source: LMDZ5/branches/testing/libf/phylmd/physiq_mod.F90 @ 5403

Last change on this file since 5403 was 2886, checked in by Laurent Fairhead, 8 years ago

Merged trunk changes r2865:2885 into testing branch

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.7 KB
RevLine 
[2418]1!
[1279]2! $Id: physiq_mod.F90 2886 2017-05-20 07:41:16Z abarral $
[2418]3!
[1862]4!#define IO_DEBUG
[2418]5MODULE physiq_mod
[766]6
[2488]7  IMPLICIT NONE
[2418]8
9CONTAINS
10
[2488]11  SUBROUTINE physiq (nlon,nlev, &
12       debut,lafin,pdtphys_, &
13       paprs,pplay,pphi,pphis,presnivs, &
14       u,v,rot,t,qx, &
15       flxmass_w, &
16       d_u, d_v, d_t, d_qx, d_ps)
[524]17
[2787]18    use assert_m, only: assert
[2488]19    USE ioipsl, only: histbeg, histvert, histdef, histend, histsync, &
20         histwrite, ju2ymds, ymds2ju, getin
21    USE geometry_mod, ONLY: cell_area, latitude_deg, longitude_deg
22    USE phys_cal_mod, only: year_len, mth_len, days_elapsed, jh_1jan, &
[2787]23         year_cur, mth_cur,jD_cur, jH_cur, jD_ref, day_cur, hour
[2488]24    USE write_field_phy
25    USE dimphy
26    USE infotrac_phy, ONLY: nqtot, nbtr, nqo, type_trac
27    USE mod_grid_phy_lmdz, ONLY: nbp_lon, nbp_lat, nbp_lev, klon_glo
28    USE mod_phys_lmdz_para
29    USE iophy
30    USE print_control_mod, ONLY: mydebug=>debug , lunout, prt_level
31    USE phystokenc_mod, ONLY: offline, phystokenc
[2787]32    USE time_phylmdz_mod, only: raz_date, day_step_phy, update_time,current_time
[2488]33    USE vampir
34    USE pbl_surface_mod, ONLY : pbl_surface
35    USE change_srf_frac_mod
36    USE surface_data,     ONLY : type_ocean, ok_veget, ok_snow
[2839]37    USE tropopause_m,     ONLY: dyn_tropopause
[2641]38#ifdef CPP_Dust
39    USE phytracr_spl_mod, ONLY: phytracr_spl
40#endif
41    USE phys_local_var_mod, ONLY: phys_local_var_init, phys_local_var_end, &
42       ! [Variables internes non sauvegardees de la physique]
43       ! Variables locales pour effectuer les appels en serie
44       t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,tr_seri, &
45       ! Dynamic tendencies (diagnostics)
46       d_t_dyn,d_q_dyn,d_ql_dyn,d_qs_dyn,d_u_dyn,d_v_dyn,d_tr_dyn, &
47       d_q_dyn2d,d_ql_dyn2d,d_qs_dyn2d, &
48       ! Physic tendencies
49       d_t_con,d_q_con,d_u_con,d_v_con, &
50       d_tr, &                              !! to be removed?? (jyg)
51       d_t_wake,d_q_wake, &
52       d_t_lwr,d_t_lw0,d_t_swr,d_t_sw0, &
53       d_t_ajsb,d_q_ajsb, &
54       d_t_ajs,d_q_ajs,d_u_ajs,d_v_ajs, &
55       d_t_ajs_w,d_q_ajs_w, &
56       d_t_ajs_x,d_q_ajs_x, &
57       !
[2720]58       d_t_eva,d_q_eva,d_ql_eva,d_qi_eva, &
[2641]59       d_t_lsc,d_q_lsc,d_ql_lsc,d_qi_lsc, &
60       d_t_lscst,d_q_lscst, &
61       d_t_lscth,d_q_lscth, &
62       plul_st,plul_th, &
63       !
64       d_t_vdf,d_q_vdf,d_u_vdf,d_v_vdf,d_t_diss, &
65       d_t_vdf_w,d_q_vdf_w, &
66       d_t_vdf_x,d_q_vdf_x, &
67       d_ts, &
68       !
69       d_t_oli,d_u_oli,d_v_oli, &
70       d_t_oro,d_u_oro,d_v_oro, &
71       d_t_lif,d_u_lif,d_v_lif, &
72       d_t_ec, &
73       !
74       du_gwd_hines,dv_gwd_hines,d_t_hin, &
75       dv_gwd_rando,dv_gwd_front, &
76       east_gwstress,west_gwstress, &
77       d_q_ch4, &
78       !  Special RRTM
79       ZLWFT0_i,ZSWFT0_i,ZFLDN0,  &
80       ZFLUP0,ZFSDN0,ZFSUP0,      &
81       !
82       topswad_aero,solswad_aero,   &
83       topswai_aero,solswai_aero,   &
84       topswad0_aero,solswad0_aero, &
85       !LW additional
86       toplwad_aero,sollwad_aero,   &
87       toplwai_aero,sollwai_aero,   &
88       toplwad0_aero,sollwad0_aero, &
89       !
90       topsw_aero,solsw_aero,       &
91       topsw0_aero,solsw0_aero,     &
92       topswcf_aero,solswcf_aero,   &
93       tausum_aero,tau3d_aero,      &
[2870]94       drytausum_aero,              &
[2641]95       !
96       !variables CFMIP2/CMIP5
97       topswad_aerop, solswad_aerop,   &
98       topswai_aerop, solswai_aerop,   &
99       topswad0_aerop, solswad0_aerop, &
100       topsw_aerop, topsw0_aerop,      &
101       solsw_aerop, solsw0_aerop,      &
102       topswcf_aerop, solswcf_aerop,   &
103       !LW diagnostics
104       toplwad_aerop, sollwad_aerop,   &
105       toplwai_aerop, sollwai_aerop,   &
106       toplwad0_aerop, sollwad0_aerop, &
107       !
108       ptstar, pt0, slp, &
109       !
110       bils, &
111       !
112       cldh, cldl,cldm, cldq, cldt,      &
113       JrNt,                             &
114       dthmin, evap, fder, plcl, plfc,   &
115       prw, prlw, prsw,                  &
116       s_lcl, s_pblh, s_pblt, s_therm,   &
117       cdragm, cdragh,                   &
118       zustar, zu10m, zv10m, rh2m, qsat2m, &
119       zq2m, zt2m, weak_inversion, &
120       zt2m_min_mon, zt2m_max_mon,   &         ! pour calcul_divers.h
121       t2m_min_mon, t2m_max_mon,  &            ! pour calcul_divers.h
122       !
123       s_pblh_x, s_pblh_w, &
124       s_lcl_x, s_lcl_w,   &
125       !
126       slab_wfbils, tpot, tpote,               &
127       ue, uq, ve, vq, zxffonte,               &
128       zxfqcalving, zxfluxlat,                 &
129       zxrunofflic,                            &
130       zxtsol, snow_lsc, zxfqfonte, zxqsurf,   &
131       rain_lsc, rain_num,                     &
132       !
133       sens_x, sens_w, &
134       zxfluxlat_x, zxfluxlat_w, &
135       !
136       dtvdf_x, dtvdf_w, &
137       dqvdf_x, dqvdf_w, &
138       pbl_tke_input, &
139       t_therm, q_therm, u_therm, v_therm, &
140       cdragh_x, cdragh_w, &
141       cdragm_x, cdragm_w, &
142       kh, kh_x, kh_w, &
143       !
[2787]144       wake_k, &
[2641]145       ale_wake, alp_wake, &
146       wake_h, wake_omg, &
147                       ! tendencies of delta T and delta q:
148       d_deltat_wk, d_deltaq_wk, &         ! due to wakes
149       d_deltat_wk_gw, d_deltaq_wk_gw, &   ! due to wake induced gravity waves
150       d_deltat_vdf, d_deltaq_vdf, &       ! due to vertical diffusion
151       d_deltat_the, d_deltaq_the, &       ! due to thermals
152       d_deltat_ajs_cv, d_deltaq_ajs_cv, & ! due to dry adjustment of (w) before convection
153                       ! tendencies of wake fractional area and wake number per unit area:
154       d_s_wk,  d_dens_wk, &             ! due to wakes
155!!!       d_s_vdf, d_dens_vdf, &            ! due to vertical diffusion
156!!!       d_s_the, d_dens_the, &            ! due to thermals
157       !                                 
[2886]158       ptconv, &
[2839]159       wbeff, convoccur, zmax_th, &
[2641]160       sens, flwp, fiwp,  &
161       ale_bl_stat,alp_bl_conv,alp_bl_det,  &
162       alp_bl_fluct_m,alp_bl_fluct_tke,  &
163       alp_bl_stat, n2, s2,  &
164       proba_notrig, random_notrig,  &
165       !
166       dnwd, dnwd0,  &
167       upwd, omega,  &
168       epmax_diag,  &
169       ep,  &
170       cldemi,  &
171       cldfra, cldtau, fiwc,  &
172       fl, re, flwc,  &
173       ref_liq, ref_ice, theta,  &
174       ref_liq_pi, ref_ice_pi,  &
175       zphi, zx_rh,  &
176       pmfd, pmfu,  &
177       !
178       t2m, fluxlat,  &
179       fsollw, evap_pot,  &
180       fsolsw, wfbils, wfbilo,  &
[2720]181       wfevap, wfrain, wfsnow,  & 
[2641]182       pmflxr, pmflxs, prfl,  &
183       psfl, fraca, Vprecip,  &
184       zw2,  &
185       
186       fluxu, fluxv,  &
187       fluxt,  &
188
189       uwriteSTD, vwriteSTD, &                !pour calcul_STDlev.h
190       wwriteSTD, phiwriteSTD, &              !pour calcul_STDlev.h
191       qwriteSTD, twriteSTD, rhwriteSTD, &    !pour calcul_STDlev.h
192       
193       wdtrainA, wdtrainM,  &
194       beta_prec,  &
195       rneb,  &
[2839]196       zxsnow,snowhgt,qsnow,to_ice,sissnow,runoff,albsol3_lic, &
197       pr_tropopause
[2641]198       !
[2488]199    USE phys_state_var_mod ! Variables sauvegardees de la physique
[2641]200#ifdef CPP_Dust
201  USE phys_output_write_spl_mod
202#else
[2488]203    USE phys_output_var_mod ! Variables pour les ecritures des sorties
[2641]204#endif
205
[2488]206    USE phys_output_write_mod
207    USE fonte_neige_mod, ONLY  : fonte_neige_get_vars
208    USE phys_output_mod
209    USE phys_output_ctrlout_mod
210    use open_climoz_m, only: open_climoz ! ozone climatology from a file
[2839]211    use regr_pr_time_av_m, only: regr_pr_time_av
[2488]212    use netcdf95, only: nf95_close
213    !IM for NMC files
214    !     use netcdf, only: nf90_fill_real
215    use netcdf
216    use mod_phys_lmdz_mpi_data, only: is_mpi_root
217    USE aero_mod
218    use ozonecm_m, only: ozonecm ! ozone of J.-F. Royer
219    use conf_phys_m, only: conf_phys
220    use radlwsw_m, only: radlwsw
221    use phyaqua_mod, only: zenang_an
222    USE time_phylmdz_mod, only: day_step_phy, annee_ref, day_ref, itau_phy, &
223         start_time, pdtphys, day_ini
224    USE tracinca_mod, ONLY: config_inca
[2271]225#ifdef CPP_XIOS
[2488]226    USE wxios, ONLY: missing_val, missing_val_omp
[2720]227    USE xios, ONLY: xios_get_field_attr, xios_field_is_active
[2271]228#endif
[1565]229#ifdef REPROBUS
[2488]230    USE CHEM_REP, ONLY : Init_chem_rep_xjour
[1565]231#endif
[2488]232    USE indice_sol_mod
233    USE phytrac_mod, ONLY : phytrac
[782]234
[2009]235#ifdef CPP_RRTM
[2542]236    USE YOERAD, ONLY : NRADLP
237    USE YOESW, ONLY : RSUN
[2009]238#endif
[2488]239    USE ioipsl_getin_p_mod, ONLY : getin_p
[2003]240
[2669]241#ifndef CPP_XIOS
[2595]242    USE paramLMDZ_phy_mod
[2669]243#endif
[2294]244
[2641]245    USE cmp_seri_mod
[2839]246    USE add_phys_tend_mod, only : add_pbl_tend, add_phys_tend, prt_enerbil, &
247  &      fl_ebil, fl_cor_ebil
[2641]248
[2488]249    !IM stations CFMIP
250    USE CFMIP_point_locations
251    use FLOTT_GWD_rando_m, only: FLOTT_GWD_rando
252    use ACAMA_GWD_rando_m, only: ACAMA_GWD_rando
[2839]253    USE VERTICAL_LAYERS_MOD, ONLY: aps,bps
[1938]254
[2839]255
[2488]256    IMPLICIT none
257    !>======================================================================
258    !!
259    !! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818
260    !!
261    !! Objet: Moniteur general de la physique du modele
262    !!AA      Modifications quant aux traceurs :
263    !!AA                  -  uniformisation des parametrisations ds phytrac
264    !!AA                  -  stockage des moyennes des champs necessaires
265    !!AA                     en mode traceur off-line
266    !!======================================================================
267    !!   CLEFS CPP POUR LES IO
268    !!   =====================
[1352]269#define histNMC
[2488]270    !!======================================================================
271    !!    modif   ( P. Le Van ,  12/10/98 )
272    !!
273    !!  Arguments:
274    !!
275    !! nlon----input-I-nombre de points horizontaux
276    !! nlev----input-I-nombre de couches verticales, doit etre egale a klev
277    !! debut---input-L-variable logique indiquant le premier passage
278    !! lafin---input-L-variable logique indiquant le dernier passage
279    !! jD_cur       -R-jour courant a l'appel de la physique (jour julien)
280    !! jH_cur       -R-heure courante a l'appel de la physique (jour julien)
281    !! pdtphys-input-R-pas d'integration pour la physique (seconde)
282    !! paprs---input-R-pression pour chaque inter-couche (en Pa)
283    !! pplay---input-R-pression pour le mileu de chaque couche (en Pa)
284    !! pphi----input-R-geopotentiel de chaque couche (g z) (reference sol)
285    !! pphis---input-R-geopotentiel du sol
286    !! presnivs-input_R_pressions approximat. des milieux couches ( en PA)
287    !! u-------input-R-vitesse dans la direction X (de O a E) en m/s
288    !! v-------input-R-vitesse Y (de S a N) en m/s
289    !! t-------input-R-temperature (K)
290    !! qx------input-R-humidite specifique (kg/kg) et d'autres traceurs
291    !! d_t_dyn-input-R-tendance dynamique pour "t" (K/s)
292    !! d_q_dyn-input-R-tendance dynamique pour "q" (kg/kg/s)
[2542]293    !! d_ql_dyn-input-R-tendance dynamique pour "ql" (kg/kg/s)
294    !! d_qs_dyn-input-R-tendance dynamique pour "qs" (kg/kg/s)
[2488]295    !! flxmass_w -input-R- flux de masse verticale
296    !! d_u-----output-R-tendance physique de "u" (m/s/s)
297    !! d_v-----output-R-tendance physique de "v" (m/s/s)
298    !! d_t-----output-R-tendance physique de "t" (K/s)
299    !! d_qx----output-R-tendance physique de "qx" (kg/kg/s)
300    !! d_ps----output-R-tendance physique de la pression au sol
301    !!======================================================================
302    integer jjmp1
303    !  parameter (jjmp1=jjm+1-1/jjm) ! => (jjmp1=nbp_lat-1/(nbp_lat-1))
304    !  integer iip1
305    !  parameter (iip1=iim+1)
[782]306
[2488]307    include "regdim.h"
308    include "dimsoil.h"
309    include "clesphys.h"
310    include "thermcell.h"
311    !======================================================================
312    LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE
313    PARAMETER (ok_cvl=.TRUE.)
314    LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
315    PARAMETER (ok_gust=.FALSE.)
316    integer iflag_radia     ! active ou non le rayonnement (MPL)
317    save iflag_radia
318    !$OMP THREADPRIVATE(iflag_radia)
319    !======================================================================
320    LOGICAL check ! Verifier la conservation du modele en eau
321    PARAMETER (check=.FALSE.)
322    LOGICAL ok_stratus ! Ajouter artificiellement les stratus
323    PARAMETER (ok_stratus=.FALSE.)
324    !======================================================================
325    REAL amn, amx
326    INTEGER igout
327    !======================================================================
328    ! Clef controlant l'activation du cycle diurne:
329    ! en attente du codage des cles par Fred
330    INTEGER iflag_cycle_diurne
331    PARAMETER (iflag_cycle_diurne=1)
332    !======================================================================
333    ! Modele thermique du sol, a activer pour le cycle diurne:
334    !cc      LOGICAL soil_model
335    !cc      PARAMETER (soil_model=.FALSE.)
336    !======================================================================
337    ! Dans les versions precedentes, l'eau liquide nuageuse utilisee dans
338    ! le calcul du rayonnement est celle apres la precipitation des nuages.
339    ! Si cette cle new_oliq est activee, ce sera une valeur moyenne entre
340    ! la condensation et la precipitation. Cette cle augmente les impacts
341    ! radiatifs des nuages.
342    !cc      LOGICAL new_oliq
343    !cc      PARAMETER (new_oliq=.FALSE.)
344    !======================================================================
345    ! Clefs controlant deux parametrisations de l'orographie:
346    !c      LOGICAL ok_orodr
347    !cc      PARAMETER (ok_orodr=.FALSE.)
348    !cc      LOGICAL ok_orolf
349    !cc      PARAMETER (ok_orolf=.FALSE.)
350    !======================================================================
351    LOGICAL ok_journe ! sortir le fichier journalier
352    save ok_journe
353    !$OMP THREADPRIVATE(ok_journe)
354    !
355    LOGICAL ok_mensuel ! sortir le fichier mensuel
356    save ok_mensuel
357    !$OMP THREADPRIVATE(ok_mensuel)
358    !
359    LOGICAL ok_instan ! sortir le fichier instantane
360    save ok_instan
361    !$OMP THREADPRIVATE(ok_instan)
362    !
363    LOGICAL ok_LES ! sortir le fichier LES
364    save ok_LES                           
365    !$OMP THREADPRIVATE(ok_LES)                 
366    !
367    LOGICAL callstats ! sortir le fichier stats
368    save callstats                           
369    !$OMP THREADPRIVATE(callstats)                 
370    !
