------------- l |
---|
| 262 | ! /\ |
---|
| 263 | ! /||\ + + + + + + + + + + |
---|
| 264 | ! || |
---|
| 265 | ! || -------------------- |
---|
| 266 | ! || |
---|
| 267 | ! || + + + + + + + + + + |
---|
| 268 | ! || |
---|
| 269 | ! || -------------------- |
---|
| 270 | ! ||__ |
---|
| 271 | ! |___ + + + + + + + + + + k |
---|
[542] | 272 | |
---|
[1992] | 273 | ! -------------------- |
---|
[542] | 274 | |
---|
| 275 | |
---|
| 276 | |
---|
[1992] | 277 | ! ------------------------------------------------------------------ |
---|
[542] | 278 | |
---|
[1992] | 279 | ! CR: ponderation entrainement des couches instables |
---|
| 280 | ! def des entr_star tels que entr=f*entr_star |
---|
| 281 | DO l = 1, klev |
---|
| 282 | DO ig = 1, ngrid |
---|
| 283 | entr_star(ig, l) = 0. |
---|
| 284 | END DO |
---|
| 285 | END DO |
---|
| 286 | ! determination de la longueur de la couche d entrainement |
---|
| 287 | DO ig = 1, ngrid |
---|
| 288 | lentr(ig) = 1 |
---|
| 289 | END DO |
---|
[542] | 290 | |
---|
[1992] | 291 | ! on ne considere que les premieres couches instables |
---|
| 292 | therm = .FALSE. |
---|
| 293 | DO k = nlay - 2, 1, -1 |
---|
| 294 | DO ig = 1, ngrid |
---|
| 295 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
| 296 | lentr(ig) = k + 1 |
---|
| 297 | therm = .TRUE. |
---|
| 298 | END IF |
---|
| 299 | END DO |
---|
| 300 | END DO |
---|
| 301 | ! limitation de la valeur du lentr |
---|
| 302 | ! do ig=1,ngrid |
---|
| 303 | ! lentr(ig)=min(5,lentr(ig)) |
---|
| 304 | ! enddo |
---|
| 305 | ! determination du lmin: couche d ou provient le thermique |
---|
| 306 | DO ig = 1, ngrid |
---|
| 307 | lmin(ig) = 1 |
---|
| 308 | END DO |
---|
| 309 | DO ig = 1, ngrid |
---|
| 310 | DO l = nlay, 2, -1 |
---|
| 311 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
| 312 | lmin(ig) = l - 1 |
---|
| 313 | END IF |
---|
| 314 | END DO |
---|
| 315 | END DO |
---|
| 316 | ! initialisations |
---|
| 317 | DO ig = 1, ngrid |
---|
| 318 | zalim(ig) = 0. |
---|
| 319 | norme(ig) = 0. |
---|
| 320 | lalim(ig) = 1 |
---|
| 321 | END DO |
---|
| 322 | DO k = 1, klev - 1 |
---|
| 323 | DO ig = 1, ngrid |
---|
| 324 | zalim(ig) = zalim(ig) + zlev(ig, k)*max(0., (ztv(ig,k)-ztv(ig, & |
---|
| 325 | k+1))/(zlev(ig,k+1)-zlev(ig,k))) |
---|
| 326 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 327 | norme(ig) = norme(ig) + max(0., (ztv(ig,k)-ztv(ig,k+1))/(zlev(ig, & |
---|
| 328 | k+1)-zlev(ig,k))) |
---|
| 329 | ! s *(zlev(ig,k+1)-zlev(ig,k)) |
---|
| 330 | END DO |
---|
| 331 | END DO |
---|
| 332 | DO ig = 1, ngrid |
---|
| 333 | IF (norme(ig)>1.E-10) THEN |
---|
| 334 | zalim(ig) = max(10.*zalim(ig)/norme(ig), zlev(ig,2)) |
---|
| 335 | ! zalim(ig)=min(zalim(ig),zlev(ig,lentr(ig))) |
---|
| 336 | END IF |
---|
| 337 | END DO |
---|
| 338 | ! détermination du lalim correspondant |
---|
| 339 | DO k = 1, klev - 1 |
---|
| 340 | DO ig = 1, ngrid |
---|
| 341 | IF ((zalim(ig)>zlev(ig,k)) .AND. (zalim(ig)<=zlev(ig,k+1))) THEN |
---|
| 342 | lalim(ig) = k |
---|
| 343 | END IF |
---|
| 344 | END DO |
---|
| 345 | END DO |
---|
[542] | 346 | |
---|
[1992] | 347 | ! definition de l'entrainement des couches |
---|
| 348 | DO l = 1, klev - 1 |
---|
| 349 | DO ig = 1, ngrid |
---|
| 350 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
| 351 | entr_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
| 352 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 353 | *sqrt(zlev(ig,l+1)) |
---|
| 354 | ! autre def |
---|
| 355 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 356 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
| 357 | END IF |
---|
| 358 | END DO |
---|
| 359 | END DO |
---|
| 360 | ! nouveau test |
---|
| 361 | ! if (therm) then |
---|
| 362 | DO l = 1, klev - 1 |
---|
| 363 | DO ig = 1, ngrid |
---|
| 364 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lalim(ig) .AND. & |
---|
| 365 | zalim(ig)>1.E-10) THEN |
---|
| 366 | ! if (l.le.lentr(ig)) then |
---|
| 367 | ! entr_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
| 368 | ! s /zalim(ig)))**(3./2.) |
---|
| 369 | ! write(10,*)zlev(ig,l),entr_star(ig,l) |
---|
| 370 | END IF |
---|
| 371 | END DO |
---|
| 372 | END DO |
---|
| 373 | ! endif |
---|
| 374 | ! pas de thermique si couche 1 stable |
---|
| 375 | DO ig = 1, ngrid |
---|
| 376 | IF (lmin(ig)>5) THEN |
---|
| 377 | DO l = 1, klev |
---|
| 378 | entr_star(ig, l) = 0. |
---|
| 379 | END DO |
---|
| 380 | END IF |
---|
| 381 | END DO |
---|
| 382 | ! calcul de l entrainement total |
---|
| 383 | DO ig = 1, ngrid |
---|
| 384 | entr_star_tot(ig) = 0. |
---|
| 385 | END DO |
---|
| 386 | DO ig = 1, ngrid |
---|
| 387 | DO k = 1, klev |
---|
| 388 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
| 389 | END DO |
---|
| 390 | END DO |
---|
| 391 | ! Calcul entrainement normalise |
---|
| 392 | DO ig = 1, ngrid |
---|
| 393 | IF (entr_star_tot(ig)>1.E-10) THEN |
---|
| 394 | ! do l=1,lentr(ig) |
---|
| 395 | DO l = 1, klev |
---|
| 396 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
| 397 | entr_star(ig, l) = entr_star(ig, l)/entr_star_tot(ig) |
---|
| 398 | END DO |
---|
| 399 | END IF |
---|
| 400 | END DO |
---|
[542] | 401 | |
---|
[1992] | 402 | ! print*,'fin calcul entr_star' |
---|
| 403 | DO k = 1, klev |
---|
| 404 | DO ig = 1, ngrid |
---|
| 405 | ztva(ig, k) = ztv(ig, k) |
---|
| 406 | END DO |
---|
| 407 | END DO |
---|
| 408 | ! RC |
---|
| 409 | ! print*,'7 OK convect8' |
---|
| 410 | DO k = 1, klev + 1 |
---|
| 411 | DO ig = 1, ngrid |
---|
| 412 | zw2(ig, k) = 0. |
---|
| 413 | fmc(ig, k) = 0. |
---|
| 414 | ! CR |
---|
| 415 | f_star(ig, k) = 0. |
---|
| 416 | ! RC |
---|
| 417 | larg_cons(ig, k) = 0. |
---|
| 418 | larg_detr(ig, k) = 0. |
---|
| 419 | wa_moy(ig, k) = 0. |
---|
| 420 | END DO |
---|
| 421 | END DO |
---|
[542] | 422 | |
---|
[1992] | 423 | ! print*,'8 OK convect8' |
---|
| 424 | DO ig = 1, ngrid |
---|
| 425 | linter(ig) = 1. |
---|
| 426 | lmaxa(ig) = 1 |
---|
| 427 | lmix(ig) = 1 |
---|
| 428 | wmaxa(ig) = 0. |
---|
| 429 | END DO |
---|
[542] | 430 | |
---|
[1992] | 431 | ! CR: |
---|
| 432 | DO l = 1, nlay - 2 |
---|
| 433 | DO ig = 1, ngrid |
---|
| 434 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
| 435 | zw2(ig,l)<1E-10) THEN |
---|
| 436 | f_star(ig, l+1) = entr_star(ig, l) |
---|
| 437 | ! test:calcul de dteta |
---|
| 438 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 439 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 440 | larg_detr(ig, l) = 0. |
---|
| 441 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
| 442 | l)>1.E-10)) THEN |
---|
| 443 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
| 444 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
| 445 | f_star(ig, l+1) |
---|
| 446 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
| 447 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 448 | END IF |
---|
| 449 | ! determination de zmax continu par interpolation lineaire |
---|
| 450 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 451 | ! test |
---|
| 452 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
| 453 | ! print*,'pb linter' |
---|
| 454 | END IF |
---|
| 455 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 456 | ig,l)) |
---|
| 457 | zw2(ig, l+1) = 0. |
---|
| 458 | lmaxa(ig) = l |
---|
| 459 | ELSE |
---|
| 460 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 461 | ! print*,'pb1 zw2<0' |
---|
| 462 | END IF |
---|
| 463 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 464 | END IF |
---|
| 465 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 466 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 467 | lmix(ig) = l + 1 |
---|
| 468 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 469 | END IF |
---|
| 470 | END DO |
---|
| 471 | END DO |
---|
| 472 | ! print*,'fin calcul zw2' |
---|
[542] | 473 | |
---|
[1992] | 474 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 475 | DO ig = 1, ngrid |
---|
| 476 | lmax(ig) = lentr(ig) |
---|
| 477 | ! lmax(ig)=lalim(ig) |
---|
| 478 | END DO |
---|
| 479 | DO ig = 1, ngrid |
---|
| 480 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 481 | ! do l=nlay,lalim(ig)+1,-1 |
---|
| 482 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 483 | lmax(ig) = l - 1 |
---|
| 484 | END IF |
---|
| 485 | END DO |
---|
| 486 | END DO |
---|
| 487 | ! pas de thermique si couche 1 stable |
---|
| 488 | DO ig = 1, ngrid |
---|
| 489 | IF (lmin(ig)>5) THEN |
---|
| 490 | lmax(ig) = 1 |
---|
| 491 | lmin(ig) = 1 |
---|
| 492 | lentr(ig) = 1 |
---|
| 493 | lalim(ig) = 1 |
---|
| 494 | END IF |
---|
| 495 | END DO |
---|
[542] | 496 | |
---|
[1992] | 497 | ! Determination de zw2 max |
---|
| 498 | DO ig = 1, ngrid |
---|
| 499 | wmax(ig) = 0. |
---|
| 500 | END DO |
---|
[542] | 501 | |
---|
[1992] | 502 | DO l = 1, nlay |
---|
| 503 | DO ig = 1, ngrid |