371    LOGICAL ok_region ! sortir le fichier regional
372    PARAMETER (ok_region=.FALSE.)
373    !======================================================================
374    real seuil_inversion
375    save seuil_inversion
376    !$OMP THREADPRIVATE(seuil_inversion)
377    integer iflag_ratqs
378    save iflag_ratqs
379    !$OMP THREADPRIVATE(iflag_ratqs)
380    real facteur
[1507]381
[2488]382    REAL wmax_th(klon)
383    REAL tau_overturning_th(klon)
[878]384
[2488]385    integer lmax_th(klon)
386    integer limbas(klon)
387    real ratqscth(klon,klev)
388    real ratqsdiff(klon,klev)
389    real zqsatth(klon,klev)
[878]390
[2488]391    !======================================================================
392    !
393    INTEGER ivap          ! indice de traceurs pour vapeur d'eau
394    PARAMETER (ivap=1)
395    INTEGER iliq          ! indice de traceurs pour eau liquide
396    PARAMETER (iliq=2)
397    !CR: on ajoute la phase glace
398    INTEGER isol          ! indice de traceurs pour eau glace
399    PARAMETER (isol=3)
400    !
401    !
402    ! Variables argument:
403    !
404    INTEGER nlon
405    INTEGER nlev
406    REAL,INTENT(IN) :: pdtphys_
407    ! NB: pdtphys to be used in physics is in time_phylmdz_mod
408    LOGICAL debut, lafin
409    REAL paprs(klon,klev+1)
410    REAL pplay(klon,klev)
411    REAL pphi(klon,klev)
412    REAL pphis(klon)
413    REAL presnivs(klev)
[2839]414!JLD    REAL znivsig(klev)
415!JLD    real pir
[719]416
[2488]417    REAL u(klon,klev)
418    REAL v(klon,klev)
[2333]419
[2488]420    REAL, intent(in):: rot(klon, klev)
421    ! relative vorticity, in s-1, needed for frontal waves
[2333]422
[2488]423    REAL t(klon,klev),thetal(klon,klev)
424    ! thetal: ligne suivante a decommenter si vous avez les fichiers
425    !     MPL 20130625
426    ! fth_fonctions.F90 et parkind1.F90
427    ! sinon thetal=theta
428    !     REAL fth_thetae,fth_thetav,fth_thetal
429    REAL qx(klon,klev,nqtot)
430    REAL flxmass_w(klon,klev)
431    REAL d_u(klon,klev)
432    REAL d_v(klon,klev)
433    REAL d_t(klon,klev)
434    REAL d_qx(klon,klev,nqtot)
435    REAL d_ps(klon)
436    ! Variables pour le transport convectif
437    real da(klon,klev),phi(klon,klev,klev),mp(klon,klev)
438    real wght_cvfd(klon,klev)
[2271]439#ifndef CPP_XIOS
[2488]440    REAL, SAVE :: missing_val
[2271]441#endif
[2488]442    ! Variables pour le lessivage convectif
443    ! RomP >>>
444    real phi2(klon,klev,klev)
445    real d1a(klon,klev),dam(klon,klev)
446    real ev(klon,klev)
447    real clw(klon,klev),elij(klon,klev,klev)
448    real epmlmMm(klon,klev,klev),eplaMm(klon,klev)
449    ! RomP <<<
450    !IM definition dynamique o_trac dans phys_output_open
451    !      type(ctrl_out) :: o_trac(nqtot)
[524]452
[2488]453    ! variables a une pression donnee
454    !
455    include "declare_STDlev.h"
456    !
457    !
458    include "radopt.h"
459    !
460    !
461    INTEGER debug
462    INTEGER n
463    !ym      INTEGER npoints
464    !ym      PARAMETER(npoints=klon)
465    !
466    INTEGER nregISCtot
467    PARAMETER(nregISCtot=1)
468    !
469    ! imin_debut, nbpti, jmin_debut, nbptj : parametres pour sorties
470    ! sur 1 region rectangulaire y compris pour 1 point
471    ! imin_debut : indice minimum de i; nbpti : nombre de points en
472    ! direction i (longitude)
473    ! jmin_debut : indice minimum de j; nbptj : nombre de points en
474    ! direction j (latitude)
[2839]475!JLD    INTEGER imin_debut, nbpti
476!JLD    INTEGER jmin_debut, nbptj
[2488]477    !IM: region='3d' <==> sorties en global
478    CHARACTER*3 region
479    PARAMETER(region='3d')
480    logical ok_hf
481    !
482    save ok_hf
483    !$OMP THREADPRIVATE(ok_hf)
[524]484
[2488]485    INTEGER,PARAMETER :: longcles=20
486    REAL,SAVE :: clesphy0(longcles)
487    !$OMP THREADPRIVATE(clesphy0)
488    !
489    ! Variables propres a la physique
490    INTEGER itap
491    SAVE itap                   ! compteur pour la physique
492    !$OMP THREADPRIVATE(itap)
[2235]493
[2488]494    INTEGER, SAVE :: abortphy=0   ! Reprere si on doit arreter en fin de phys
495    !$OMP THREADPRIVATE(abortphy)
496    !
497    REAL,save ::  solarlong0
498    !$OMP THREADPRIVATE(solarlong0)
[987]499
[2488]500    !
501    !  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):
502    !
503    !IM 141004     REAL zulow(klon),zvlow(klon),zustr(klon), zvstr(klon)
504    REAL zulow(klon),zvlow(klon)
505    !
506    INTEGER igwd,idx(klon),itest(klon)
507    !
508    !      REAL,allocatable,save :: run_off_lic_0(:)
509    ! !$OMP THREADPRIVATE(run_off_lic_0)
510    !ym      SAVE run_off_lic_0
511    !KE43
512    ! Variables liees a la convection de K. Emanuel (sb):
513    !
514    REAL bas, top             ! cloud base and top levels
515    SAVE bas
516    SAVE top
517    !$OMP THREADPRIVATE(bas, top)
518    !------------------------------------------------------------------
519    ! Upmost level reached by deep convection and related variable (jyg)
520    !
521    INTEGER izero
522    INTEGER k_upper_cv
523    !------------------------------------------------------------------
524    !
525    !==========================================================================
526    !CR04.12.07: on ajoute les nouvelles variables du nouveau schema
527    !de convection avec poches froides
528    ! Variables li\'ees \`a la poche froide (jyg)
[879]529
[2488]530    REAL mip(klon,klev)  ! mass flux shed by the adiab ascent at each level
531    !
532    REAL wape_prescr, fip_prescr
533    INTEGER it_wape_prescr
534    SAVE wape_prescr, fip_prescr, it_wape_prescr
535    !$OMP THREADPRIVATE(wape_prescr, fip_prescr, it_wape_prescr)
536    !
537    ! variables supplementaires de concvl
538    REAL Tconv(klon,klev)
539    REAL sij(klon,klev,klev)
[2839]540!!    !
541!!    ! variables pour tester la conservation de l'energie dans concvl
542!!    REAL, DIMENSION(klon,klev)     :: d_t_con_sat
543!!    REAL, DIMENSION(klon,klev)     :: d_q_con_sat
544!!    REAL, DIMENSION(klon,klev)     :: dql_sat
[970]545
[2488]546    real, save :: alp_bl_prescr=0.
547    real, save :: ale_bl_prescr=0.
[979]548
[2488]549    real, save :: wake_s_min_lsp=0.1
[1516]550
[2488]551    !$OMP THREADPRIVATE(alp_bl_prescr,ale_bl_prescr)
552    !$OMP THREADPRIVATE(wake_s_min_lsp)
[970]553
[1516]554
[2488]555    real ok_wk_lsp(klon)
[1516]556
[2488]557    !RC
558    ! Variables li\'ees \`a la poche froide (jyg et rr)
[879]559
[2641]560    INTEGER,  SAVE               :: iflag_wake_tend  ! wake: if =0, then wake state variables are
561                                                     ! updated within calwake
562    !$OMP THREADPRIVATE(iflag_wake_tend)
563    REAL t_w(klon,klev),q_w(klon,klev) ! temperature and moisture profiles in the wake region
564    REAL t_x(klon,klev),q_x(klon,klev) ! temperature and moisture profiles in the off-wake region
[879]565
[2488]566    REAL wake_dth(klon,klev)        ! wake : temp pot difference
[879]567
[2488]568    REAL wake_omgbdth(klon,klev)    ! Wake : flux of Delta_Theta
569    ! transported by LS omega
570    REAL wake_dp_omgb(klon,klev)    ! Wake : vertical gradient of
571    ! large scale omega
572    REAL wake_dtKE(klon,klev)       ! Wake : differential heating
573    ! (wake - unpertubed) CONV
574    REAL wake_dqKE(klon,klev)       ! Wake : differential moistening
575    ! (wake - unpertubed) CONV
576    REAL wake_dp_deltomg(klon,klev) ! Wake : gradient vertical de wake_omg
577    REAL wake_spread(klon,klev)     ! spreading term in wake_delt
578    !
579    !pourquoi y'a pas de save??
580    !
[2787]581!!!    INTEGER, SAVE, DIMENSION(klon)   :: wake_k
582!!!    !$OMP THREADPRIVATE(wake_k)
[2488]583    !
584    !jyg<
585    !cc      REAL wake_pe(klon)              ! Wake potential energy - WAPE
586    !>jyg
[879]587
[2488]588    REAL wake_gfl(klon)             ! Gust Front Length
[2641]589!!!    REAL wake_dens(klon)         ! moved to phys_state_var_mod
[2488]590    !
591    !
592    REAL dt_dwn(klon,klev)
593    REAL dq_dwn(klon,klev)
594    REAL M_dwn(klon,klev)
595    REAL M_up(klon,klev)
596    REAL dt_a(klon,klev)
597    REAL dq_a(klon,klev)
598    REAL d_t_adjwk(klon,klev)                !jyg
599    REAL d_q_adjwk(klon,klev)                !jyg
600    LOGICAL,SAVE :: ok_adjwk=.FALSE.
601    !$OMP THREADPRIVATE(ok_adjwk)
[2886]602    INTEGER,SAVE :: iflag_adjwk=0            !jyg
603    !$OMP THREADPRIVATE(iflag_adjwk)         !jyg
[2669]604    REAL,SAVE :: oliqmax=999.,oicemax=999.
605    !$OMP THREADPRIVATE(oliqmax,oicemax)
[2488]606    REAL, SAVE :: alp_offset
607    !$OMP THREADPRIVATE(alp_offset)
[1403]608
[2488]609    !
610    !RR:fin declarations poches froides
611    !==========================================================================
[1032]612
[2488]613    REAL ztv(klon,klev),ztva(klon,klev)
614    REAL zpspsk(klon,klev)
615    REAL ztla(klon,klev),zqla(klon,klev)
616    REAL zthl(klon,klev)
[1638]617
[2488]618    !cc nrlmd le 10/04/2012
[1638]619
[2488]620    !--------Stochastic Boundary Layer Triggering: ALE_BL--------
621    !---Propri\'et\'es du thermiques au LCL
622    real zlcl_th(klon)          ! Altitude du LCL calcul\'e
623    ! continument (pcon dans
624    ! thermcell_main.F90)
625    real fraca0(klon)           ! Fraction des thermiques au LCL
626    real w0(klon)               ! Vitesse des thermiques au LCL
627    real w_conv(klon)           ! Vitesse verticale de grande \'echelle au LCL
628    real tke0(klon,klev+1)      ! TKE au d\'ebut du pas de temps
629    real therm_tke_max0(klon)   ! TKE dans les thermiques au LCL
630    real env_tke_max0(klon)     ! TKE dans l'environnement au LCL
[1638]631
[2839]632!JLD    !---D\'eclenchement stochastique
633!JLD    integer :: tau_trig(klon)
[1638]634
[2488]635    REAL,SAVE :: random_notrig_max=1.
636    !$OMP THREADPRIVATE(random_notrig_max)
[2294]637
[2488]638    !--------Statistical Boundary Layer Closure: ALP_BL--------
639    !---Profils de TKE dans et hors du thermique
640    real therm_tke_max(klon,klev)   ! Profil de TKE dans les thermiques
641    real env_tke_max(klon,klev)     ! Profil de TKE dans l'environnement
[1638]642
643
[2488]644    !cc fin nrlmd le 10/04/2012
[782]645
[2488]646    ! Variables locales pour la couche limite (al1):
647    !
648    !Al1      REAL pblh(klon)           ! Hauteur de couche limite
649    !Al1      SAVE pblh
650    !34EK
651    !
652    ! Variables locales:
653    !
654    !AA
655    !AA  Pour phytrac
656    REAL u1(klon)             ! vents dans la premiere couche U
657    REAL v1(klon)             ! vents dans la premiere couche V
[524]658
[2488]659    !@$$      LOGICAL offline           ! Controle du stockage ds "physique"
660    !@$$      PARAMETER (offline=.false.)
661    !@$$      INTEGER physid
662    REAL frac_impa(klon,klev) ! fractions d'aerosols lessivees (impaction)
663    REAL frac_nucl(klon,klev) ! idem (nucleation)
664    ! RomP >>>
665    REAL beta_prec_fisrt(klon,klev) ! taux de conv de l'eau cond (fisrt)
666    ! RomP <<<
667    REAL          :: calday
[782]668
[2488]669    !IM cf FH pour Tiedtke 080604
670    REAL rain_tiedtke(klon),snow_tiedtke(klon)
671    !
672    !IM 050204 END
673    REAL devap(klon) ! evaporation et sa derivee
674    REAL dsens(klon) ! chaleur sensible et sa derivee
[1279]675
[2488]676    !
677    ! Conditions aux limites
678    !
679    !
680    REAL :: day_since_equinox
681    ! Date de l'equinoxe de printemps
682    INTEGER, parameter :: mth_eq=3, day_eq=21
683    REAL :: jD_eq
[1279]684
[2488]685    LOGICAL, parameter :: new_orbit = .true.
[524]686
[2488]687    !
688    INTEGER lmt_pas
689    SAVE lmt_pas                ! frequence de mise a jour
690    !$OMP THREADPRIVATE(lmt_pas)
691    real zmasse(klon, nbp_lev),exner(klon, nbp_lev)
692    !     (column-density of mass of air in a cell, in kg m-2)
693    real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
[1797]694
[2488]695    !IM sorties
696    REAL un_jour
697    PARAMETER(un_jour=86400.)
698    INTEGER itapm1 !pas de temps de la physique du(es) mois precedents
699    SAVE itapm1    !mis a jour le dernier pas de temps du mois en cours
700    !$OMP THREADPRIVATE(itapm1)
701    !======================================================================
702    !
703    ! Declaration des procedures appelees
704    !
705    EXTERNAL angle     ! calculer angle zenithal du soleil
706    EXTERNAL alboc     ! calculer l'albedo sur ocean
707    EXTERNAL ajsec     ! ajustement sec
708    EXTERNAL conlmd    ! convection (schema LMD)
709    !KE43
710    EXTERNAL conema3  ! convect4.3
711    EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)
712    !AA
713    ! JBM (3/14) fisrtilp_tr not loaded
714    ! EXTERNAL fisrtilp_tr ! schema de condensation a grande echelle (pluie)
715    !                          ! stockage des coefficients necessaires au
716    !                          ! lessivage OFF-LINE et ON-LINE
717    EXTERNAL hgardfou  ! verifier les temperatures
718    EXTERNAL nuage     ! calculer les proprietes radiatives
719    !C      EXTERNAL o3cm      ! initialiser l'ozone
720    EXTERNAL orbite    ! calculer l'orbite terrestre
721    EXTERNAL phyetat0  ! lire l'etat initial de la physique
722    EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique
723    EXTERNAL suphel    ! initialiser certaines constantes
724    EXTERNAL transp    ! transport total de l'eau et de l'energie
725    !IM
726    EXTERNAL haut2bas  !variables de haut en bas
727    EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression
728    EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression
729    !     EXTERNAL moy_undefSTD  !moyenne d'1 var a 1 niveau de pression
730    ! EXTERNAL moyglo_aire
731    ! moyenne globale d'1 var ponderee par l'aire de la maille (moyglo_pondaire)
732    ! par la masse/airetot (moyglo_pondaima) et la vraie masse (moyglo_pondmass)
733    !
734    !
735    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
736    ! Local variables
737    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
738    !
739    REAL rhcl(klon,klev)    ! humiditi relative ciel clair
740    REAL dialiq(klon,klev)  ! eau liquide nuageuse
741    REAL diafra(klon,klev)  ! fraction nuageuse
742    REAL cldliq(klon,klev)  ! eau liquide nuageuse
743    !
744    !XXX PB
745    REAL fluxq(klon,klev, nbsrf)   ! flux turbulent d'humidite
746    !
747    REAL zxfluxt(klon, klev)
748    REAL zxfluxq(klon, klev)
749    REAL zxfluxu(klon, klev)
750    REAL zxfluxv(klon, klev)
[1797]751
[2488]752    ! Le rayonnement n'est pas calcule tous les pas, il faut donc
753    !                      sauvegarder les sorties du rayonnement
754    !ym      SAVE  heat,cool,albpla,topsw,toplw,solsw,sollw,sollwdown
755    !ym      SAVE  sollwdownclr, toplwdown, toplwdownclr
756    !ym      SAVE  topsw0,toplw0,solsw0,sollw0, heat0, cool0
757    !
758    INTEGER itaprad
759    SAVE itaprad
760    !$OMP THREADPRIVATE(itaprad)
761    !
762    REAL conv_q(klon,klev) ! convergence de l'humidite (kg/kg/s)
763    REAL conv_t(klon,klev) ! convergence de la temperature(K/s)
764    !
[2839]765#ifdef INCA
[2488]766    REAL zxsnow_dummy(klon)
[2839]767#endif
[2488]768    REAL zsav_tsol(klon)
769    !
770    REAL dist, rmu0(klon), fract(klon)
771    REAL zrmu0(klon), zfract(klon)
772    REAL zdtime, zdtime1, zdtime2, zlongi
773    !
774    REAL qcheck
775    REAL z_avant(klon), z_apres(klon), z_factor(klon)
776    LOGICAL zx_ajustq
777    !
[2839]778    REAL za
779    REAL zx_t, zx_qs, zdelta, zcor
[2488]780    real zqsat(klon,klev)
781    !
[2839]782    INTEGER i, k, iq, nsrf, l
[2488]783    !
784    REAL t_coup
785    PARAMETER (t_coup=234.0)
[1797]786
[2488]787    !ym A voir plus tard !!