---|
| 504 | IF (l<=lmax(ig)) THEN |
---|
| 505 | IF (zw2(ig,l)<0.) THEN |
---|
| 506 | ! print*,'pb2 zw2<0' |
---|
| 507 | END IF |
---|
| 508 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 509 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 510 | ELSE |
---|
| 511 | zw2(ig, l) = 0. |
---|
| 512 | END IF |
---|
| 513 | END DO |
---|
| 514 | END DO |
---|
[542] | 515 | |
---|
[1992] | 516 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 517 | DO ig = 1, ngrid |
---|
| 518 | zmax(ig) = 0. |
---|
| 519 | zlevinter(ig) = zlev(ig, 1) |
---|
| 520 | END DO |
---|
| 521 | DO ig = 1, ngrid |
---|
| 522 | ! calcul de zlevinter |
---|
| 523 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 524 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 525 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 526 | END DO |
---|
| 527 | DO ig = 1, ngrid |
---|
| 528 | ! write(8,*)zmax(ig),lmax(ig),lentr(ig),lmin(ig) |
---|
| 529 | END DO |
---|
| 530 | ! on stope après les calculs de zmax et wmax |
---|
| 531 | RETURN |
---|
[542] | 532 | |
---|
[1992] | 533 | ! print*,'avant fermeture' |
---|
| 534 | ! Fermeture,determination de f |
---|
| 535 | ! Attention! entrainement normalisé ou pas? |
---|
| 536 | DO ig = 1, ngrid |
---|
| 537 | entr_star2(ig) = 0. |
---|
| 538 | END DO |
---|
| 539 | DO ig = 1, ngrid |
---|
| 540 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
| 541 | f(ig) = 0. |
---|
| 542 | ELSE |
---|
| 543 | DO k = lmin(ig), lentr(ig) |
---|
| 544 | ! do k=lmin(ig),lalim(ig) |
---|
| 545 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
| 546 | zlev(ig,k+1)-zlev(ig,k))) |
---|
| 547 | END DO |
---|
| 548 | ! Nouvelle fermeture |
---|
| 549 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig)) |
---|
| 550 | ! s *entr_star_tot(ig) |
---|
| 551 | ! test |
---|
| 552 | ! if (first) then |
---|
| 553 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
| 554 | ! endif |
---|
| 555 | END IF |
---|
| 556 | f0(ig) = f(ig) |
---|
| 557 | ! first=.true. |
---|
| 558 | END DO |
---|
| 559 | ! print*,'apres fermeture' |
---|
| 560 | ! on stoppe après la fermeture |
---|
| 561 | RETURN |
---|
| 562 | ! Calcul de l'entrainement |
---|
| 563 | DO k = 1, klev |
---|
| 564 | DO ig = 1, ngrid |
---|
| 565 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
| 566 | END DO |
---|
| 567 | END DO |
---|
| 568 | ! on stoppe après le calcul de entr |
---|
| 569 | ! RETURN |
---|
| 570 | ! CR:test pour entrainer moins que la masse |
---|
| 571 | ! do ig=1,ngrid |
---|
| 572 | ! do l=1,lentr(ig) |
---|
| 573 | ! if ((entr(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
| 574 | ! entr(ig,l+1)=entr(ig,l+1)+entr(ig,l) |
---|
| 575 | ! s -0.9*masse(ig,l)/ptimestep |
---|
| 576 | ! entr(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
| 577 | ! endif |
---|
| 578 | ! enddo |
---|
| 579 | ! enddo |
---|
| 580 | ! CR: fin test |
---|
| 581 | ! Calcul des flux |
---|
| 582 | DO ig = 1, ngrid |
---|
| 583 | DO l = 1, lmax(ig) - 1 |
---|
| 584 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
| 585 | END DO |
---|
| 586 | END DO |
---|
| 587 | |
---|
| 588 | ! RC |
---|
| 589 | |
---|
| 590 | |
---|
| 591 | ! print*,'9 OK convect8' |
---|
| 592 | ! print*,'WA1 ',wa_moy |
---|
| 593 | |
---|
| 594 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
| 595 | |
---|
| 596 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
| 597 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
| 598 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
| 599 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
| 600 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
| 601 | |
---|
| 602 | DO l = 2, nlay |
---|
| 603 | DO ig = 1, ngrid |
---|
| 604 | IF (l<=lmaxa(ig)) THEN |
---|
| 605 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
| 606 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
| 607 | END IF |
---|
| 608 | END DO |
---|
| 609 | END DO |
---|
| 610 | |
---|
| 611 | DO l = 2, nlay |
---|
| 612 | DO ig = 1, ngrid |
---|
| 613 | IF (l<=lmaxa(ig)) THEN |
---|
| 614 | ! if (idetr.eq.0) then |
---|
| 615 | ! cette option est finalement en dur. |
---|
| 616 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
| 617 | ! print*,'pb l_mix*zlev<0' |
---|
| 618 | END IF |
---|
| 619 | ! CR: test: nouvelle def de lambda |
---|
| 620 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 621 | IF (zw2(ig,l)>1.E-10) THEN |
---|
| 622 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
| 623 | ELSE |
---|
| 624 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
| 625 | END IF |
---|
| 626 | ! RC |
---|
| 627 | ! else if (idetr.eq.1) then |
---|
| 628 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
| 629 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
| 630 | ! else if (idetr.eq.2) then |
---|
| 631 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 632 | ! s *sqrt(wa_moy(ig,l)) |
---|
| 633 | ! else if (idetr.eq.4) then |
---|
| 634 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
| 635 | ! s *wa_moy(ig,l) |
---|
| 636 | ! endif |
---|
| 637 | END IF |
---|
| 638 | END DO |
---|
| 639 | END DO |
---|
| 640 | |
---|
| 641 | ! print*,'10 OK convect8' |
---|
| 642 | ! print*,'WA2 ',wa_moy |
---|
| 643 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
| 644 | ! compte de l'epluchage du thermique. |
---|
| 645 | |
---|
| 646 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
| 647 | DO ig = 1, ngrid |
---|
| 648 | IF (lmix(ig)>1.) THEN |
---|
| 649 | ! test |
---|
| 650 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 651 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 652 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
| 653 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
| 654 | |
---|
| 655 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
| 656 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
| 657 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
| 658 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
| 659 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
| 660 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
| 661 | ELSE |
---|
| 662 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
| 663 | ! print*,'pb zmix' |
---|
| 664 | END IF |
---|
| 665 | ELSE |
---|
| 666 | zmix(ig) = 0. |
---|
| 667 | END IF |
---|
| 668 | ! test |
---|
| 669 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
| 670 | zmix(ig) = 0.99*zmax(ig) |
---|
| 671 | ! print*,'pb zmix>zmax' |
---|
| 672 | END IF |
---|
| 673 | END DO |
---|
| 674 | |
---|
| 675 | ! calcul du nouveau lmix correspondant |
---|
| 676 | DO ig = 1, ngrid |
---|
| 677 | DO l = 1, klev |
---|
| 678 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
| 679 | lmix(ig) = l |
---|
| 680 | END IF |
---|
| 681 | END DO |
---|
| 682 | END DO |
---|
| 683 | |
---|
| 684 | DO l = 2, nlay |
---|
| 685 | DO ig = 1, ngrid |
---|
| 686 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 687 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
| 688 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
| 689 | ! test |
---|
| 690 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 691 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 692 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 693 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 694 | ELSE |
---|
| 695 | ! wa_moy(ig,l)=0. |
---|
| 696 | fraca(ig, l) = 0. |
---|
| 697 | fracc(ig, l) = 0. |
---|
| 698 | fracd(ig, l) = 1. |
---|
| 699 | END IF |
---|
| 700 | END DO |
---|
| 701 | END DO |
---|
| 702 | ! CR: calcul de fracazmix |
---|
| 703 | DO ig = 1, ngrid |
---|
| 704 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
| 705 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
| 706 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
| 707 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
| 708 | END DO |
---|
| 709 | |
---|
| 710 | DO l = 2, nlay |
---|
| 711 | DO ig = 1, ngrid |
---|
| 712 | IF (larg_cons(ig,l)>1.) THEN |
---|
| 713 | IF (l>lmix(ig)) THEN |
---|
| 714 | ! test |
---|
| 715 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
| 716 | ! print*,'pb xxx' |
---|
| 717 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
| 718 | ELSE |
---|
| 719 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
| 720 | END IF |
---|
| 721 | IF (idetr==0) THEN |
---|
| 722 | fraca(ig, l) = fracazmix(ig) |
---|
| 723 | ELSE IF (idetr==1) THEN |
---|
| 724 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
| 725 | ELSE IF (idetr==2) THEN |
---|
| 726 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
| 727 | ELSE |
---|
| 728 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
| 729 | END IF |
---|
| 730 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
| 731 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