788    !ym      REAL zx_relief(iim,jjmp1)
789    !ym      REAL zx_aire(iim,jjmp1)
790    !
791    ! Grandeurs de sorties
792    REAL s_capCL(klon)
793    REAL s_oliqCL(klon), s_cteiCL(klon)
794    REAL s_trmb1(klon), s_trmb2(klon)
795    REAL s_trmb3(klon)
[2720]796
797    ! La convection n'est pas calculee tous les pas, il faut donc
798    !                      sauvegarder les sorties de la convection
799    !ym      SAVE 
800    !ym      SAVE 
801    !ym      SAVE 
802    !
[2787]803    INTEGER itapcv, itapwk
804    SAVE itapcv, itapwk
805    !$OMP THREADPRIVATE(itapcv, itapwk)
[2720]806
[2488]807    !KE43
808    ! Variables locales pour la convection de K. Emanuel (sb):
[524]809
[2488]810    REAL tvp(klon,klev)       ! virtual temp of lifted parcel
811    CHARACTER*40 capemaxcels  !max(CAPE)
[1412]812
[2488]813    REAL rflag(klon)          ! flag fonctionnement de convect
814    INTEGER iflagctrl(klon)          ! flag fonctionnement de convect
[904]815
[2488]816    ! -- convect43:
817    INTEGER ntra              ! nb traceurs pour convect4.3
818    REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev)
819    REAL dplcldt(klon), dplcldr(klon)
820    !?     .     condm_con(klon,klev),conda_con(klon,klev),
821    !?     .     mr_con(klon,klev),ep_con(klon,klev)
822    !?     .    ,sadiab(klon,klev),wadiab(klon,klev)
823    ! --
824    !34EK
825    !
826    ! Variables du changement
827    !
828    ! con: convection
829    ! lsc: condensation a grande echelle (Large-Scale-Condensation)
830    ! ajs: ajustement sec
831    ! eva: evaporation de l'eau liquide nuageuse
832    ! vdf: couche limite (Vertical DiFfusion)
[2641]833    !
[2488]834    ! tendance nulles
835    REAL, dimension(klon,klev):: du0, dv0, dt0, dq0, dql0, dqi0
[2641]836    REAL, dimension(klon)     :: dsig0, ddens0
837    INTEGER, dimension(klon)  :: wkoccur1
[2839]838    ! tendance buffer pour appel de add_phys_tend
839    REAL, DIMENSION(klon,klev)  :: d_q_ch4_dtime
[2641]840    !
841    ! Flag pour pouvoir ne pas ajouter les tendances.
842    ! Par defaut, les tendances doivente etre ajoutees et
843    ! flag_inhib_tend = 0
844    ! flag_inhib_tend > 0 : tendances non ajoutees, avec un nombre
845    ! croissant de print quand la valeur du flag augmente
846    !!! attention, ce flag doit etre change avec prudence !!!
847    INTEGER :: flag_inhib_tend = 0 !  0 is the default value
848!!    INTEGER :: flag_inhib_tend = 2
[524]849
[2488]850    !
851    !********************************************************
852    !     declarations
[524]853
[2488]854    !********************************************************
855    !IM 081204 END
856    !
857    REAL pen_u(klon,klev), pen_d(klon,klev)
858    REAL pde_u(klon,klev), pde_d(klon,klev)
859    INTEGER kcbot(klon), kctop(klon), kdtop(klon)
860    !
861    REAL ratqsc(klon,klev)
862    real ratqsbas,ratqshaut,tau_ratqs
863    save ratqsbas,ratqshaut,tau_ratqs
864    !$OMP THREADPRIVATE(ratqsbas,ratqshaut,tau_ratqs)
[2542]865    REAL, SAVE :: ratqsp0=50000., ratqsdp=20000.
866    !$OMP THREADPRIVATE(ratqsp0, ratqsdp)
[644]867
[2488]868    ! Parametres lies au nouveau schema de nuages (SB, PDF)
869    real fact_cldcon
870    real facttemps
871    logical ok_newmicro
872    save ok_newmicro
873    !$OMP THREADPRIVATE(ok_newmicro)
874    !real ref_liq_pi(klon,klev), ref_ice_pi(klon,klev)
875    save fact_cldcon,facttemps
876    !$OMP THREADPRIVATE(fact_cldcon,facttemps)
[524]877
[2488]878    integer iflag_cld_th
879    save iflag_cld_th
880    !$OMP THREADPRIVATE(iflag_cld_th)
[2886]881!IM logical ptconv(klon,klev)  !passe dans phys_local_var_mod
[2488]882    !IM cf. AM 081204 BEG
883    logical ptconvth(klon,klev)
884    !IM cf. AM 081204 END
885    !
886    ! Variables liees a l'ecriture de la bande histoire physique
887    !
888    !======================================================================
889    !
[2068]890
[2488]891    !
[2839]892!JLD    integer itau_w   ! pas de temps ecriture = itap + itau_phy
[2488]893    !
894    !
895    ! Variables locales pour effectuer les appels en serie
896    !
897    !IM RH a 2m (la surface)
898    REAL Lheat
[524]899
[2488]900    INTEGER        length
901    PARAMETER    ( length = 100 )
902    REAL tabcntr0( length       )
903    !
[2839]904!JLD    INTEGER ndex2d(nbp_lon*nbp_lat)
[2488]905    !IM
906    !
907    !IM AMIP2 BEG
[2839]908!JLD    REAL moyglo, mountor
[2488]909    !IM 141004 BEG
910    REAL zustrdr(klon), zvstrdr(klon)
911    REAL zustrli(klon), zvstrli(klon)
912    REAL zustrph(klon), zvstrph(klon)
913    REAL aam, torsfc
914    !IM 141004 END
915    !IM 190504 BEG
916    !  INTEGER imp1jmp1
917    !  PARAMETER(imp1jmp1=(iim+1)*jjmp1)
918    !ym A voir plus tard
919    !  REAL zx_tmp((nbp_lon+1)*nbp_lat)
920    !  REAL airedyn(nbp_lon+1,nbp_lat)
921    !IM 190504 END
[2839]922!JLD    LOGICAL ok_msk
923!JLD    REAL msk(klon)
[2488]924    !ym A voir plus tard
925    !ym      REAL zm_wo(jjmp1, klev)
926    !IM AMIP2 END
927    !
928    REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique
929    REAL zx_tmp_fi3d(klon,klev) ! variable temporaire pour champs 3D
[2839]930!JLD    REAL zx_tmp_2d(nbp_lon,nbp_lat)
931!JLD    REAL zx_lon(nbp_lon,nbp_lat)
932!JLD    REAL zx_lat(nbp_lon,nbp_lat)
[2488]933    !
[2641]934    INTEGER nid_ctesGCM
935    SAVE nid_ctesGCM
936    !$OMP THREADPRIVATE(nid_ctesGCM)
[2488]937    !
938    !IM 280405 BEG
939    !  INTEGER nid_bilKPins, nid_bilKPave
940    !  SAVE nid_bilKPins, nid_bilKPave
941    !  !$OMP THREADPRIVATE(nid_bilKPins, nid_bilKPave)
942    !
943    REAL ve_lay(klon,klev) ! transport meri. de l'energie a chaque niveau vert.
944    REAL vq_lay(klon,klev) ! transport meri. de l'eau a chaque niveau vert.
945    REAL ue_lay(klon,klev) ! transport zonal de l'energie a chaque niveau vert.
946    REAL uq_lay(klon,klev) ! transport zonal de l'eau a chaque niveau vert.
947    !
[2839]948!JLD    REAL zjulian
949!JLD    SAVE zjulian
950!JLD!$OMP THREADPRIVATE(zjulian)
[2595]951
[2839]952!JLD    INTEGER nhori, nvert
953!JLD    REAL zsto
954!JLD    REAL zstophy, zout
[2068]955
[2488]956    character*20 modname
957    character*80 abort_message
958    logical, save ::  ok_sync, ok_sync_omp
959    !$OMP THREADPRIVATE(ok_sync)
960    real date0
[524]961
[2488]962    ! essai writephys
963    integer fid_day, fid_mth, fid_ins
964    parameter (fid_ins = 1, fid_day = 2, fid_mth = 3)
965    integer prof2d_on, prof3d_on, prof2d_av, prof3d_av
966    parameter (prof2d_on = 1, prof3d_on = 2, &
967         prof2d_av = 3, prof3d_av = 4)
968    REAL ztsol(klon)
969    REAL q2m(klon,nbsrf)  ! humidite a 2m
[524]970
[2488]971    !IM: t2m, q2m, ustar, u10m, v10m et t2mincels, t2maxcels
972    CHARACTER*40 t2mincels, t2maxcels       !t2m min., t2m max
[2839]973    CHARACTER*40 tinst, tave
[2488]974    REAL cldtaupi(klon,klev) ! Cloud optical thickness for
975    ! pre-industrial (pi) aerosols
[524]976
[2870]977    INTEGER :: naero
[2488]978    ! Aerosol optical properties
979    CHARACTER*4, DIMENSION(naero_grp) :: rfname
980    REAL, DIMENSION(klon,klev)     :: mass_solu_aero ! total mass
981    ! concentration
982    ! for all soluble
983    ! aerosols[ug/m3]
984    REAL, DIMENSION(klon,klev)     :: mass_solu_aero_pi
985    ! - " - (pre-industrial value)
[1279]986
[2488]987    ! Parameters
988    LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not
[2787]989    LOGICAL ok_alw            ! Apply aerosol LW effect or not
[2488]990    LOGICAL ok_cdnc ! ok cloud droplet number concentration (O. Boucher 01-2013)
991    REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)
[2787]992    SAVE ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1
993    !$OMP THREADPRIVATE(ok_ade, ok_aie, ok_alw, ok_cdnc, bl95_b0, bl95_b1)
[2488]994    LOGICAL, SAVE :: aerosol_couple ! true  : calcul des aerosols dans INCA
995    ! false : lecture des aerosol dans un fichier
996    !$OMP THREADPRIVATE(aerosol_couple)   
997    INTEGER, SAVE :: flag_aerosol
998    !$OMP THREADPRIVATE(flag_aerosol)
[2669]999    LOGICAL, SAVE :: flag_bc_internal_mixture
1000    !$OMP THREADPRIVATE(flag_bc_internal_mixture)
[2488]1001    LOGICAL, SAVE :: new_aod
1002    !$OMP THREADPRIVATE(new_aod)
1003    !
1004    !--STRAT AEROSOL
[2542]1005    INTEGER, SAVE :: flag_aerosol_strat
[2488]1006    !$OMP THREADPRIVATE(flag_aerosol_strat)
1007    !c-fin STRAT AEROSOL
1008    !
1009    ! Declaration des constantes et des fonctions thermodynamiques
1010    !
1011    LOGICAL,SAVE :: first=.true.
1012    !$OMP THREADPRIVATE(first)
[1279]1013
[2839]1014    ! VARIABLES RELATED TO OZONE CLIMATOLOGIES ; all are OpenMP shared
1015    ! Note that pressure vectors are in Pa and in stricly ascending order
1016    INTEGER,SAVE :: read_climoz                ! Read ozone climatology
[2488]1017    !     (let it keep the default OpenMP shared attribute)
1018    !     Allowed values are 0, 1 and 2
1019    !     0: do not read an ozone climatology
1020    !     1: read a single ozone climatology that will be used day and night
1021    !     2: read two ozone climatologies, the average day and night
1022    !     climatology and the daylight climatology
[2839]1023    INTEGER,SAVE :: ncid_climoz                ! NetCDF file identifier
1024    REAL, POINTER, SAVE :: press_cen_climoz(:) ! Pressure levels
1025    REAL, POINTER, SAVE :: press_edg_climoz(:) ! Edges of pressure intervals
1026    REAL, POINTER, SAVE :: time_climoz(:)      ! Time vector
1027    CHARACTER(LEN=13), PARAMETER :: vars_climoz(2) &
1028                                  = ["tro3         ","tro3_daylight"]
1029    ! vars_climoz(1:read_climoz): variables names in climoz file.
1030    ! vars_climoz(1:read_climoz-2) if read_climoz>2 (temporary)
1031    REAL :: ro3i ! 0<=ro3i<=360 ; required time index in NetCDF file for
1032                 ! the ozone fields, old method.
[1279]1033
[2488]1034    include "YOMCST.h"
1035    include "YOETHF.h"
1036    include "FCTTRE.h"
1037    !IM 100106 BEG : pouvoir sortir les ctes de la physique
1038    include "conema3.h"
1039    include "fisrtilp.h"
1040    include "nuage.h"
1041    include "compbl.h"
1042    !IM 100106 END : pouvoir sortir les ctes de la physique
1043    !
1044    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1045    ! Declarations pour Simulateur COSP
1046    !============================================================
[2839]1047#ifdef CPP_COSP
[2488]1048    real :: mr_ozone(klon,klev)
[2839]1049#endif
[2488]1050    !IM stations CFMIP
1051    INTEGER, SAVE :: nCFMIP
1052    !$OMP THREADPRIVATE(nCFMIP)
1053    INTEGER, PARAMETER :: npCFMIP=120
1054    INTEGER, ALLOCATABLE, SAVE :: tabCFMIP(:)
1055    REAL, ALLOCATABLE, SAVE :: lonCFMIP(:), latCFMIP(:)
1056    !$OMP THREADPRIVATE(tabCFMIP, lonCFMIP, latCFMIP)
1057    INTEGER, ALLOCATABLE, SAVE :: tabijGCM(:)
1058    REAL, ALLOCATABLE, SAVE :: lonGCM(:), latGCM(:)
1059    !$OMP THREADPRIVATE(tabijGCM, lonGCM, latGCM)
1060    INTEGER, ALLOCATABLE, SAVE :: iGCM(:), jGCM(:)
1061    !$OMP THREADPRIVATE(iGCM, jGCM)
1062    logical, dimension(nfiles)            :: phys_out_filestations
1063    logical, parameter :: lNMC=.FALSE.
[1539]1064
[2488]1065    !IM betaCRF
1066    REAL, SAVE :: pfree, beta_pbl, beta_free
1067    !$OMP THREADPRIVATE(pfree, beta_pbl, beta_free)
1068    REAL, SAVE :: lon1_beta,  lon2_beta, lat1_beta, lat2_beta
1069    !$OMP THREADPRIVATE(lon1_beta,  lon2_beta, lat1_beta, lat2_beta)
1070    LOGICAL, SAVE :: mskocean_beta
1071    !$OMP THREADPRIVATE(mskocean_beta)
1072    REAL, dimension(klon, klev) :: beta ! facteur sur cldtaurad et
1073    ! cldemirad pour evaluer les
1074    ! retros liees aux CRF
1075    REAL, dimension(klon, klev) :: cldtaurad   ! epaisseur optique
1076    ! pour radlwsw pour
1077    ! tester "CRF off"
1078    REAL, dimension(klon, klev) :: cldtaupirad ! epaisseur optique
1079    ! pour radlwsw pour
1080    ! tester "CRF off"
1081    REAL, dimension(klon, klev) :: cldemirad   ! emissivite pour
1082    ! radlwsw pour tester
1083    ! "CRF off"
1084    REAL, dimension(klon, klev) :: cldfrarad   ! fraction nuageuse
[1735]1085
[2488]1086    INTEGER :: nbtr_tmp ! Number of tracer inside concvl
1087    REAL, dimension(klon,klev) :: sh_in ! Specific humidity entering in phytrac
[2787]1088    REAL, dimension(klon,klev) :: ch_in ! Condensed humidity entering in phytrac (eau liquide)
[2488]1089    integer iostat
[1539]1090
[2488]1091    REAL zzz
1092    !albedo SB >>>
1093    real,dimension(6),save :: SFRWL
1094    !albedo SB <<<
[1955]1095
[2488]1096    !--OB variables for mass fixer (hard coded for now)
1097    logical, parameter :: mass_fixer=.false.
[2839]1098    real qql1(klon),qql2(klon),corrqql
[2344]1099
[2488]1100    ! Ehouarn: set value of jjmp1 since it is no longer a "fixed parameter"
1101    jjmp1=nbp_lat
[1355]1102
[2488]1103    !======================================================================
1104    ! Gestion calendrier : mise a jour du module phys_cal_mod
1105    !
1106    pdtphys=pdtphys_
1107    CALL update_time(pdtphys)
[879]1108
[2488]1109    !======================================================================
1110    ! Ecriture eventuelle d'un profil verticale en entree de la physique.
1111    ! Utilise notamment en 1D mais peut etre active egalement en 3D
1112    ! en imposant la valeur de igout.
1113    !======================================================================d
[2720]1114    IF (prt_level.ge.1) THEN
[2488]1115       igout=klon/2+1/klon
1116       write(lunout,*) 'DEBUT DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
1117       write(lunout,*) 'igout, lat, lon ',igout, latitude_deg(igout), &
1118            longitude_deg(igout)
1119       write(lunout,*) &
1120            'nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys'
1121       write(lunout,*) &
1122            nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys
[879]1123
[2488]1124       write(lunout,*) 'paprs, play, phi, u, v, t'
[2720]1125       DO k=1,klev
[2488]1126          write(lunout,*) paprs(igout,k),pplay(igout,k),pphi(igout,k), &
1127               u(igout,k),v(igout,k),t(igout,k)
[2720]1128       ENDDO
[2488]1129       write(lunout,*) 'ovap (g/kg),  oliq (g/kg)'
[2720]1130       DO k=1,klev
[2488]1131          write(lunout,*) qx(igout,k,1)*1000,qx(igout,k,2)*1000.
[2720]1132       ENDDO
1133    ENDIF
[879]1134
[2787]1135    ! Quick check on pressure levels:
1136    call assert(paprs(:, nbp_lev + 1) < paprs(:, nbp_lev), &
1137            "physiq_mod paprs bad order")
[1403]1138
[2720]1139    IF (first) THEN
[2488]1140       !CR:nvelles variables convection/poches froides
1141
1142       print*, '================================================='
1143       print*, 'Allocation des variables locales et sauvegardees'
[2720]1144       CALL phys_local_var_init
[2488]1145       !