| 732 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
| 733 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
| 734 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
| 735 | END IF |
---|
| 736 | END IF |
---|
| 737 | END DO |
---|
| 738 | END DO |
---|
| 739 | |
---|
| 740 | ! print*,'fin calcul fraca' |
---|
| 741 | ! print*,'11 OK convect8' |
---|
| 742 | ! print*,'Ea3 ',wa_moy |
---|
| 743 | ! ------------------------------------------------------------------ |
---|
| 744 | ! Calcul de fracd, wd |
---|
| 745 | ! somme wa - wd = 0 |
---|
| 746 | ! ------------------------------------------------------------------ |
---|
| 747 | |
---|
| 748 | |
---|
| 749 | DO ig = 1, ngrid |
---|
| 750 | fm(ig, 1) = 0. |
---|
| 751 | fm(ig, nlay+1) = 0. |
---|
| 752 | END DO |
---|
| 753 | |
---|
| 754 | DO l = 2, nlay |
---|
| 755 | DO ig = 1, ngrid |
---|
| 756 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
| 757 | ! CR:test |
---|
| 758 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
| 759 | fm(ig, l) = fm(ig, l-1) |
---|
| 760 | ! write(1,*)'ajustement fm, l',l |
---|
| 761 | END IF |
---|
| 762 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
| 763 | ! RC |
---|
| 764 | END DO |
---|
| 765 | DO ig = 1, ngrid |
---|
| 766 | IF (fracd(ig,l)<0.1) THEN |
---|
| 767 | abort_message = 'fracd trop petit' |
---|
| 768 | CALL abort_gcm(modname, abort_message, 1) |
---|
| 769 | |
---|
| 770 | ELSE |
---|
| 771 | ! vitesse descendante "diagnostique" |
---|
| 772 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
| 773 | END IF |
---|
| 774 | END DO |
---|
| 775 | END DO |
---|
| 776 | |
---|
| 777 | DO l = 1, nlay |
---|
| 778 | DO ig = 1, ngrid |
---|
| 779 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 780 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
| 781 | END DO |
---|
| 782 | END DO |
---|
| 783 | |
---|
| 784 | ! print*,'12 OK convect8' |
---|
| 785 | ! print*,'WA4 ',wa_moy |
---|
| 786 | ! c------------------------------------------------------------------ |
---|
| 787 | ! calcul du transport vertical |
---|
| 788 | ! ------------------------------------------------------------------ |
---|
| 789 | |
---|
| 790 | GO TO 4444 |
---|
| 791 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
| 792 | DO l = 2, nlay - 1 |
---|
| 793 | DO ig = 1, ngrid |
---|
| 794 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
| 795 | ig,l+1)) THEN |
---|
| 796 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
| 797 | ! s ,fm(ig,l+1)*ptimestep |
---|
| 798 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
| 799 | END IF |
---|
| 800 | END DO |
---|
| 801 | END DO |
---|
| 802 | |
---|
| 803 | DO l = 1, nlay |
---|
| 804 | DO ig = 1, ngrid |
---|
| 805 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
| 806 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
| 807 | ! s ,entr(ig,l)*ptimestep |
---|
| 808 | ! s ,' M=',masse(ig,l) |
---|
| 809 | END IF |
---|
| 810 | END DO |
---|
| 811 | END DO |
---|
| 812 | |
---|
| 813 | DO l = 1, nlay |
---|
| 814 | DO ig = 1, ngrid |
---|
| 815 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
| 816 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
| 817 | ! s ,' FM=',fm(ig,l) |
---|
| 818 | END IF |
---|
| 819 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
| 820 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
| 821 | ! s ,' M=',masse(ig,l) |
---|
| 822 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
| 823 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
| 824 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
| 825 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
| 826 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
| 827 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
| 828 | END IF |
---|
| 829 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
| 830 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
| 831 | ! s ,' E=',entr(ig,l) |
---|
| 832 | END IF |
---|
| 833 | END DO |
---|
| 834 | END DO |
---|
| 835 | |
---|
| 836 | 4444 CONTINUE |
---|
| 837 | |
---|
| 838 | ! CR:redefinition du entr |
---|
| 839 | DO l = 1, nlay |
---|
| 840 | DO ig = 1, ngrid |
---|
| 841 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
| 842 | IF (detr(ig,l)<0.) THEN |
---|
| 843 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 844 | fm(ig, l+1) = fm(ig, l) + entr(ig, l) |
---|
| 845 | detr(ig, l) = 0. |
---|