1146       pasphys=pdtphys
1147       !     appel a la lecture du run.def physique
[2720]1148       CALL conf_phys(ok_journe, ok_mensuel, &
[2488]1149            ok_instan, ok_hf, &
1150            ok_LES, &
1151            callstats, &
1152            solarlong0,seuil_inversion, &
1153            fact_cldcon, facttemps,ok_newmicro,iflag_radia, &
1154            iflag_cld_th,iflag_ratqs,ratqsbas,ratqshaut,tau_ratqs, &
[2787]1155            ok_ade, ok_aie, ok_alw, ok_cdnc, aerosol_couple,  &
[2488]1156            flag_aerosol, flag_aerosol_strat, new_aod, &
[2669]1157            flag_bc_internal_mixture, bl95_b0, bl95_b1, &
[2488]1158                                ! nv flags pour la convection et les
1159                                ! poches froides
1160            read_climoz, &
1161            alp_offset)
[2720]1162       CALL phys_state_var_init(read_climoz)
1163       CALL phys_output_var_init
[2488]1164       print*, '================================================='
1165       !
1166       !CR: check sur le nb de traceurs de l eau
[2720]1167       IF ((iflag_ice_thermo.gt.0).and.(nqo==2)) THEN
[2488]1168          WRITE (lunout, *) ' iflag_ice_thermo==1 requires 3 H2O tracers ', &
1169               '(H2Ov, H2Ol, H2Oi) but nqo=', nqo, '. Might as well stop here.'
[2224]1170          STOP
[2720]1171       ENDIF
[2224]1172
[2488]1173       dnwd0=0.0
1174       ftd=0.0
1175       fqd=0.0
1176       cin=0.
1177       !ym Attention pbase pas initialise dans concvl !!!!
1178       pbase=0
1179       !IM 180608
[904]1180
[2488]1181       itau_con=0
1182       first=.false.
[1797]1183
[2720]1184    ENDIF  ! first
[1797]1185
[2488]1186    !ym => necessaire pour iflag_con != 2   
1187    pmfd(:,:) = 0.
1188    pen_u(:,:) = 0.
1189    pen_d(:,:) = 0.
1190    pde_d(:,:) = 0.
1191    pde_u(:,:) = 0.
1192    aam=0.
1193    d_t_adjwk(:,:)=0
1194    d_q_adjwk(:,:)=0
[1797]1195
[2488]1196    alp_bl_conv(:)=0.
[2245]1197
[2488]1198    torsfc=0.
1199    forall (k=1: nbp_lev) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg
[1797]1200
[2488]1201    modname = 'physiq'
[644]1202
[2488]1203    IF (debut) THEN
1204       CALL suphel ! initialiser constantes et parametres phys.
1205       CALL getin_p('random_notrig_max',random_notrig_max)
[2886]1206       CALL getin_p('ok_adjwk',ok_adjwk)
1207       IF (ok_adjwk) iflag_adjwk=2  ! for compatibility with older versions
1208       ! iflag_adjwk: ! 0 = Default: no convective adjustment of w-region
1209                      ! 1 => convective adjustment but state variables are unchanged
1210                      ! 2 => convective adjustment and state variables are changed
1211       CALL getin_p('iflag_adjwk',iflag_adjwk)
[2641]1212       CALL getin_p('oliqmax',oliqmax)
[2669]1213       CALL getin_p('oicemax',oicemax)
[2542]1214       CALL getin_p('ratqsp0',ratqsp0)
1215       CALL getin_p('ratqsdp',ratqsdp)
[2641]1216       iflag_wake_tend = 0
1217       CALL getin_p('iflag_wake_tend',iflag_wake_tend)
[2839]1218       ok_bad_ecmwf_thermo=.TRUE. ! By default thermodynamical constants are set
1219                                  ! in rrtm/suphec.F90 (and rvtmp2 is set to 0).
1220       CALL getin_p('ok_bad_ecmwf_thermo',ok_bad_ecmwf_thermo)
1221       fl_ebil = 0 ! by default, conservation diagnostics are desactivated
1222       CALL getin_p('fl_ebil',fl_ebil)
1223       fl_cor_ebil = 0 ! by default, no correction to ensure energy conservation
1224       CALL getin_p('fl_cor_ebil',fl_cor_ebil)
[2488]1225    ENDIF
[878]1226
[2720]1227    IF (prt_level.ge.1) print *,'CONVERGENCE PHYSIQUE THERM 1 '
[1279]1228
[959]1229
[2488]1230    !======================================================================
1231    ! Gestion calendrier : mise a jour du module phys_cal_mod
1232    !
1233    !     CALL phys_cal_update(jD_cur,jH_cur)
[1279]1234
[2488]1235    !
1236    ! Si c'est le debut, il faut initialiser plusieurs choses
1237    !          ********
1238    !
1239    IF (debut) THEN
1240       !rv CRinitialisation de wght_th et lalim_conv pour la
1241       !definition de la couche alimentation de la convection a partir
1242       !des caracteristiques du thermique
1243       wght_th(:,:)=1.
1244       lalim_conv(:)=1
1245       !RC
1246       ustar(:,:)=0.
[2594]1247!       u10m(:,:)=0.
1248!       v10m(:,:)=0.
[2488]1249       rain_con(:)=0.
1250       snow_con(:)=0.
1251       topswai(:)=0.
1252       topswad(:)=0.
1253       solswai(:)=0.
1254       solswad(:)=0.
[959]1255
[2488]1256       wmax_th(:)=0.
1257       tau_overturning_th(:)=0.
[645]1258
[2488]1259       IF (type_trac == 'inca') THEN
1260          ! jg : initialisation jusqu'au ces variables sont dans restart
1261          ccm(:,:,:) = 0.
1262          tau_aero(:,:,:,:) = 0.
1263          piz_aero(:,:,:,:) = 0.
1264          cg_aero(:,:,:,:) = 0.
[2372]1265
[2488]1266          config_inca='none' ! default
1267          CALL getin_p('config_inca',config_inca)
[2372]1268
[2488]1269       ELSE
1270          config_inca='none' ! default
[2720]1271       ENDIF
[782]1272
[2488]1273       IF (aerosol_couple .AND. (config_inca /= "aero" &
1274            .AND. config_inca /= "aeNP ")) THEN
1275          abort_message &
1276               = 'if aerosol_couple is activated, config_inca need to be ' &
1277               // 'aero or aeNP'
1278          CALL abort_physic (modname,abort_message,1)
1279       ENDIF
[2471]1280
1281
[1863]1282
[2488]1283       rnebcon0(:,:) = 0.0
1284       clwcon0(:,:) = 0.0
1285       rnebcon(:,:) = 0.0
1286       clwcon(:,:) = 0.0
[1863]1287
[2488]1288       !
1289       print*,'iflag_coupl,iflag_clos,iflag_wake', &
1290            iflag_coupl,iflag_clos,iflag_wake
1291       print*,'iflag_CYCLE_DIURNE', iflag_cycle_diurne
1292       !
1293       IF (iflag_con.EQ.2.AND.iflag_cld_th.GT.-1) THEN
1294          abort_message = 'Tiedtke needs iflag_cld_th=-2 or -1'
1295          CALL abort_physic (modname,abort_message,1)
1296       ENDIF
1297       !
1298       !
1299       ! Initialiser les compteurs:
1300       !
1301       itap    = 0
1302       itaprad = 0
[2720]1303       itapcv = 0
[2787]1304       itapwk = 0
[878]1305
[2488]1306       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1307       !! Un petit travail \`a faire ici.
1308       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[878]1309
[2720]1310       IF (iflag_pbl>1) THEN
[2488]1311          PRINT*, "Using method MELLOR&YAMADA"
[2720]1312       ENDIF
[956]1313
[2488]1314       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1315       ! FH 2008/05/02 changement lie a la lecture de nbapp_rad dans
1316       ! phylmd plutot que dyn3d
1317       ! Attention : la version precedente n'etait pas tres propre.
1318       ! Il se peut qu'il faille prendre une valeur differente de nbapp_rad
1319       ! pour obtenir le meme resultat.
[2787]1320!jyg for fh<
1321!!       dtime=pdtphys
1322       dtime=NINT(pdtphys)
1323       WRITE(lunout,*) 'Pas de temps dtime pdtphys ',dtime,pdtphys
1324       IF (abs(dtime-pdtphys)>1.e-10) THEN
1325          abort_message='pas de temps doit etre entier en seconde pour orchidee et XIOS'
1326          CALL abort_physic(modname,abort_message,1)
1327       ENDIF
1328!>jyg
1329       IF (MOD(NINT(86400./dtime),nbapp_rad).EQ.0) THEN
1330          radpas = NINT( 86400./dtime)/nbapp_rad
[2488]1331       ELSE
1332          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1333               'multiple de nbapp_rad'
1334          WRITE(lunout,*) 'changer nbapp_rad ou alors commenter ce test ', &
1335               'mais 1+1<>2'
1336          abort_message='nbre de pas de temps physique n est pas multiple ' &
1337               // 'de nbapp_rad'
[2720]1338          CALL abort_physic(modname,abort_message,1)
1339       ENDIF
1340       IF (nbapp_cv .EQ. 0) nbapp_cv=86400./dtime
[2787]1341       IF (nbapp_wk .EQ. 0) nbapp_wk=86400./dtime
1342       print *,'physiq, nbapp_cv, nbapp_wk ',nbapp_cv,nbapp_wk
1343       IF (MOD(NINT(86400./dtime),nbapp_cv).EQ.0) THEN
1344          cvpas = NINT( 86400./dtime)/nbapp_cv
[2720]1345       print *,'physiq, cvpas ',cvpas
1346       ELSE
1347          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1348               'multiple de nbapp_cv'
1349          WRITE(lunout,*) 'changer nbapp_cv ou alors commenter ce test ', &
1350               'mais 1+1<>2'
1351          abort_message='nbre de pas de temps physique n est pas multiple ' &
1352               // 'de nbapp_cv'
[2488]1353          call abort_physic(modname,abort_message,1)
1354       ENDIF
[2787]1355       IF (MOD(NINT(86400./dtime),nbapp_wk).EQ.0) THEN
1356          wkpas = NINT( 86400./dtime)/nbapp_wk
1357       print *,'physiq, wkpas ',wkpas
1358       ELSE
1359          WRITE(lunout,*) 'le nombre de pas de temps physique doit etre un ', &
1360               'multiple de nbapp_wk'
1361          WRITE(lunout,*) 'changer nbapp_wk ou alors commenter ce test ', &
1362               'mais 1+1<>2'
1363          abort_message='nbre de pas de temps physique n est pas multiple ' &
1364               // 'de nbapp_wk'
1365          call abort_physic(modname,abort_message,1)
1366       ENDIF
[2488]1367       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[524]1368
[2488]1369       CALL phyetat0 ("startphy.nc",clesphy0,tabcntr0)
[2594]1370!jyg<
[2488]1371       IF (klon_glo==1) THEN
[2594]1372          pbl_tke(:,:,is_ave) = 0.
1373          DO nsrf=1,nbsrf
1374            DO k = 1,klev+1
1375                 pbl_tke(:,k,is_ave) = pbl_tke(:,k,is_ave) &
1376                     +pctsrf(:,nsrf)*pbl_tke(:,k,nsrf)
1377            ENDDO
1378          ENDDO
1379!>jyg
[2488]1380       ENDIF
1381       !IM begin
1382       print*,'physiq: clwcon rnebcon ratqs',clwcon(1,1),rnebcon(1,1) &
1383            ,ratqs(1,1)
1384       !IM end
[878]1385
1386
[2488]1387       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1388       !
1389       ! on remet le calendrier a zero
1390       !
1391       IF (raz_date .eq. 1) THEN
1392          itau_phy = 0
1393       ENDIF
[524]1394
[2488]1395       CALL printflag( tabcntr0,radpas,ok_journe, &
1396            ok_instan, ok_region )
1397       !
1398       IF (ABS(dtime-pdtphys).GT.0.001) THEN
1399          WRITE(lunout,*) 'Pas physique n est pas correct',dtime, &
1400               pdtphys
1401          abort_message='Pas physique n est pas correct '
1402          !           call abort_physic(modname,abort_message,1)
1403          dtime=pdtphys
1404       ENDIF
1405       IF (nlon .NE. klon) THEN
1406          WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon,  &
1407               klon
1408          abort_message='nlon et klon ne sont pas coherents'
[2720]1409          CALL abort_physic(modname,abort_message,1)
[2488]1410       ENDIF
1411       IF (nlev .NE. klev) THEN
1412          WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev, &
1413               klev
1414          abort_message='nlev et klev ne sont pas coherents'
[2720]1415          CALL abort_physic(modname,abort_message,1)
[2488]1416       ENDIF
1417       !
1418       IF (dtime*REAL(radpas).GT.21600..AND.iflag_cycle_diurne.GE.1) THEN
1419          WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant'
1420          WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne"
1421          abort_message='Nbre d appels au rayonnement insuffisant'
[2720]1422          CALL abort_physic(modname,abort_message,1)
[2488]1423       ENDIF
1424       WRITE(lunout,*)"Clef pour la convection, iflag_con=", iflag_con
1425       WRITE(lunout,*)"Clef pour le driver de la convection, ok_cvl=", &
1426            ok_cvl
1427       !
1428       !KE43
1429       ! Initialisation pour la convection de K.E. (sb):
1430       IF (iflag_con.GE.3) THEN
[524]1431
[2488]1432          WRITE(lunout,*)"*** Convection de Kerry Emanuel 4.3  "
1433          WRITE(lunout,*) &
1434               "On va utiliser le melange convectif des traceurs qui"
1435          WRITE(lunout,*)"est calcule dans convect4.3"
1436          WRITE(lunout,*)" !!! penser aux logical flags de phytrac"
[524]1437
[2488]1438          DO i = 1, klon
1439             ema_cbmf(i) = 0.
1440             ema_pcb(i)  = 0.
1441             ema_pct(i)  = 0.
1442             !          ema_workcbmf(i) = 0.
1443          ENDDO
1444          !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>BEG
1445          DO i = 1, klon
1446             ibas_con(i) = 1
1447             itop_con(i) = 1
1448          ENDDO
1449          !IM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>END
1450          !================================================================
1451          !CR:04.12.07: initialisations poches froides
1452          ! Controle de ALE et ALP pour la fermeture convective (jyg)
[2720]1453          IF (iflag_wake>=1) THEN
[2488]1454             CALL ini_wake(0.,0.,it_wape_prescr,wape_prescr,fip_prescr &
1455                  ,alp_bl_prescr, ale_bl_prescr)
1456             ! 11/09/06 rajout initialisation ALE et ALP du wake et PBL(YU)
1457             !        print*,'apres ini_wake iflag_cld_th=', iflag_cld_th
[2641]1458             !
1459             ! Initialize tendencies of wake state variables (for some flag values
1460             ! they are not computed).
1461             d_deltat_wk(:,:) = 0.
1462             d_deltaq_wk(:,:) = 0.
1463             d_deltat_wk_gw(:,:) = 0.
1464             d_deltaq_wk_gw(:,:) = 0.
1465             d_deltat_vdf(:,:) = 0.
1466             d_deltaq_vdf(:,:) = 0.
1467             d_deltat_the(:,:) = 0.
1468             d_deltaq_the(:,:) = 0.
1469             d_deltat_ajs_cv(:,:) = 0.
1470             d_deltaq_ajs_cv(:,:) = 0.
1471             d_s_wk(:) = 0.
1472             d_dens_wk(:) = 0.
[2720]1473          ENDIF
[973]1474
[2488]1475          !        do i = 1,klon
1476          !           Ale_bl(i)=0.
1477          !           Alp_bl(i)=0.
1478          !        enddo
[1638]1479
[2488]1480          !===================================================================
1481          !IM stations CFMIP
1482          nCFMIP=npCFMIP
1483          OPEN(98,file='npCFMIP_param.data',status='old', &
1484               form='formatted',iostat=iostat)
[2720]1485          IF (iostat == 0) THEN
[2488]1486             READ(98,*,end=998) nCFMIP
1487998          CONTINUE
1488             CLOSE(98)
1489             CONTINUE
1490             IF(nCFMIP.GT.npCFMIP) THEN
1491                print*,'nCFMIP > npCFMIP : augmenter npCFMIP et recompiler'
[2720]1492                CALL abort_physic("physiq", "", 1)
1493             ELSE
[2488]1494                print*,'physiq npCFMIP=',npCFMIP,'nCFMIP=',nCFMIP
1495             ENDIF
[1279]1496
[2488]1497             !
1498             ALLOCATE(tabCFMIP(nCFMIP))
1499             ALLOCATE(lonCFMIP(nCFMIP), latCFMIP(nCFMIP))
1500             ALLOCATE(tabijGCM(nCFMIP))
1501             ALLOCATE(lonGCM(nCFMIP), latGCM(nCFMIP))
1502             ALLOCATE(iGCM(nCFMIP), jGCM(nCFMIP))
1503             !
1504             ! lecture des nCFMIP stations CFMIP, de leur numero
1505             ! et des coordonnees geographiques lonCFMIP, latCFMIP
1506             !
1507             CALL read_CFMIP_point_locations(nCFMIP, tabCFMIP,  &
1508                  lonCFMIP, latCFMIP)
1509             !
1510             ! identification des
1511             ! 1) coordonnees lonGCM, latGCM des points CFMIP dans la
1512             ! grille de LMDZ
1513             ! 2) indices points tabijGCM de la grille physique 1d sur
1514             ! klon points
1515             ! 3) indices iGCM, jGCM de la grille physique 2d
1516             !
1517             CALL LMDZ_CFMIP_point_locations(nCFMIP, lonCFMIP, latCFMIP, &
1518                  tabijGCM, lonGCM, latGCM, iGCM, jGCM)
1519             !
[2720]1520          ELSE
[2488]1521             ALLOCATE(tabijGCM(0))
1522             ALLOCATE(lonGCM(0), latGCM(0))
1523             ALLOCATE(iGCM(0), jGCM(0))
[2720]1524          ENDIF
1525       ELSE
[2488]1526          ALLOCATE(tabijGCM(0))
1527          ALLOCATE(lonGCM(0), latGCM(0))
1528          ALLOCATE(iGCM(0), jGCM(0))
1529       ENDIF
[878]1530
[2488]1531       DO i=1,klon
1532          rugoro(i) = f_rugoro * MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1533       ENDDO
[1863]1534
[2488]1535       !34EK
1536       IF (ok_orodr) THEN
[524]1537
[2488]1538          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1539          ! FH sans doute a enlever de finitivement ou, si on le
1540          ! garde, l'activer justement quand ok_orodr = false.
1541          ! ce rugoro est utilise par la couche limite et fait double emploi
1542          ! avec les param\'etrisations sp\'ecifiques de Francois Lott.
1543          !           DO i=1,klon
1544          !             rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1545          !           ENDDO
1546          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1547          IF (ok_strato) THEN
1548             CALL SUGWD_strato(klon,klev,paprs,pplay)
1549          ELSE
1550             CALL SUGWD(klon,klev,paprs,pplay)
1551          ENDIF
[1863]1552
[2488]1553          DO i=1,klon
1554             zuthe(i)=0.