| 846 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 847 | END IF |
---|
| 848 | END DO |
---|
| 849 | END DO |
---|
| 850 | ! RC |
---|
| 851 | IF (w2di==1) THEN |
---|
| 852 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
| 853 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
| 854 | ELSE |
---|
| 855 | fm0 = fm |
---|
| 856 | entr0 = entr |
---|
| 857 | END IF |
---|
| 858 | |
---|
| 859 | IF (1==1) THEN |
---|
| 860 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
| 861 | zha) |
---|
| 862 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
| 863 | zoa) |
---|
| 864 | ELSE |
---|
| 865 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
| 866 | zdhadj, zha) |
---|
| 867 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
| 868 | pdoadj, zoa) |
---|
| 869 | END IF |
---|
| 870 | |
---|
| 871 | IF (1==0) THEN |
---|
| 872 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
| 873 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
| 874 | ELSE |
---|
| 875 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
| 876 | zua) |
---|
| 877 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
| 878 | zva) |
---|
| 879 | END IF |
---|
| 880 | |
---|
| 881 | DO l = 1, nlay |
---|
| 882 | DO ig = 1, ngrid |
---|
| 883 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
| 884 | zf2 = zf/(1.-zf) |
---|
| 885 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
| 886 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
| 887 | END DO |
---|
| 888 | END DO |
---|
| 889 | |
---|
| 890 | |
---|
| 891 | |
---|
| 892 | ! print*,'13 OK convect8' |
---|
| 893 | ! print*,'WA5 ',wa_moy |
---|
| 894 | DO l = 1, nlay |
---|
| 895 | DO ig = 1, ngrid |
---|
| 896 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
| 897 | END DO |
---|
| 898 | END DO |
---|
| 899 | |
---|
| 900 | |
---|
| 901 | ! do l=1,nlay |
---|
| 902 | ! do ig=1,ngrid |
---|
| 903 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
| 904 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 905 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
| 906 | ! endif |
---|
| 907 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
| 908 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
| 909 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
| 910 | ! endif |
---|
| 911 | ! enddo |
---|
| 912 | ! enddo |
---|
| 913 | |
---|
| 914 | ! print*,'14 OK convect8' |
---|
| 915 | ! ------------------------------------------------------------------ |
---|
| 916 | ! Calculs pour les sorties |
---|
| 917 | ! ------------------------------------------------------------------ |
---|
| 918 | |
---|
| 919 | IF (sorties) THEN |
---|
| 920 | DO l = 1, nlay |
---|
| 921 | DO ig = 1, ngrid |
---|
| 922 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
| 923 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
| 924 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
| 925 | (1.-fracd(ig,l)) |
---|
| 926 | END DO |
---|
| 927 | END DO |
---|
| 928 | |
---|
| 929 | ! deja fait |
---|
| 930 | ! do l=1,nlay |
---|
| 931 | ! do ig=1,ngrid |
---|
| 932 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
| 933 | ! if (detr(ig,l).lt.0.) then |
---|
| 934 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
| 935 | ! detr(ig,l)=0. |
---|
| 936 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
| 937 | ! endif |
---|
| 938 | ! enddo |
---|
| 939 | ! enddo |
---|
| 940 | |
---|
| 941 | ! print*,'15 OK convect8' |
---|
| 942 | |
---|
| 943 | isplit = isplit + 1 |
---|
| 944 | |
---|
| 945 | |
---|
| 946 | ! #define und |
---|
| 947 | GO TO 123 |
---|
[542] | 948 | #ifdef und |
---|
[1992] | 949 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
| 950 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
| 951 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
| 952 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
| 953 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
| 954 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
| 955 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
| 956 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
| 957 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
| 958 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
| 959 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
| 960 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
| 961 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