1555             zvthe(i)=0.
[2720]1556             IF (zstd(i).gt.10.) THEN
[2488]1557                zuthe(i)=(1.-zgam(i))*cos(zthe(i))
1558                zvthe(i)=(1.-zgam(i))*sin(zthe(i))
[2720]1559             ENDIF
[2488]1560          ENDDO
1561       ENDIF
1562       !
1563       !
1564       lmt_pas = NINT(86400./dtime * 1.0)   ! tous les jours
1565       WRITE(lunout,*)'La frequence de lecture surface est de ',  &
1566            lmt_pas
1567       !
1568       capemaxcels = 't_max(X)'
1569       t2mincels = 't_min(X)'
1570       t2maxcels = 't_max(X)'
1571       tinst = 'inst(X)'
1572       tave = 'ave(X)'
1573       !IM cf. AM 081204 BEG
1574       write(lunout,*)'AVANT HIST IFLAG_CON=',iflag_con
1575       !IM cf. AM 081204 END
1576       !
1577       !=============================================================
1578       !   Initialisation des sorties
1579       !=============================================================
1580
[2720]1581#ifdef CPP_XIOS
1582       !--setting up swaero_diag to TRUE in XIOS case
1583       IF (xios_field_is_active("topswad").OR.xios_field_is_active("topswad0").OR. &
1584           xios_field_is_active("solswad").OR.xios_field_is_active("solswad0").OR. &
1585           xios_field_is_active("topswai").OR.xios_field_is_active("solswai").OR.  &
1586             (iflag_rrtm==1.AND.(xios_field_is_active("toplwad").OR.xios_field_is_active("toplwad0").OR. &
1587                                 xios_field_is_active("sollwad").OR.xios_field_is_active("sollwad0"))))  &
1588           !!!--for now these fields are not in the XML files so they are omitted
1589           !!!  xios_field_is_active("toplwai").OR.xios_field_is_active("sollwai") !))) &
1590           swaero_diag=.TRUE.
[2870]1591
1592       !--setting up dryaod_diag to TRUE in XIOS case
1593       DO naero = 1, naero_tot-1
1594         IF (xios_field_is_active("dryod550_"//name_aero_tau(naero))) dryaod_diag=.TRUE.
1595       ENDDO
[2720]1596#endif
1597
[524]1598#ifdef CPP_IOIPSL
1599
[2488]1600       !$OMP MASTER
1601       ! FH : if ok_sync=.true. , the time axis is written at each time step
1602       ! in the output files. Only at the end in the opposite case
1603       ok_sync_omp=.false.
1604       CALL getin('ok_sync',ok_sync_omp)
[2720]1605       CALL phys_output_open(longitude_deg,latitude_deg,nCFMIP,tabijGCM, &
[2488]1606            iGCM,jGCM,lonGCM,latGCM, &
1607            jjmp1,nlevSTD,clevSTD,rlevSTD, dtime,ok_veget, &
1608            type_ocean,iflag_pbl,iflag_pbl_split,ok_mensuel,ok_journe, &
[2787]1609            ok_hf,ok_instan,ok_LES,ok_ade,ok_aie, &
[2488]1610            read_climoz, phys_out_filestations, &
1611            new_aod, aerosol_couple, &
1612            flag_aerosol_strat, pdtphys, paprs, pphis,  &
1613            pplay, lmax_th, ptconv, ptconvth, ivap,  &
[2720]1614            d_u, d_t, qx, d_qx, zmasse, ok_sync_omp)
[2488]1615       !$OMP END MASTER
1616       !$OMP BARRIER
1617       ok_sync=ok_sync_omp
[909]1618
[2488]1619       freq_outNMC(1) = ecrit_files(7)
1620       freq_outNMC(2) = ecrit_files(8)
1621       freq_outNMC(3) = ecrit_files(9)
1622       WRITE(lunout,*)'OK freq_outNMC(1)=',freq_outNMC(1)
1623       WRITE(lunout,*)'OK freq_outNMC(2)=',freq_outNMC(2)
1624       WRITE(lunout,*)'OK freq_outNMC(3)=',freq_outNMC(3)
[524]1625
[2669]1626#ifndef CPP_XIOS
[2595]1627       CALL ini_paramLMDZ_phy(dtime,nid_ctesGCM)
[2669]1628#endif
[524]1629
[644]1630#endif
[2488]1631       ecrit_reg = ecrit_reg * un_jour
1632       ecrit_tra = ecrit_tra * un_jour
[1863]1633
[2488]1634       !XXXPB Positionner date0 pour initialisation de ORCHIDEE
1635       date0 = jD_ref
1636       WRITE(*,*) 'physiq date0 : ',date0
1637       !
1638       !
1639       !
1640       ! Prescrire l'ozone dans l'atmosphere
1641       !
1642       !
1643       !c         DO i = 1, klon
1644       !c         DO k = 1, klev
1645       !c            CALL o3cm (paprs(i,k)/100.,paprs(i,k+1)/100., wo(i,k),20)
1646       !c         ENDDO
1647       !c         ENDDO
1648       !
1649       IF (type_trac == 'inca') THEN
[524]1650#ifdef INCA
[2488]1651          CALL VTe(VTphysiq)
1652          CALL VTb(VTinca)
1653          calday = REAL(days_elapsed) + jH_cur
1654          WRITE(lunout,*) 'initial time chemini', days_elapsed, calday
[959]1655
[2488]1656          CALL chemini(  &
1657               rg, &
1658               ra, &
1659               cell_area, &
1660               latitude_deg, &
1661               longitude_deg, &
1662               presnivs, &
1663               calday, &
1664               klon, &
1665               nqtot, &
[2594]1666               nqo, &
[2488]1667               pdtphys, &
1668               annee_ref, &
1669               day_ref,  &
1670               day_ini, &
1671               start_time, &
1672               itau_phy, &
[2839]1673               date0, &
[2488]1674               io_lon, &
1675               io_lat)
[959]1676
[2488]1677          CALL VTe(VTinca)
1678          CALL VTb(VTphysiq)
[524]1679#endif
[2720]1680       ENDIF
[2488]1681       !
1682       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1683       ! Nouvelle initialisation pour le rayonnement RRTM
1684       ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[998]1685
[2720]1686       CALL iniradia(klon,klev,paprs(1,1:klev+1))
[998]1687
[2488]1688       !$omp single
[2839]1689       IF (read_climoz >= 1) CALL open_climoz(ncid_climoz, press_cen_climoz,   &
1690           press_edg_climoz, time_climoz, ok_daily_climoz, adjust_tropopause)
[2488]1691       !$omp end single
1692       !
1693       !IM betaCRF
1694       pfree=70000. !Pa
1695       beta_pbl=1.
1696       beta_free=1.
1697       lon1_beta=-180.
1698       lon2_beta=+180.
1699       lat1_beta=90.
1700       lat2_beta=-90.
1701       mskocean_beta=.FALSE.
[1539]1702
[2488]1703       !albedo SB >>>
1704       select case(nsw)
1705       case(2)
1706          SFRWL(1)=0.45538747
1707          SFRWL(2)=0.54461211
1708       case(4)
1709          SFRWL(1)=0.45538747
1710          SFRWL(2)=0.32870591
1711          SFRWL(3)=0.18568763
1712          SFRWL(4)=3.02191470E-02
1713       case(6)
1714          SFRWL(1)=1.28432794E-03
1715          SFRWL(2)=0.12304168
1716          SFRWL(3)=0.33106142
1717          SFRWL(4)=0.32870591
1718          SFRWL(5)=0.18568763
1719          SFRWL(6)=3.02191470E-02
1720       end select
[2227]1721
1722
[2488]1723       !albedo SB <<<
[2227]1724
[2488]1725       OPEN(99,file='beta_crf.data',status='old', &
1726            form='formatted',err=9999)
1727       READ(99,*,end=9998) pfree
1728       READ(99,*,end=9998) beta_pbl
1729       READ(99,*,end=9998) beta_free
1730       READ(99,*,end=9998) lon1_beta
1731       READ(99,*,end=9998) lon2_beta
1732       READ(99,*,end=9998) lat1_beta
1733       READ(99,*,end=9998) lat2_beta
1734       READ(99,*,end=9998) mskocean_beta
17359998   Continue
1736       CLOSE(99)
17379999   Continue
1738       WRITE(*,*)'pfree=',pfree
1739       WRITE(*,*)'beta_pbl=',beta_pbl
1740       WRITE(*,*)'beta_free=',beta_free
1741       WRITE(*,*)'lon1_beta=',lon1_beta
1742       WRITE(*,*)'lon2_beta=',lon2_beta
1743       WRITE(*,*)'lat1_beta=',lat1_beta
1744       WRITE(*,*)'lat2_beta=',lat2_beta
1745       WRITE(*,*)'mskocean_beta=',mskocean_beta
1746    ENDIF
1747    !
1748    !   ****************     Fin  de   IF ( debut  )   ***************
1749    !
1750    !
1751    ! Incrementer le compteur de la physique
1752    !
1753    itap   = itap + 1
[2839]1754    IF (is_master .OR. prt_level > 9) THEN
[2787]1755      IF (prt_level > 5 .or. MOD(itap,5) == 0) THEN
[2839]1756         WRITE(LUNOUT,*)'Entering physics elapsed seconds since start ', current_time
1757         WRITE(LUNOUT,100)year_cur,mth_cur,day_cur,hour/3600.
1758 100     FORMAT('Date = ',i4.4,' / ',i2.2, ' / ',i2.2,' : ',f20.17)
[2787]1759      ENDIF
1760    ENDIF
[2488]1761    !
1762    !
1763    ! Update fraction of the sub-surfaces (pctsrf) and
1764    ! initialize, where a new fraction has appeared, all variables depending
1765    ! on the surface fraction.
1766    !
1767    CALL change_srf_frac(itap, dtime, days_elapsed+1,  &
1768         pctsrf, fevap, z0m, z0h, agesno,              &
1769         falb_dir, falb_dif, ftsol, ustar, u10m, v10m, pbl_tke)
[996]1770
[2488]1771    ! Update time and other variables in Reprobus
1772    IF (type_trac == 'repr') THEN
[1565]1773#ifdef REPROBUS
[2488]1774       CALL Init_chem_rep_xjour(jD_cur-jD_ref+day_ref)
1775       print*,'xjour equivalent rjourvrai',jD_cur-jD_ref+day_ref
1776       CALL Rtime(debut)
[1565]1777#endif
[2720]1778    ENDIF
[1565]1779
1780
[2488]1781    ! Tendances bidons pour les processus qui n'affectent pas certaines
1782    ! variables.
1783    du0(:,:)=0.
1784    dv0(:,:)=0.
1785    dt0 = 0.
1786    dq0(:,:)=0.
1787    dql0(:,:)=0.
1788    dqi0(:,:)=0.
[2641]1789    dsig0(:) = 0.
1790    ddens0(:) = 0.
1791    wkoccur1(:)=1
[2488]1792    !
1793    ! Mettre a zero des variables de sortie (pour securite)
1794    !
1795    DO i = 1, klon
1796       d_ps(i) = 0.0
1797    ENDDO
1798    DO k = 1, klev
1799       DO i = 1, klon
1800          d_t(i,k) = 0.0
1801          d_u(i,k) = 0.0
1802          d_v(i,k) = 0.0
1803       ENDDO
1804    ENDDO
1805    DO iq = 1, nqtot
1806       DO k = 1, klev
1807          DO i = 1, klon
1808             d_qx(i,k,iq) = 0.0
1809          ENDDO
1810       ENDDO
1811    ENDDO
1812    da(:,:)=0.
1813    mp(:,:)=0.
1814    phi(:,:,:)=0.
1815    ! RomP >>>
1816    phi2(:,:,:)=0.
1817    beta_prec_fisrt(:,:)=0.
1818    beta_prec(:,:)=0.
1819    epmlmMm(:,:,:)=0.
1820    eplaMm(:,:)=0.
1821    d1a(:,:)=0.
1822    dam(:,:)=0.
1823    pmflxr=0.
1824    pmflxs=0.
1825    ! RomP <<<
[1742]1826
[2488]1827    !
1828    ! Ne pas affecter les valeurs entrees de u, v, h, et q
1829    !
1830    DO k = 1, klev
1831       DO i = 1, klon
1832          t_seri(i,k)  = t(i,k)
1833          u_seri(i,k)  = u(i,k)
1834          v_seri(i,k)  = v(i,k)
1835          q_seri(i,k)  = qx(i,k,ivap)
1836          ql_seri(i,k) = qx(i,k,iliq)
1837          !CR: ATTENTION, on rajoute la variable glace
[2720]1838          IF (nqo.eq.2) THEN
[2488]1839             qs_seri(i,k) = 0.
[2720]1840          ELSE IF (nqo.eq.3) THEN
[2488]1841             qs_seri(i,k) = qx(i,k,isol)
[2720]1842          ENDIF
[2488]1843       ENDDO
1844    ENDDO
1845    !
1846    !--OB mass fixer
1847    IF (mass_fixer) THEN
1848    !--store initial water burden
1849    qql1(:)=0.0
[2542]1850    DO k = 1, klev
1851      qql1(:)=qql1(:)+(q_seri(:,k)+ql_seri(:,k)+qs_seri(:,k))*zmasse(:,k)
[2488]1852    ENDDO
1853    ENDIF
1854    !--fin mass fixer
[524]1855
[2488]1856    tke0(:,:)=pbl_tke(:,:,is_ave)
1857    !CR:Nombre de traceurs de l'eau: nqo
1858    !  IF (nqtot.GE.3) THEN
1859    IF (nqtot.GE.(nqo+1)) THEN
1860       !     DO iq = 3, nqtot       
1861       DO iq = nqo+1, nqtot 
1862          DO  k = 1, klev
1863             DO  i = 1, klon
1864                !              tr_seri(i,k,iq-2) = qx(i,k,iq)
1865                tr_seri(i,k,iq-nqo) = qx(i,k,iq)
1866             ENDDO
1867          ENDDO
1868       ENDDO
1869    ELSE
1870       DO k = 1, klev
1871          DO i = 1, klon
1872             tr_seri(i,k,1) = 0.0
1873          ENDDO
1874       ENDDO
1875    ENDIF
1876    !
1877    DO i = 1, klon
1878       ztsol(i) = 0.
1879    ENDDO
1880    DO nsrf = 1, nbsrf
1881       DO i = 1, klon
1882          ztsol(i) = ztsol(i) + ftsol(i,nsrf)*pctsrf(i,nsrf)
1883       ENDDO
1884    ENDDO
[2641]1885    ! Initialize variables used for diagnostic purpose
[2720]1886    IF (flag_inhib_tend .ne. 0) CALL init_cmp_seri
[2235]1887
[2488]1888    ! Diagnostiquer la tendance dynamique
1889    !
1890    IF (ancien_ok) THEN
[2542]1891    !
1892       d_u_dyn(:,:)  = (u_seri(:,:)-u_ancien(:,:))/dtime
1893       d_v_dyn(:,:)  = (v_seri(:,:)-v_ancien(:,:))/dtime
1894       d_t_dyn(:,:)  = (t_seri(:,:)-t_ancien(:,:))/dtime
1895       d_q_dyn(:,:)  = (q_seri(:,:)-q_ancien(:,:))/dtime
1896       d_ql_dyn(:,:) = (ql_seri(:,:)-ql_ancien(:,:))/dtime
1897       d_qs_dyn(:,:) = (qs_seri(:,:)-qs_ancien(:,:))/dtime
1898       CALL water_int(klon,klev,q_seri,zmasse,zx_tmp_fi2d)
1899       d_q_dyn2d(:)=(zx_tmp_fi2d(:)-prw_ancien(:))/dtime
1900       CALL water_int(klon,klev,ql_seri,zmasse,zx_tmp_fi2d)
1901       d_ql_dyn2d(:)=(zx_tmp_fi2d(:)-prlw_ancien(:))/dtime
1902       CALL water_int(klon,klev,qs_seri,zmasse,zx_tmp_fi2d)
1903       d_qs_dyn2d(:)=(zx_tmp_fi2d(:)-prsw_ancien(:))/dtime
[2488]1904       ! !! RomP >>>   td dyn traceur
[2542]1905       IF (nqtot.GT.nqo) THEN     ! jyg
[2488]1906          DO iq = nqo+1, nqtot      ! jyg
[2542]1907              d_tr_dyn(:,:,iq-nqo)=(tr_seri(:,:,iq-nqo)-tr_ancien(:,:,iq-nqo))/dtime ! jyg
[2488]1908          ENDDO
1909       ENDIF
1910       ! !! RomP <<<
1911    ELSE
[2542]1912       d_u_dyn(:,:)  = 0.0
1913       d_v_dyn(:,:)  = 0.0
1914       d_t_dyn(:,:)  = 0.0
1915       d_q_dyn(:,:)  = 0.0
1916       d_ql_dyn(:,:) = 0.0
1917       d_qs_dyn(:,:) = 0.0
1918       d_q_dyn2d(:)  = 0.0
1919       d_ql_dyn2d(:) = 0.0
1920       d_qs_dyn2d(:) = 0.0
[2488]1921       ! !! RomP >>>   td dyn traceur
[2542]1922       IF (nqtot.GT.nqo) THEN                                       ! jyg
1923          DO iq = nqo+1, nqtot                                      ! jyg
1924              d_tr_dyn(:,:,iq-nqo)= 0.0                             ! jyg
[2488]1925          ENDDO
1926       ENDIF
1927       ! !! RomP <<<
1928       ancien_ok = .TRUE.
1929    ENDIF
1930    !
1931    ! Ajouter le geopotentiel du sol:
1932    !
1933    DO k = 1, klev
1934       DO i = 1, klon
1935          zphi(i,k) = pphi(i,k) + pphis(i)
1936       ENDDO
1937    ENDDO
1938    !
1939    ! Verifier les temperatures
1940    !
1941    !IM BEG
1942    IF (check) THEN
1943       amn=MIN(ftsol(1,is_ter),1000.)
1944       amx=MAX(ftsol(1,is_ter),-1000.)
1945       DO i=2, klon
1946          amn=MIN(ftsol(i,is_ter),amn)
1947          amx=MAX(ftsol(i,is_ter),amx)
1948       ENDDO
1949       !
1950       PRINT*,' debut avant hgardfou min max ftsol',itap,amn,amx
1951    ENDIF !(check) THEN
1952    !IM END
1953    !
1954    CALL hgardfou(t_seri,ftsol,'debutphy',abortphy)
1955    IF (abortphy==1) Print*,'ERROR ABORT hgardfou debutphy'
[1955]1956
[2488]1957    !
1958    !IM BEG
1959    IF (check) THEN
1960       amn=MIN(ftsol(1,is_ter),1000.)
1961       amx=MAX(ftsol(1,is_ter),-1000.)
1962       DO i=2, klon
1963          amn=MIN(ftsol(i,is_ter),amn)
1964          amx=MAX(ftsol(i,is_ter),amx)
1965       ENDDO
1966       !
1967       PRINT*,' debut apres hgardfou min max ftsol',itap,amn,amx
1968    ENDIF !(check) THEN
1969    !IM END
1970    !
1971    ! Mettre en action les conditions aux limites (albedo, sst, etc.).
1972    ! Prescrire l'ozone et calculer l'albedo sur l'ocean.
1973    !
[2669]1974    ! Update ozone if day change
1975    IF (MOD(itap-1,lmt_pas) == 0) THEN
[2787]1976       IF (read_climoz <= 0) THEN
1977          ! Once per day, update ozone from Royer:
1978          IF (solarlong0<-999.) then
1979             ! Generic case with evolvoing season
1980             zzz=real(days_elapsed+1)
1981          ELSE IF (abs(solarlong0-1000.)<1.e-4) then
1982             ! Particular case with annual mean insolation
1983             zzz=real(90) ! could be revisited
1984             IF (read_climoz/=-1) THEN
1985                abort_message ='read_climoz=-1 is recommended when ' &
1986                     // 'solarlong0=1000.'
1987                CALL abort_physic (modname,abort_message,1)
1988             ENDIF
1989          ELSE
1990             ! Case where the season is imposed with solarlong0
1991             zzz=real(90) ! could be revisited
1992          ENDIF
[2669]1993
[2787]1994          wo(:,:,1)=ozonecm(latitude_deg, paprs,read_climoz,rjour=zzz)
1995       ELSE
[2839]1996          !--- ro3i = elapsed days number since current year 1st january, 0h
1997          ro3i=days_elapsed+jh_cur-jh_1jan
1998          !--- scaling for old style files (360 records)
1999          IF(SIZE(time_climoz)==360.AND..NOT.ok_daily_climoz) ro3i=ro3i*360./year_len
2000          IF(adjust_tropopause) THEN
2001             CALL dyn_tropopause(t_seri, ztsol, paprs, pplay, presnivs, rot, &
2002                  pr_tropopause)
2003             CALL regr_pr_time_av(ncid_climoz, vars_climoz(1:read_climoz),   &
2004                      ro3i,  press_edg_climoz,  paprs,   wo, time_climoz,    &
2005                           latitude_deg,  press_cen_climoz,  pr_tropopause)
[2787]2006          ELSE
[2839]2007             CALL regr_pr_time_av(ncid_climoz, vars_climoz(1:read_climoz),   &
2008                      ro3i,  press_edg_climoz,  paprs,  wo,  time_climoz)
2009          END IF
[2787]2010          ! Convert from mole fraction of ozone to column density of ozone in a
2011          ! cell, in kDU:
2012          FORALL (l = 1: read_climoz) wo(:, :, l) = wo(:, :, l) * rmo3 / rmd &
2013               * zmasse / dobson_u / 1e3
[2839]2014          ! (By regridding ozone values for LMDZ only once a day, we
[2787]2015          ! have already neglected the variation of pressure in one
2016          ! day. So do not recompute "wo" at each time step even if
2017          ! "zmasse" changes a little.)
2018       ENDIF
[2488]2019    ENDIF
2020    !
2021    ! Re-evaporer l'eau liquide nuageuse
2022    !
[2720]2023     CALL reevap (klon,klev,iflag_ice_thermo,t_seri,q_seri,ql_seri,qs_seri, &
2024   &         d_t_eva,d_q_eva,d_ql_eva,d_qi_eva)
[2086]2025
[2720]2026     CALL add_phys_tend &
2027            (du0,dv0,d_t_eva,d_q_eva,d_ql_eva,d_qi_eva,paprs,&
[2839]2028               'eva',abortphy,flag_inhib_tend,itap,0)
2029    call prt_enerbil('eva',itap)
[2086]2030
[2488]2031    !=========================================================================
2032    ! Calculs de l'orbite.
2033    ! Necessaires pour le rayonnement et la surface (calcul de l'albedo).
2034    ! doit donc etre plac\'e avant radlwsw et pbl_surface
[1529]2035
[2488]2036    ! !!   jyg 17 Sep 2010 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[2720]2037    CALL ymds2ju(year_cur, mth_eq, day_eq,0., jD_eq)
[2488]2038    day_since_equinox = (jD_cur + jH_cur) - jD_eq
2039    !
2040    !   choix entre calcul de la longitude solaire vraie ou valeur fixee a
2041    !   solarlong0
[2720]2042    IF (solarlong0<-999.) THEN
2043       IF (new_orbit) THEN
[2488]2044          ! calcul selon la routine utilisee pour les planetes
[2720]2045          CALL solarlong(day_since_equinox, zlongi, dist)
2046       ELSE
[2488]2047          ! calcul selon la routine utilisee pour l'AR4
2048          CALL orbite(REAL(days_elapsed+1),zlongi,dist)
[2720]2049       ENDIF
2050    ELSE
[2488]2051       zlongi=solarlong0  ! longitude solaire vraie
2052       dist=1.            ! distance au soleil / moyenne
[2720]2053    ENDIF
[524]2054
[2720]2055    IF (prt_level.ge.1) write(lunout,*)'Longitude solaire ',zlongi,solarlong0,dist
[782]2056
[2720]2057
[2488]2058    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2059    ! Calcul de l'ensoleillement :
2060    ! ============================
2061    ! Pour une solarlong0=1000., on calcule un ensoleillement moyen sur
2062    ! l'annee a partir d'une formule analytique.
2063    ! Cet ensoleillement est sym\'etrique autour de l'\'equateur et
2064    ! non nul aux poles.
[2720]2065    IF (abs(solarlong0-1000.)<1.e-4) THEN
2066       CALL zenang_an(iflag_cycle_diurne.GE.1,jH_cur, &
[2488]2067            latitude_deg,longitude_deg,rmu0,fract)
2068       JrNt = 1.0
2069    ELSE
2070       ! recode par Olivier Boucher en sept 2015
2071       SELECT CASE (iflag_cycle_diurne)
2072       CASE(0) 
2073          !  Sans cycle diurne
2074          CALL angle(zlongi, latitude_deg, fract, rmu0)
2075          swradcorr = 1.0
2076          JrNt = 1.0
2077          zrmu0 = rmu0
2078       CASE(1) 
2079          !  Avec cycle diurne sans application des poids
2080          !  bit comparable a l ancienne formulation cycle_diurne=true
2081          !  on integre entre gmtime et gmtime+radpas
2082          zdtime=dtime*REAL(radpas) ! pas de temps du rayonnement (s)
2083          CALL zenang(zlongi,jH_cur,0.0,zdtime, &
2084               latitude_deg,longitude_deg,rmu0,fract)
2085          zrmu0 = rmu0
2086          swradcorr = 1.0
2087          ! Calcul du flag jour-nuit
2088          JrNt = 0.0
2089          WHERE (fract.GT.0.0) JrNt = 1.0
2090       CASE(2) 
2091          !  Avec cycle diurne sans application des poids
2092          !  On integre entre gmtime-pdtphys et gmtime+pdtphys*(radpas-1)
2093          !  Comme cette routine est appele a tous les pas de temps de
2094          !  la physique meme si le rayonnement n'est pas appele je
2095          !  remonte en arriere les radpas-1 pas de temps
2096          !  suivant. Petite ruse avec MOD pour prendre en compte le
2097          !  premier pas de temps de la physique pendant lequel
2098          !  itaprad=0
2099          zdtime1=dtime*REAL(-MOD(itaprad,radpas)-1)     
2100          zdtime2=dtime*REAL(radpas-MOD(itaprad,radpas)-1)
2101          CALL zenang(zlongi,jH_cur,zdtime1,zdtime2, &
2102               latitude_deg,longitude_deg,rmu0,fract)
2103          !
2104          ! Calcul des poids
2105          !
2106          zdtime1=-dtime !--on corrige le rayonnement pour representer le
2107          zdtime2=0.0    !--pas de temps de la physique qui se termine
2108          CALL zenang(zlongi,jH_cur,zdtime1,zdtime2, &
2109               latitude_deg,longitude_deg,zrmu0,zfract)
2110          swradcorr = 0.0
2111          WHERE (rmu0.GE.1.e-10 .OR. fract.GE.1.e-10) &
2112               swradcorr=zfract/fract*zrmu0/rmu0
2113          ! Calcul du flag jour-nuit
2114          JrNt = 0.0
2115          WHERE (zfract.GT.0.0) JrNt = 1.0
2116       END SELECT
2117    ENDIF
[883]2118
[2720]2119    IF (mydebug) THEN
2120       CALL writefield_phy('u_seri',u_seri,nbp_lev)
2121       CALL writefield_phy('v_seri',v_seri,nbp_lev)
2122       CALL writefield_phy('t_seri',t_seri,nbp_lev)
2123       CALL writefield_phy('q_seri',q_seri,nbp_lev)
2124    ENDIF
[1724]2125
[2488]2126    !cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2127    ! Appel au pbl_surface : Planetary Boudary Layer et Surface
2128    ! Cela implique tous les interactions des sous-surfaces et la
2129    ! partie diffusion turbulent du couche limit.
2130    !
2131    ! Certains varibales de sorties de pbl_surface sont utiliser que pour
2132    ! ecriture des fihiers hist_XXXX.nc, ces sont :
2133    !   qsol,      zq2m,      s_pblh,  s_lcl,
2134    !   s_capCL,   s_oliqCL,  s_cteiCL,s_pblT,
2135    !   s_therm,   s_trmb1,   s_trmb2, s_trmb3,
2136    !   zu10m,     zv10m,   fder,
2137    !   zxqsurf,   rh2m,      zxfluxu, zxfluxv,
2138    !   frugs,     agesno,    fsollw,  fsolsw,
2139    !   d_ts,      fevap,     fluxlat, t2m,
2140    !   wfbils,    wfbilo,    fluxt,   fluxu, fluxv,
2141    !
2142    ! Certains ne sont pas utiliser du tout :
2143    !   dsens, devap, zxsnow, zxfluxt, zxfluxq, q2m, fluxq
2144    !
[1724]2145
[2488]2146    ! Calcul de l'humidite de saturation au niveau du sol
[1724]2147
[996]2148
[2240]2149
[2720]2150    IF (iflag_pbl/=0) THEN
[2278]2151
[2488]2152       !jyg+nrlmd<
[2870]2153!!jyg       IF (prt_level .ge. 2 .and. mod(iflag_pbl_split,2) .eq. 1) THEN
2154       IF (prt_level .ge. 2 .and. mod(iflag_pbl_split,10) .ge. 1) THEN
[2488]2155          print *,'debut du splitting de la PBL'
2156       ENDIF
2157       ! !!
2158       !>jyg+nrlmd
2159       !
2160       !-------gustiness calculation-------!
2161       IF (iflag_gusts==0) THEN
2162          gustiness(1:klon)=0
2163       ELSE IF (iflag_gusts==1) THEN
2164          do i = 1, klon
2165             gustiness(i)=f_gust_bl*ale_bl(i)+f_gust_wk*ale_wake(i)
2166          enddo
2167          ! ELSE IF (iflag_gusts==2) THEN
2168          !    do i = 1, klon
2169          !       gustiness(i)=f_gust_bl*ale_bl(i)+sigma_wk(i)*f_gust_wk&
2170          !           *ale_wake(i) !! need to make sigma_wk accessible here
2171          !    enddo
2172          ! ELSE IF (iflag_gusts==3) THEN
2173          !    do i = 1, klon
2174          !       gustiness(i)=f_gust_bl*alp_bl(i)+f_gust_wk*alp_wake(i)
2175          !    enddo
2176       ENDIF
[2278]2177
[1067]2178
[1624]2179
[2488]2180       CALL pbl_surface(  &
2181            dtime,     date0,     itap,    days_elapsed+1, &
2182            debut,     lafin, &
2183            longitude_deg, latitude_deg, rugoro,  zrmu0,      &
2184            zsig,      sollwdown, pphi,    cldt,      &
2185            rain_fall, snow_fall, solsw,   sollw,     &
2186            gustiness,                                &
2187            t_seri,    q_seri,    u_seri,  v_seri,    &
2188                                !nrlmd+jyg<
2189            wake_deltat, wake_deltaq, wake_cstar, wake_s, &
2190                                !>nrlmd+jyg
2191            pplay,     paprs,     pctsrf,             &
2192            ftsol,SFRWL,falb_dir,falb_dif,ustar,u10m,v10m,wstar, &
2193                                !albedo SB <<<
2194            cdragh,    cdragm,  u1,    v1,            &
2195                                !albedo SB >>>
2196                                ! albsol1,   albsol2,   sens,    evap,      &
2197            albsol_dir,   albsol_dif,   sens,    evap,   & 
2198                                !albedo SB <<<
2199            albsol3_lic,runoff,   snowhgt,   qsnow, to_ice, sissnow, &
2200            zxtsol,    zxfluxlat, zt2m,    qsat2m,  &
2201            d_t_vdf,   d_q_vdf,   d_u_vdf, d_v_vdf, d_t_diss, &
2202                                !nrlmd<
2203                                !jyg<
2204            d_t_vdf_w, d_q_vdf_w, &
2205            d_t_vdf_x, d_q_vdf_x, &
2206            sens_x, zxfluxlat_x, sens_w, zxfluxlat_w, &
2207                                !>jyg
2208            delta_tsurf,wake_dens, &
2209            cdragh_x,cdragh_w,cdragm_x,cdragm_w, &
2210            kh,kh_x,kh_w, &
2211                                !>nrlmd
2212            coefh(1:klon,1:klev,1:nbsrf+1), coefm(1:klon,1:klev,1:nbsrf+1), &
2213            slab_wfbils,                 &
2214            qsol,      zq2m,      s_pblh,  s_lcl, &
2215                                !jyg<
2216            s_pblh_x, s_lcl_x, s_pblh_w, s_lcl_w, &
2217                                !>jyg
2218            s_capCL,   s_oliqCL,  s_cteiCL,s_pblT, &
2219            s_therm,   s_trmb1,   s_trmb2, s_trmb3, &
2220            zustar, zu10m,     zv10m,   fder, &
2221            zxqsurf,   rh2m,      zxfluxu, zxfluxv, &
2222            z0m, z0h,     agesno,    fsollw,  fsolsw, &
2223            d_ts,      fevap,     fluxlat, t2m, &
[2720]2224            wfbils, wfbilo, wfevap, wfrain, wfsnow, &
2225            fluxt,   fluxu,  fluxv, &
[2488]2226            dsens,     devap,     zxsnow, &
2227            zxfluxt,   zxfluxq,   q2m,     fluxq, pbl_tke, &
2228                                !nrlmd+jyg<
2229            wake_delta_pbl_TKE &
2230                                !>nrlmd+jyg
2231            )
2232       !
2233       !  Add turbulent diffusion tendency to the wake difference variables
[2870]2234!!jyg       IF (mod(iflag_pbl_split,2) .NE. 0) THEN
2235       IF (mod(iflag_pbl_split,10) .NE. 0) THEN
[2641]2236!jyg<
2237          d_deltat_vdf(:,:) = d_t_vdf_w(:,:)-d_t_vdf_x(:,:)
2238          d_deltaq_vdf(:,:) = d_q_vdf_w(:,:)-d_q_vdf_x(:,:)
2239          CALL add_wake_tend &
2240             (d_deltat_vdf, d_deltaq_vdf, dsig0, ddens0, wkoccur1, 'vdf', abortphy)
2241       ELSE
2242          d_deltat_vdf(:,:) = 0.
2243          d_deltaq_vdf(:,:) = 0.
2244!>jyg
[2488]2245       ENDIF
[766]2246
2247
[2488]2248       !---------------------------------------------------------------------
2249       ! ajout des tendances de la diffusion turbulente
2250       IF (klon_glo==1) THEN
2251          CALL add_pbl_tend &
2252               (d_u_vdf,d_v_vdf,d_t_vdf+d_t_diss,d_q_vdf,dql0,dqi0,paprs,&
[2839]2253               'vdf',abortphy,flag_inhib_tend,itap)
[2488]2254       ELSE
2255          CALL add_phys_tend &
2256               (d_u_vdf,d_v_vdf,d_t_vdf+d_t_diss,d_q_vdf,dql0,dqi0,paprs,&
[2839]2257               'vdf',abortphy,flag_inhib_tend,itap,0)
[2488]2258       ENDIF
[2839]2259       call prt_enerbil('vdf',itap)
[2488]2260       !--------------------------------------------------------------------
[2227]2261
[2720]2262       IF (mydebug) THEN
2263          CALL writefield_phy('u_seri',u_seri,nbp_lev)
2264          CALL writefield_phy('v_seri',v_seri,nbp_lev)
2265          CALL writefield_phy('t_seri',t_seri,nbp_lev)
2266          CALL writefield_phy('q_seri',q_seri,nbp_lev)
2267       ENDIF
[2227]2268
[2488]2269       !albedo SB >>>
2270       albsol1=0.
2271       albsol2=0.
2272       falb1=0.
2273       falb2=0.