| 962 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
| 963 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
| 964 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
| 965 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
| 966 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
| 967 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
| 968 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
| 969 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
| 970 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
| 971 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
| 972 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
[542] | 973 | |
---|
[1992] | 974 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
| 975 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
| 976 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
[542] | 977 | |
---|
[1992] | 978 | ! recalcul des flux en diagnostique... |
---|
| 979 | ! print*,'PAS DE TEMPS ',ptimestep |
---|
| 980 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
| 981 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
[542] | 982 | #endif |
---|
[1992] | 983 | 123 CONTINUE |
---|
[542] | 984 | |
---|
[1992] | 985 | END IF |
---|
[542] | 986 | |
---|
[1992] | 987 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
[542] | 988 | |
---|
[1992] | 989 | ! print*,'19 OK convect8' |
---|
| 990 | RETURN |
---|
| 991 | END SUBROUTINE calcul_sec |
---|
[542] | 992 | |
---|
[1992] | 993 | SUBROUTINE fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, & |
---|
| 994 | f0, zpspsk, alim_star, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, & |
---|
| 995 | zmax, wmax) |
---|
[542] | 996 | |
---|
[1992] | 997 | USE dimphy |
---|
| 998 | IMPLICIT NONE |
---|
[542] | 999 | |
---|
[1992] | 1000 | include "dimensions.h" |
---|
| 1001 | ! ccc#include "dimphy.h" |
---|
| 1002 | include "YOMCST.h" |
---|
[542] | 1003 | |
---|
[1992] | 1004 | INTEGER ngrid, nlay |
---|
| 1005 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
| 1006 | REAL pphi(ngrid, nlay) |
---|
| 1007 | REAL zlev(klon, klev+1) |
---|
| 1008 | REAL alim_star(klon, klev) |
---|
| 1009 | REAL f0(klon) |
---|
| 1010 | INTEGER lentr(klon) |
---|
| 1011 | INTEGER lmin(klon) |
---|
| 1012 | REAL zmax(klon) |
---|
| 1013 | REAL wmax(klon) |
---|
| 1014 | REAL nu_min |
---|
| 1015 | REAL nu_max |
---|
| 1016 | REAL r_aspect |
---|
| 1017 | REAL rhobarz(klon, klev+1) |
---|
| 1018 | REAL zh(klon, klev) |
---|
| 1019 | REAL zo(klon, klev) |
---|
| 1020 | REAL zpspsk(klon, klev) |
---|
[542] | 1021 | |
---|
[1992] | 1022 | INTEGER ig, l |
---|
[542] | 1023 | |
---|
[1992] | 1024 | REAL f_star(klon, klev+1) |
---|
| 1025 | REAL detr_star(klon, klev) |
---|
| 1026 | REAL entr_star(klon, klev) |
---|
| 1027 | REAL zw2(klon, klev+1) |
---|
| 1028 | REAL linter(klon) |
---|
| 1029 | INTEGER lmix(klon) |
---|
| 1030 | INTEGER lmax(klon) |
---|
| 1031 | REAL zlevinter(klon) |
---|
| 1032 | REAL wa_moy(klon, klev+1) |
---|
| 1033 | REAL wmaxa(klon) |
---|
| 1034 | REAL ztv(klon, klev) |
---|
| 1035 | REAL ztva(klon, klev) |
---|
| 1036 | REAL nu(klon, klev) |
---|
| 1037 | ! real zmax0_sec(klon) |
---|
| 1038 | ! save zmax0_sec |
---|
| 1039 | REAL, SAVE, ALLOCATABLE :: zmax0_sec(:) |
---|
| 1040 | !$OMP THREADPRIVATE(zmax0_sec) |
---|
| 1041 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 1042 | !$OMP THREADPRIVATE(first) |
---|
[542] | 1043 | |
---|
[1992] | 1044 | IF (first) THEN |
---|
| 1045 | ALLOCATE (zmax0_sec(klon)) |
---|
| 1046 | first = .FALSE. |
---|
| 1047 | END IF |
---|
[940] | 1048 | |
---|
[1992] | 1049 | DO l = 1, nlay |
---|
| 1050 | DO ig = 1, ngrid |
---|
| 1051 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
| 1052 | ztv(ig, l) = ztv(ig, l)*(1.+retv*zo(ig,l)) |
---|
| 1053 | END DO |
---|
| 1054 | END DO |
---|
| 1055 | DO l = 1, nlay - 2 |
---|
| 1056 | DO ig = 1, ngrid |
---|
| 1057 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
| 1058 | zw2(ig,l)<1E-10) THEN |
---|
| 1059 | f_star(ig, l+1) = alim_star(ig, l) |
---|
| 1060 | ! test:calcul de dteta |
---|
| 1061 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
| 1062 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
| 1063 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
| 1064 | l))>1.E-10) THEN |
---|
| 1065 | ! estimation du detrainement a partir de la geometrie du pas |
---|
| 1066 | ! precedent |
---|