[2720]2274       SELECT CASE(nsw)
2275       CASE(2)
[2488]2276          albsol1=albsol_dir(:,1)
2277          albsol2=albsol_dir(:,2)
2278          falb1=falb_dir(:,1,:)
2279          falb2=falb_dir(:,2,:)
[2720]2280       CASE(4)
[2488]2281          albsol1=albsol_dir(:,1)
2282          albsol2=albsol_dir(:,2)*SFRWL(2)+albsol_dir(:,3)*SFRWL(3) &
2283               +albsol_dir(:,4)*SFRWL(4)
2284          albsol2=albsol2/(SFRWL(2)+SFRWL(3)+SFRWL(4))
2285          falb1=falb_dir(:,1,:)
2286          falb2=falb_dir(:,2,:)*SFRWL(2)+falb_dir(:,3,:)*SFRWL(3) &
2287               +falb_dir(:,4,:)*SFRWL(4)
2288          falb2=falb2/(SFRWL(2)+SFRWL(3)+SFRWL(4))
[2720]2289       CASE(6)
[2488]2290          albsol1=albsol_dir(:,1)*SFRWL(1)+albsol_dir(:,2)*SFRWL(2) &
2291               +albsol_dir(:,3)*SFRWL(3)
2292          albsol1=albsol1/(SFRWL(1)+SFRWL(2)+SFRWL(3))
2293          albsol2=albsol_dir(:,4)*SFRWL(4)+albsol_dir(:,5)*SFRWL(5) &
2294               +albsol_dir(:,6)*SFRWL(6)
2295          albsol2=albsol2/(SFRWL(4)+SFRWL(5)+SFRWL(6))
2296          falb1=falb_dir(:,1,:)*SFRWL(1)+falb_dir(:,2,:)*SFRWL(2) &
2297               +falb_dir(:,3,:)*SFRWL(3)
2298          falb1=falb1/(SFRWL(1)+SFRWL(2)+SFRWL(3))
2299          falb2=falb_dir(:,4,:)*SFRWL(4)+falb_dir(:,5,:)*SFRWL(5) &
2300               +falb_dir(:,6,:)*SFRWL(6)
2301          falb2=falb2/(SFRWL(4)+SFRWL(5)+SFRWL(6))
[2720]2302       END SELECt
[2488]2303       !albedo SB <<<
[766]2304
[1724]2305
[2488]2306       CALL evappot(klon,nbsrf,ftsol,pplay(:,1),cdragh, &
2307            t_seri(:,1),q_seri(:,1),u_seri(:,1),v_seri(:,1),evap_pot)
[524]2308
[2488]2309    ENDIF
2310    ! =================================================================== c
2311    !   Calcul de Qsat
[959]2312
[2488]2313    DO k = 1, klev
2314       DO i = 1, klon
2315          zx_t = t_seri(i,k)
2316          IF (thermcep) THEN
2317             zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
2318             zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
2319             zx_qs  = MIN(0.5,zx_qs)
2320             zcor   = 1./(1.-retv*zx_qs)
2321             zx_qs  = zx_qs*zcor
2322          ELSE
2323             !!           IF (zx_t.LT.t_coup) THEN             !jyg
2324             IF (zx_t.LT.rtt) THEN                  !jyg
2325                zx_qs = qsats(zx_t)/pplay(i,k)
2326             ELSE
2327                zx_qs = qsatl(zx_t)/pplay(i,k)
2328             ENDIF
2329          ENDIF
2330          zqsat(i,k)=zx_qs
2331       ENDDO
2332    ENDDO
[959]2333
[2720]2334    IF (prt_level.ge.1) THEN
[2488]2335       write(lunout,*) 'L   qsat (g/kg) avant clouds_gno'
2336       write(lunout,'(i4,f15.4)') (k,1000.*zqsat(igout,k),k=1,klev)
[2720]2337    ENDIF
[2488]2338    !
2339    ! Appeler la convection (au choix)
2340    !
2341    DO k = 1, klev
2342       DO i = 1, klon
2343          conv_q(i,k) = d_q_dyn(i,k)  &
2344               + d_q_vdf(i,k)/dtime
2345          conv_t(i,k) = d_t_dyn(i,k)  &
2346               + d_t_vdf(i,k)/dtime
2347       ENDDO
2348    ENDDO
2349    IF (check) THEN
2350       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
2351       WRITE(lunout,*) "avantcon=", za
2352    ENDIF
2353    zx_ajustq = .FALSE.
2354    IF (iflag_con.EQ.2) zx_ajustq=.TRUE.
2355    IF (zx_ajustq) THEN
2356       DO i = 1, klon
2357          z_avant(i) = 0.0
2358       ENDDO
2359       DO k = 1, klev
2360          DO i = 1, klon
2361             z_avant(i) = z_avant(i) + (q_seri(i,k)+ql_seri(i,k)) &
2362                  *(paprs(i,k)-paprs(i,k+1))/RG
2363          ENDDO
2364       ENDDO
2365    ENDIF
[1015]2366
[2488]2367    ! Calcule de vitesse verticale a partir de flux de masse verticale
2368    DO k = 1, klev
2369       DO i = 1, klon
2370          omega(i,k) = RG*flxmass_w(i,k) / cell_area(i)
[2720]2371       ENDDO
2372    ENDDO
2373
2374    IF (prt_level.ge.1) write(lunout,*) 'omega(igout, :) = ', &
[2488]2375         omega(igout, :)
[2720]2376    !
2377    ! Appel de la convection tous les "cvpas"
2378    !
2379    IF (MOD(itapcv,cvpas).EQ.0) THEN
2380
[2488]2381    IF (iflag_con.EQ.1) THEN
2382       abort_message ='reactiver le call conlmd dans physiq.F'
2383       CALL abort_physic (modname,abort_message,1)
2384       !     CALL conlmd (dtime, paprs, pplay, t_seri, q_seri, conv_q,
2385       !    .             d_t_con, d_q_con,
2386       !    .             rain_con, snow_con, ibas_con, itop_con)
2387    ELSE IF (iflag_con.EQ.2) THEN
2388       CALL conflx(dtime, paprs, pplay, t_seri, q_seri, &
2389            conv_t, conv_q, -evap, omega, &
2390            d_t_con, d_q_con, rain_con, snow_con, &
2391            pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &
2392            kcbot, kctop, kdtop, pmflxr, pmflxs)
2393       d_u_con = 0.
2394       d_v_con = 0.
2395
2396       WHERE (rain_con < 0.) rain_con = 0.
2397       WHERE (snow_con < 0.) snow_con = 0.
2398       DO i = 1, klon
2399          ibas_con(i) = klev+1 - kcbot(i)
2400          itop_con(i) = klev+1 - kctop(i)
2401       ENDDO
2402    ELSE IF (iflag_con.GE.3) THEN
2403       ! nb of tracers for the KE convection:
2404       ! MAF la partie traceurs est faite dans phytrac
2405       ! on met ntra=1 pour limiter les appels mais on peut
2406       ! supprimer les calculs / ftra.
2407       ntra = 1
2408
2409       !=======================================================================
2410       !ajout pour la parametrisation des poches froides: calcul de
[2641]2411       !t_w et t_x: si pas de poches froides, t_w=t_x=t_seri
[2720]2412       IF (iflag_wake>=1) THEN
2413         DO k=1,klev
2414            DO i=1,klon
2415                t_w(i,k) = t_seri(i,k) + (1-wake_s(i))*wake_deltat(i,k)
2416                q_w(i,k) = q_seri(i,k) + (1-wake_s(i))*wake_deltaq(i,k)
2417                t_x(i,k) = t_seri(i,k) - wake_s(i)*wake_deltat(i,k)
2418                q_x(i,k) = q_seri(i,k) - wake_s(i)*wake_deltaq(i,k)
2419            ENDDO
2420         ENDDO
2421       ELSE
2422               t_w(:,:) = t_seri(:,:)
[2641]2423                q_w(:,:) = q_seri(:,:)
2424                t_x(:,:) = t_seri(:,:)
2425                q_x(:,:) = q_seri(:,:)
[2720]2426       ENDIF
[2488]2427       !
2428       !jyg<
2429       ! Perform dry adiabatic adjustment on wake profile
2430       ! The corresponding tendencies are added to the convective tendencies
2431       ! after the call to the convective scheme.
2432       IF (iflag_wake>=1) then
[2886]2433          IF (iflag_adjwk >= 1) THEN
[2488]2434             limbas(:) = 1
[2641]2435             CALL ajsec(paprs, pplay, t_w, q_w, limbas, &
[2309]2436                  d_t_adjwk, d_q_adjwk)
[2641]2437             !
2438             DO k=1,klev
2439                DO i=1,klon
2440                   IF (wake_s(i) .GT. 1.e-3) THEN
2441                      t_w(i,k) = t_w(i,k) + d_t_adjwk(i,k)
2442                      q_w(i,k) = q_w(i,k) + d_q_adjwk(i,k)
2443                      d_deltat_ajs_cv(i,k) = d_t_adjwk(i,k)
2444                      d_deltaq_ajs_cv(i,k) = d_q_adjwk(i,k)
2445                   ELSE
2446                      d_deltat_ajs_cv(i,k) = 0.
2447                      d_deltaq_ajs_cv(i,k) = 0.
2448                   ENDIF
2449                ENDDO
[2488]2450             ENDDO
[2886]2451             IF (iflag_adjwk == 2) THEN
2452               CALL add_wake_tend &
[2641]2453                 (d_deltat_ajs_cv, d_deltaq_ajs_cv, dsig0, ddens0, wkoccur1, 'ajs_cv', abortphy)
[2886]2454             ENDIF  ! (iflag_adjwk == 2)
2455          ENDIF  ! (iflag_adjwk >= 1)
[2488]2456       ENDIF ! (iflag_wake>=1)
2457       !>jyg
2458       !
[2641]2459       
2460!!      print *,'physiq. q_w(1,k), q_x(1,k) ', &
2461!!             (k, q_w(1,k), q_x(1,k),k=1,25)
2462
[2542]2463!jyg<
2464       CALL alpale( debut, itap, dtime, paprs, omega, t_seri,   &
2465                    alp_offset, it_wape_prescr,  wape_prescr, fip_prescr, &
2466                    ale_bl_prescr, alp_bl_prescr, &
2467                    wake_pe, wake_fip,  &
2468                    Ale_bl, Ale_bl_trig, Alp_bl, &
[2594]2469                    Ale, Alp , Ale_wake, Alp_wake)
[2542]2470!>jyg
2471!
[2488]2472       ! sb, oct02:
2473       ! Schema de convection modularise et vectorise:
2474       ! (driver commun aux versions 3 et 4)
2475       !
2476       IF (ok_cvl) THEN ! new driver for convectL
2477          !
2478          !jyg<
2479          ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2480          ! Calculate the upmost level of deep convection loops: k_upper_cv
2481          !  (near 22 km)
2482          izero = klon/2+1/klon
2483          k_upper_cv = klev
2484          DO k = klev,1,-1
2485             IF (pphi(izero,k) > 22.e4) k_upper_cv = k
2486          ENDDO
2487          IF (prt_level .ge. 5) THEN
2488             Print *, 'upmost level of deep convection loops: k_upper_cv = ', &
2489                  k_upper_cv
2490          ENDIF
2491          !
2492          !>jyg
2493          IF (type_trac == 'repr') THEN
2494             nbtr_tmp=ntra
2495          ELSE
2496             nbtr_tmp=nbtr
[2720]2497          ENDIF
[2488]2498          !jyg   iflag_con est dans clesphys
2499          !c          CALL concvl (iflag_con,iflag_clos,
2500          CALL concvl (iflag_clos, &
[2641]2501               dtime, paprs, pplay, k_upper_cv, t_x,q_x, &
2502               t_w,q_w,wake_s, &
[2488]2503               u_seri,v_seri,tr_seri,nbtr_tmp, &
2504               ALE,ALP, &
2505               sig1,w01, &
2506               d_t_con,d_q_con,d_u_con,d_v_con,d_tr, &
2507               rain_con, snow_con, ibas_con, itop_con, sigd, &
[2839]2508               ema_cbmf,plcl,plfc,wbeff,convoccur,upwd,dnwd,dnwd0, &
[2488]2509               Ma,mip,Vprecip,cape,cin,tvp,Tconv,iflagctrl, &
2510               pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr,qcondc,wd, &
2511                                ! RomP >>>
2512                                !!     .        pmflxr,pmflxs,da,phi,mp,
2513                                !!     .        ftd,fqd,lalim_conv,wght_th)
2514               pmflxr,pmflxs,da,phi,mp,phi2,d1a,dam,sij,clw,elij, &
2515               ftd,fqd,lalim_conv,wght_th, &
2516               ev, ep,epmlmMm,eplaMm, &
2517               wdtrainA,wdtrainM,wght_cvfd,qtc_cv,sigt_cv, &
2518               tau_cld_cv,coefw_cld_cv,epmax_diag)
[2641]2519
[2488]2520          ! RomP <<<
[619]2521
[2488]2522          !IM begin
2523          !       print*,'physiq: cin pbase dnwd0 ftd fqd ',cin(1),pbase(1),
2524          !    .dnwd0(1,1),ftd(1,1),fqd(1,1)
2525          !IM end
2526          !IM cf. FH
2527          clwcon0=qcondc
2528          pmfu(:,:)=upwd(:,:)+dnwd(:,:)
[524]2529
[2720]2530          DO i = 1, klon
2531             IF (iflagctrl(i).le.1) itau_con(i)=itau_con(i)+1
2532          ENDDO
[2488]2533          !
2534          !jyg<
2535          !    Add the tendency due to the dry adjustment of the wake profile
2536          IF (iflag_wake>=1) THEN
[2886]2537            IF (iflag_adjwk == 2) THEN
2538              DO k=1,klev
2539                 DO i=1,klon
2540                    ftd(i,k) = ftd(i,k) + wake_s(i)*d_t_adjwk(i,k)/dtime
2541                    fqd(i,k) = fqd(i,k) + wake_s(i)*d_q_adjwk(i,k)/dtime
2542                    d_t_con(i,k) = d_t_con(i,k) + wake_s(i)*d_t_adjwk(i,k)
2543                    d_q_con(i,k) = d_q_con(i,k) + wake_s(i)*d_q_adjwk(i,k)
2544                 ENDDO
2545              ENDDO
2546            ENDIF  ! (iflag_adjwk = 2)
2547          ENDIF   ! (iflag_wake>=1)
[2488]2548          !>jyg
2549          !
2550       ELSE ! ok_cvl
[1412]2551
[2488]2552          ! MAF conema3 ne contient pas les traceurs
2553          CALL conema3 (dtime, &
2554               paprs,pplay,t_seri,q_seri, &
2555               u_seri,v_seri,tr_seri,ntra, &
2556               sig1,w01, &
2557               d_t_con,d_q_con,d_u_con,d_v_con,d_tr, &
2558               rain_con, snow_con, ibas_con, itop_con, &
2559               upwd,dnwd,dnwd0,bas,top, &
2560               Ma,cape,tvp,rflag, &
2561               pbase &
2562               ,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr &
2563               ,clwcon0)
[524]2564
[2488]2565       ENDIF ! ok_cvl
[524]2566
[2488]2567       !
2568       ! Correction precip
2569       rain_con = rain_con * cvl_corr
2570       snow_con = snow_con * cvl_corr
2571       !
[766]2572
[2488]2573       IF (.NOT. ok_gust) THEN
2574          do i = 1, klon
2575             wd(i)=0.0
2576          enddo
2577       ENDIF
[524]2578
[2488]2579       ! =================================================================== c
2580       ! Calcul des proprietes des nuages convectifs
2581       !
[524]2582
[2488]2583       !   calcul des proprietes des nuages convectifs
2584       clwcon0(:,:)=fact_cldcon*clwcon0(:,:)
2585       IF (iflag_cld_cv == 0) THEN
[2720]2586          CALL clouds_gno &
[2488]2587               (klon,klev,q_seri,zqsat,clwcon0,ptconv,ratqsc,rnebcon0)
2588       ELSE
[2720]2589          CALL clouds_bigauss &
[2488]2590               (klon,klev,q_seri,zqsat,qtc_cv,sigt_cv,ptconv,ratqsc,rnebcon0)
2591       ENDIF
[524]2592
[2205]2593
[2488]2594       ! =================================================================== c
[524]2595
[2488]2596       DO i = 1, klon
2597          itop_con(i) = min(max(itop_con(i),1),klev)
2598          ibas_con(i) = min(max(ibas_con(i),1),itop_con(i))
2599       ENDDO
[1428]2600
[2488]2601       DO i = 1, klon
2602          ema_pcb(i)  = paprs(i,ibas_con(i))
2603       ENDDO
2604       DO i = 1, klon
2605          ! L'idicage de itop_con peut cacher un pb potentiel
2606          ! FH sous la dictee de JYG, CR
2607          ema_pct(i)  = paprs(i,itop_con(i)+1)
[879]2608
[2720]2609          IF (itop_con(i).gt.klev-3) THEN
2610             IF (prt_level >= 9) THEN
[2488]2611                write(lunout,*)'La convection monte trop haut '
2612                write(lunout,*)'itop_con(,',i,',)=',itop_con(i)
[2720]2613             ENDIF
2614          ENDIF
[2488]2615       ENDDO
2616    ELSE IF (iflag_con.eq.0) THEN
2617       write(lunout,*) 'On n appelle pas la convection'
2618       clwcon0=0.
2619       rnebcon0=0.
2620       d_t_con=0.
2621       d_q_con=0.
2622       d_u_con=0.
2623       d_v_con=0.
2624       rain_con=0.
2625       snow_con=0.
2626       bas=1
2627       top=1
2628    ELSE
2629       WRITE(lunout,*) "iflag_con non-prevu", iflag_con
[2720]2630       CALL abort_physic("physiq", "", 1)
[2488]2631    ENDIF
[524]2632
[2488]2633    !     CALL homogene(paprs, q_seri, d_q_con, u_seri,v_seri,
2634    !    .              d_u_con, d_v_con)
[524]2635
[2787]2636!jyg    Reinitialize proba_notrig and itapcv when convection has been called
2637    proba_notrig(:) = 1.
[2720]2638    itapcv = 0
2639    ENDIF !  (MOD(itapcv,cvpas).EQ.0)
[2787]2640!
[2720]2641    itapcv = itapcv+1
2642
[2839]2643!!!jyg  Appel diagnostique a add_phys_tend pour tester la conservation de
2644!!!     l'energie dans les courants satures.
2645!!    d_t_con_sat(:,:) = d_t_con(:,:) - ftd(:,:)*dtime
2646!!    d_q_con_sat(:,:) = d_q_con(:,:) - fqd(:,:)*dtime
2647!!    dql_sat(:,:) = (wdtrainA(:,:)+wdtrainM(:,:))*dtime/zmasse(:,:)
2648!!    CALL add_phys_tend(d_u_con, d_v_con, d_t_con_sat, d_q_con_sat, dql_sat,   &
2649!!                     dqi0, paprs, 'convection_sat', abortphy, flag_inhib_tend,& 
2650!!                     itap, 1)
2651!!    call prt_enerbil('convection_sat',itap)
2652!!
2653!!