| 1067 | ! tests sur la definition du detr |
---|
| 1068 | nu(ig, l) = (nu_min+nu_max)/2.*(1.-(nu_max-nu_min)/(nu_max+nu_min)* & |
---|
| 1069 | tanh((((ztva(ig,l-1)-ztv(ig,l))/ztv(ig,l))/0.0005))) |
---|
[542] | 1070 | |
---|
[1992] | 1071 | detr_star(ig, l) = rhobarz(ig, l)*sqrt(zw2(ig,l))/ & |
---|
| 1072 | (r_aspect*zmax0_sec(ig))* & ! s |
---|
| 1073 | ! /(r_aspect*zmax0(ig))* |
---|
| 1074 | (sqrt(nu(ig,l)*zlev(ig,l+1)/sqrt(zw2(ig,l)))-sqrt(nu(ig,l)*zlev(ig, & |
---|
| 1075 | l)/sqrt(zw2(ig,l)))) |
---|
| 1076 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
| 1077 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
| 1078 | detr_star(ig, l) = f_star(ig, l) |
---|
| 1079 | END IF |
---|
| 1080 | entr_star(ig, l) = 0.9*detr_star(ig, l) |
---|
| 1081 | IF ((l<lentr(ig))) THEN |
---|
| 1082 | entr_star(ig, l) = 0. |
---|
| 1083 | ! detr_star(ig,l)=0. |
---|
| 1084 | END IF |
---|
| 1085 | ! print*,'ok detr_star' |
---|
| 1086 | ! prise en compte du detrainement dans le calcul du flux |
---|
| 1087 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
| 1088 | entr_star(ig, l) - detr_star(ig, l) |
---|
| 1089 | ! test sur le signe de f_star |
---|
| 1090 | IF ((f_star(ig,l+1)+detr_star(ig,l))>1.E-10) THEN |
---|
| 1091 | ! AM on melange Tl et qt du thermique |
---|
| 1092 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+(entr_star(ig, & |
---|
| 1093 | l)+alim_star(ig,l))*ztv(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
| 1094 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/(f_star(ig, & |
---|
| 1095 | l+1)+detr_star(ig,l)))**2 + 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, & |
---|
| 1096 | l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
| 1097 | END IF |
---|
| 1098 | END IF |
---|
[542] | 1099 | |
---|
[1992] | 1100 | IF (zw2(ig,l+1)<0.) THEN |
---|
| 1101 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
| 1102 | ig,l)) |
---|
| 1103 | zw2(ig, l+1) = 0. |
---|
| 1104 | ! print*,'linter=',linter(ig) |
---|
| 1105 | ELSE |
---|
| 1106 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
| 1107 | END IF |
---|
| 1108 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
| 1109 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
| 1110 | lmix(ig) = l + 1 |
---|
| 1111 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
| 1112 | END IF |
---|
| 1113 | END DO |
---|
| 1114 | END DO |
---|
| 1115 | ! print*,'fin calcul zw2' |
---|
| 1116 | |
---|
| 1117 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
| 1118 | DO ig = 1, ngrid |
---|
| 1119 | lmax(ig) = lentr(ig) |
---|
| 1120 | END DO |
---|
| 1121 | DO ig = 1, ngrid |
---|
| 1122 | DO l = nlay, lentr(ig) + 1, -1 |
---|
| 1123 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
| 1124 | lmax(ig) = l - 1 |
---|
| 1125 | END IF |
---|
| 1126 | END DO |
---|
| 1127 | END DO |
---|
| 1128 | ! pas de thermique si couche 1 stable |
---|
| 1129 | DO ig = 1, ngrid |
---|
| 1130 | IF (lmin(ig)>1) THEN |
---|
| 1131 | lmax(ig) = 1 |
---|
| 1132 | lmin(ig) = 1 |
---|
| 1133 | lentr(ig) = 1 |
---|
| 1134 | END IF |
---|
| 1135 | END DO |
---|
| 1136 | |
---|
| 1137 | ! Determination de zw2 max |
---|
| 1138 | DO ig = 1, ngrid |
---|
| 1139 | wmax(ig) = 0. |
---|
| 1140 | END DO |
---|
| 1141 | |
---|
| 1142 | DO l = 1, nlay |
---|
| 1143 | DO ig = 1, ngrid |
---|
| 1144 | IF (l<=lmax(ig)) THEN |
---|
| 1145 | IF (zw2(ig,l)<0.) THEN |
---|
| 1146 | ! print*,'pb2 zw2<0' |
---|
| 1147 | END IF |
---|
| 1148 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
| 1149 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
| 1150 | ELSE |
---|
| 1151 | zw2(ig, l) = 0. |
---|
| 1152 | END IF |
---|
| 1153 | END DO |
---|
| 1154 | END DO |
---|
| 1155 | |
---|
| 1156 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
| 1157 | DO ig = 1, ngrid |
---|
| 1158 | zmax(ig) = 0. |
---|
| 1159 | zlevinter(ig) = zlev(ig, 1) |
---|
| 1160 | END DO |
---|
| 1161 | DO ig = 1, ngrid |
---|
| 1162 | ! calcul de zlevinter |
---|
| 1163 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
| 1164 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
| 1165 | ! pour le cas ou on prend tjs lmin=1 |
---|
| 1166 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
| 1167 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
| 1168 | zmax0_sec(ig) = zmax(ig) |
---|
| 1169 | END DO |
---|
| 1170 | |
---|
| 1171 | RETURN |
---|
| 1172 | END SUBROUTINE fermeture_seche |
---|