[2488]2654    CALL add_phys_tend(d_u_con, d_v_con, d_t_con, d_q_con, dql0, dqi0, paprs, &
[2839]2655         'convection',abortphy,flag_inhib_tend,itap,0)
2656    call prt_enerbil('convection',itap)
[2235]2657
[2488]2658    !-------------------------------------------------------------------------
[766]2659
[2720]2660    IF (mydebug) THEN
2661       CALL writefield_phy('u_seri',u_seri,nbp_lev)
2662       CALL writefield_phy('v_seri',v_seri,nbp_lev)
2663       CALL writefield_phy('t_seri',t_seri,nbp_lev)
2664       CALL writefield_phy('q_seri',q_seri,nbp_lev)
2665    ENDIF
[766]2666
[2488]2667    IF (check) THEN
2668       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
2669       WRITE(lunout,*)"aprescon=", za
2670       zx_t = 0.0
2671       za = 0.0
2672       DO i = 1, klon
2673          za = za + cell_area(i)/REAL(klon)
2674          zx_t = zx_t + (rain_con(i)+ &
2675               snow_con(i))*cell_area(i)/REAL(klon)
2676       ENDDO
2677       zx_t = zx_t/za*dtime
2678       WRITE(lunout,*)"Precip=", zx_t
2679    ENDIF
2680    IF (zx_ajustq) THEN
2681       DO i = 1, klon
2682          z_apres(i) = 0.0
2683       ENDDO
2684       DO k = 1, klev
2685          DO i = 1, klon
2686             z_apres(i) = z_apres(i) + (q_seri(i,k)+ql_seri(i,k)) &
2687                  *(paprs(i,k)-paprs(i,k+1))/RG
2688          ENDDO
2689       ENDDO
2690       DO i = 1, klon
2691          z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) &
2692               /z_apres(i)
2693       ENDDO
2694       DO k = 1, klev
2695          DO i = 1, klon
2696             IF (z_factor(i).GT.(1.0+1.0E-08) .OR. &
2697                  z_factor(i).LT.(1.0-1.0E-08)) THEN
2698                q_seri(i,k) = q_seri(i,k) * z_factor(i)
2699             ENDIF
2700          ENDDO
2701       ENDDO
2702    ENDIF
2703    zx_ajustq=.FALSE.
[879]2704
[2488]2705    !
2706    !==========================================================================
2707    !RR:Evolution de la poche froide: on ne fait pas de separation wake/env
2708    !pour la couche limite diffuse pour l instant
2709    !
2710    !
2711    ! nrlmd le 22/03/2011---Si on met les poches hors des thermiques
2712    ! il faut rajouter cette tendance calcul\'ee hors des poches
2713    ! froides
2714    !
[2720]2715    IF (iflag_wake>=1) THEN
2716       !
2717       !
[2787]2718       ! Call wakes every "wkpas" step
2719       !
2720       IF (MOD(itapwk,wkpas).EQ.0) THEN
2721          !
2722          DO k=1,klev
[2488]2723             DO i=1,klon
[2787]2724                dt_dwn(i,k)  = ftd(i,k)
2725                dq_dwn(i,k)  = fqd(i,k)
2726                M_dwn(i,k)   = dnwd0(i,k)
2727                M_up(i,k)    = upwd(i,k)
2728                dt_a(i,k)    = d_t_con(i,k)/dtime - ftd(i,k)
2729                dq_a(i,k)    = d_q_con(i,k)/dtime - fqd(i,k)
[2488]2730             ENDDO
2731          ENDDO
[2787]2732         
2733          IF (iflag_wake==2) THEN
2734             ok_wk_lsp(:)=max(sign(1.,wake_s(:)-wake_s_min_lsp),0.)
2735             DO k = 1,klev
2736                dt_dwn(:,k)= dt_dwn(:,k)+ &
2737                     ok_wk_lsp(:)*(d_t_eva(:,k)+d_t_lsc(:,k))/dtime
2738                dq_dwn(:,k)= dq_dwn(:,k)+ &
2739                     ok_wk_lsp(:)*(d_q_eva(:,k)+d_q_lsc(:,k))/dtime
2740             ENDDO
2741          ELSEIF (iflag_wake==3) THEN
2742             ok_wk_lsp(:)=max(sign(1.,wake_s(:)-wake_s_min_lsp),0.)
2743             DO k = 1,klev
2744                DO i=1,klon
2745                   IF (rneb(i,k)==0.) THEN
2746                      ! On ne tient compte des tendances qu'en dehors des
2747                      ! nuages (c'est-\`a-dire a priri dans une region ou
2748                      ! l'eau se reevapore).
2749                      dt_dwn(i,k)= dt_dwn(i,k)+ &
2750                           ok_wk_lsp(i)*d_t_lsc(i,k)/dtime
2751                      dq_dwn(i,k)= dq_dwn(i,k)+ &
2752                           ok_wk_lsp(i)*d_q_lsc(i,k)/dtime
2753                   ENDIF
2754                ENDDO
2755             ENDDO
2756          ENDIF
2757         
2758          !
2759          !calcul caracteristiques de la poche froide
2760          CALL calWAKE (iflag_wake_tend, paprs, pplay, dtime, &
2761               t_seri, q_seri, omega,  &
2762               dt_dwn, dq_dwn, M_dwn, M_up,  &
2763               dt_a, dq_a,  &
2764               sigd,  &
2765               wake_deltat, wake_deltaq, wake_s, wake_dens,  &
2766               wake_dth, wake_h,  &
2767               wake_pe, wake_fip, wake_gfl,  &
2768               d_t_wake, d_q_wake,  &
2769               wake_k, t_x, q_x,  &
2770               wake_omgbdth, wake_dp_omgb,  &
2771               wake_dtKE, wake_dqKE,  &
2772               wake_omg, wake_dp_deltomg,  &
2773               wake_spread, wake_Cstar, d_deltat_wk_gw,  &
2774               d_deltat_wk, d_deltaq_wk, d_s_wk, d_dens_wk)
2775          !
2776          !jyg    Reinitialize itapwk when wakes have been called
2777          itapwk = 0
2778       ENDIF !  (MOD(itapwk,wkpas).EQ.0)
[2488]2779       !
[2787]2780       itapwk = itapwk+1
[2488]2781       !
2782       !-----------------------------------------------------------------------
2783       ! ajout des tendances des poches froides
2784       CALL add_phys_tend(du0,dv0,d_t_wake,d_q_wake,dql0,dqi0,paprs,'wake', &
[2839]2785            abortphy,flag_inhib_tend,itap,0)
2786       call prt_enerbil('wake',itap)
[2488]2787       !------------------------------------------------------------------------
[879]2788
[2787]2789       ! Increment Wake state variables
[2641]2790       IF (iflag_wake_tend .GT. 0.) THEN
2791
2792         CALL add_wake_tend &
2793            (d_deltat_wk, d_deltaq_wk, d_s_wk, d_dens_wk, wake_k, &
2794             'wake', abortphy)
[2839]2795          call prt_enerbil('wake',itap)
[2641]2796       ENDIF   ! (iflag_wake_tend .GT. 0.)
2797
[2720]2798    ENDIF  ! (iflag_wake>=1)
[2488]2799    !
2800    !===================================================================
2801    ! Convection seche (thermiques ou ajustement)
2802    !===================================================================
2803    !
[2720]2804    CALL stratocu_if(klon,klev,pctsrf,paprs, pplay,t_seri &
[2488]2805         ,seuil_inversion,weak_inversion,dthmin)
[878]2806
2807
2808
[2488]2809    d_t_ajsb(:,:)=0.
2810    d_q_ajsb(:,:)=0.
2811    d_t_ajs(:,:)=0.
2812    d_u_ajs(:,:)=0.
2813    d_v_ajs(:,:)=0.
2814    d_q_ajs(:,:)=0.
2815    clwcon0th(:,:)=0.
2816    !
2817    !      fm_therm(:,:)=0.
2818    !      entr_therm(:,:)=0.
2819    !      detr_therm(:,:)=0.
2820    !
[2720]2821    IF (prt_level>9) WRITE(lunout,*) &
[2488]2822         'AVANT LA CONVECTION SECHE , iflag_thermals=' &
2823         ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
[2720]2824    IF (iflag_thermals<0) THEN
[2488]2825       !  Rien
2826       !  ====
[2720]2827       IF (prt_level>9) WRITE(lunout,*)'pas de convection seche'
[541]2828
[878]2829
[2720]2830    ELSE
[878]2831
[2488]2832       !  Thermiques
2833       !  ==========
[2720]2834       IF (prt_level>9) WRITE(lunout,*)'JUSTE AVANT , iflag_thermals=' &
[2488]2835            ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
[878]2836
2837
[2488]2838       !cc nrlmd le 10/04/2012
2839       DO k=1,klev+1
2840          DO i=1,klon
2841             pbl_tke_input(i,k,is_oce)=pbl_tke(i,k,is_oce)
2842             pbl_tke_input(i,k,is_ter)=pbl_tke(i,k,is_ter)
2843             pbl_tke_input(i,k,is_lic)=pbl_tke(i,k,is_lic)
2844             pbl_tke_input(i,k,is_sic)=pbl_tke(i,k,is_sic)
[2159]2845          ENDDO
[2488]2846       ENDDO
2847       !cc fin nrlmd le 10/04/2012
[1403]2848
[2720]2849       IF (iflag_thermals>=1) THEN
[2488]2850          !jyg<
[2870]2851!!       IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN
2852       IF (mod(iflag_pbl_split/10,10) .GE. 1) THEN
[2488]2853             !  Appel des thermiques avec les profils exterieurs aux poches
2854             DO k=1,klev
2855                DO i=1,klon
2856                   t_therm(i,k) = t_seri(i,k) - wake_s(i)*wake_deltat(i,k)
2857                   q_therm(i,k) = q_seri(i,k) - wake_s(i)*wake_deltaq(i,k)
[2641]2858                   u_therm(i,k) = u_seri(i,k)
2859                   v_therm(i,k) = v_seri(i,k)
[2488]2860                ENDDO
2861             ENDDO
2862          ELSE
2863             !  Appel des thermiques avec les profils moyens
2864             DO k=1,klev
2865                DO i=1,klon
2866                   t_therm(i,k) = t_seri(i,k)
2867                   q_therm(i,k) = q_seri(i,k)
[2641]2868                   u_therm(i,k) = u_seri(i,k)
2869                   v_therm(i,k) = v_seri(i,k)
[2488]2870                ENDDO
2871             ENDDO
2872          ENDIF
2873          !>jyg
[2720]2874          CALL calltherm(pdtphys &
[2488]2875               ,pplay,paprs,pphi,weak_inversion &
[2641]2876                        ! ,u_seri,v_seri,t_seri,q_seri,zqsat,debut & !jyg
2877               ,u_therm,v_therm,t_therm,q_therm,zqsat,debut &  !jyg
[2488]2878               ,d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs &
2879               ,fm_therm,entr_therm,detr_therm &
2880               ,zqasc,clwcon0th,lmax_th,ratqscth &
2881               ,ratqsdiff,zqsatth &
2882                                !on rajoute ale et alp, et les
2883                                !caracteristiques de la couche alim
2884               ,Ale_bl,Alp_bl,lalim_conv,wght_th, zmax0, f0, zw2,fraca &
2885               ,ztv,zpspsk,ztla,zthl &
2886                                !cc nrlmd le 10/04/2012
2887               ,pbl_tke_input,pctsrf,omega,cell_area &
2888               ,zlcl_th,fraca0,w0,w_conv,therm_tke_max0,env_tke_max0 &
2889               ,n2,s2,ale_bl_stat &
2890               ,therm_tke_max,env_tke_max &
2891               ,alp_bl_det,alp_bl_fluct_m,alp_bl_fluct_tke &
2892               ,alp_bl_conv,alp_bl_stat &
2893                                !cc fin nrlmd le 10/04/2012
2894               ,zqla,ztva )
2895          !
2896          !jyg<
[2870]2897!!jyg          IF (mod(iflag_pbl_split/2,2) .EQ. 1) THEN
2898          IF (mod(iflag_pbl_split/10,10) .GE. 1) THEN
[2488]2899             !  Si les thermiques ne sont presents que hors des
2900             !  poches, la tendance moyenne associ\'ee doit etre
2901             !  multipliee par la fraction surfacique qu'ils couvrent.
2902             DO k=1,klev
2903                DO i=1,klon
2904                   !
[2641]2905                   d_deltat_the(i,k) = - d_t_ajs(i,k)
2906                   d_deltaq_the(i,k) = - d_q_ajs(i,k)
[2488]2907                   !
2908                   d_u_ajs(i,k) = d_u_ajs(i,k)*(1.-wake_s(i))
2909                   d_v_ajs(i,k) = d_v_ajs(i,k)*(1.-wake_s(i))
2910                   d_t_ajs(i,k) = d_t_ajs(i,k)*(1.-wake_s(i))
2911                   d_q_ajs(i,k) = d_q_ajs(i,k)*(1.-wake_s(i))
2912                   !
2913                ENDDO
2914             ENDDO
[2641]2915          !
2916             CALL add_wake_tend &
2917                 (d_deltat_the, d_deltaq_the, dsig0, ddens0, wkoccur1, 'the', abortphy)
[2839]2918             call prt_enerbil('the',itap)
[2641]2919          !
[2870]2920          ENDIF  ! (mod(iflag_pbl_split/10,10) .GE. 1)
[2641]2921          !
2922          CALL add_phys_tend(d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs,  &
[2839]2923                             dql0,dqi0,paprs,'thermals', abortphy,flag_inhib_tend,itap,0)
2924          call prt_enerbil('thermals',itap)
[2641]2925          !
[2542]2926!
[2594]2927          CALL alpale_th( dtime, lmax_th, t_seri, cell_area,  &
[2542]2928                          cin, s2, n2,  &
2929                          ale_bl_trig, ale_bl_stat, ale_bl,  &
[2594]2930                          alp_bl, alp_bl_stat, &
2931                          proba_notrig, random_notrig)
[2641]2932          !>jyg
[1638]2933
[2594]2934          ! ------------------------------------------------------------------
2935          ! Transport de la TKE par les panaches thermiques.
2936          ! FH : 2010/02/01
2937          !     if (iflag_pbl.eq.10) then
2938          !     call thermcell_dtke(klon,klev,nbsrf,pdtphys,fm_therm,entr_therm,
2939          !    s           rg,paprs,pbl_tke)
2940          !     endif
2941          ! -------------------------------------------------------------------
2942
[2720]2943          DO i=1,klon
[2488]2944             !           zmax_th(i)=pphi(i,lmax_th(i))/rg
2945             !CR:04/05/12:correction calcul zmax
2946             zmax_th(i)=zmax0(i)
[2720]2947          ENDDO
[1507]2948
[2720]2949       ENDIF
[878]2950
[2488]2951       !  Ajustement sec
2952       !  ==============
[878]2953
[2488]2954       ! Dans le cas o\`u on active les thermiques, on fait partir l'ajustement
2955       ! a partir du sommet des thermiques.
2956       ! Dans le cas contraire, on demarre au niveau 1.
[878]2957
[2720]2958       IF (iflag_thermals>=13.or.iflag_thermals<=0) THEN
[878]2959
[2720]2960          IF (iflag_thermals.eq.0) THEN
2961             IF (prt_level>9) WRITE(lunout,*)'ajsec'
[2488]2962             limbas(:)=1
[2720]2963          ELSE
[2488]2964             limbas(:)=lmax_th(:)
[2720]2965          ENDIF
[878]2966
[2488]2967          ! Attention : le call ajsec_convV2 n'est maintenu que momentanneement
2968          ! pour des test de convergence numerique.
2969          ! Le nouveau ajsec est a priori mieux, meme pour le cas
2970          ! iflag_thermals = 0 (l'ancienne version peut faire des tendances
2971          ! non nulles numeriquement pour des mailles non concernees.
[878]2972
[2720]2973          IF (iflag_thermals==0) THEN
[2488]2974             ! Calling adjustment alone (but not the thermal plume model)
2975             CALL ajsec_convV2(paprs, pplay, t_seri,q_seri &
2976                  , d_t_ajsb, d_q_ajsb)
[2720]2977          ELSE IF (iflag_thermals>0) THEN
[2488]2978             ! Calling adjustment above the top of thermal plumes
2979             CALL ajsec(paprs, pplay, t_seri,q_seri,limbas &
2980                  , d_t_ajsb, d_q_ajsb)
[2720]2981          ENDIF
[878]2982
[2488]2983          !--------------------------------------------------------------------
2984          ! ajout des tendances de l'ajustement sec ou des thermiques
2985          CALL add_phys_tend(du0,dv0,d_t_ajsb,d_q_ajsb,dql0,dqi0,paprs, &
[2839]2986               'ajsb',abortphy,flag_inhib_tend,itap,0)
2987          call prt_enerbil('ajsb',itap)
[2488]2988          d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_ajsb(:,:)
2989          d_q_ajs(:,:)=d_q_ajs(:,:)+d_q_ajsb(:,:)
[904]2990
[2488]2991          !---------------------------------------------------------------------
[878]2992
[2720]2993       ENDIF
[524]2994
[2720]2995    ENDIF
[2488]2996    !
2997    !===================================================================
2998    ! Computation of ratqs, the width (normalized) of the subrid scale
2999    ! water distribution
3000    CALL  calcratqs(klon,klev,prt_level,lunout,        &
3001         iflag_ratqs,iflag_con,iflag_cld_th,pdtphys,  &
[2542]3002         ratqsbas,ratqshaut,ratqsp0, ratqsdp, &
3003         tau_ratqs,fact_cldcon,   &
[2488]3004         ptconv,ptconvth,clwcon0th, rnebcon0th,     &
3005         paprs,pplay,q_seri,zqsat,fm_therm, &
3006         ratqs,ratqsc)
[1032]3007
[2100]3008
[2488]3009    !
3010    ! Appeler le processus de condensation a grande echelle
3011    ! et le processus de precipitation
3012    !-------------------------------------------------------------------------
3013    IF (prt_level .GE.10) THEN
3014       print *,'itap, ->fisrtilp ',itap
3015    ENDIF
3016    !
3017    CALL fisrtilp(dtime,paprs,pplay, &
3018         t_seri, q_seri,ptconv,ratqs, &
3019         d_t_lsc, d_q_lsc, d_ql_lsc, d_qi_lsc, rneb, cldliq, &
3020         rain_lsc, snow_lsc, &
3021         pfrac_impa, pfrac_nucl, pfrac_1nucl, &
3022         frac_impa, frac_nucl, beta_prec_fisrt, &
3023         prfl, psfl, rhcl,  &
3024         zqasc, fraca,ztv,zpspsk,ztla,zthl,iflag_cld_th, &
3025         iflag_ice_thermo)
3026    !
3027    WHERE (rain_lsc < 0) rain_lsc = 0.
3028    WHERE (snow_lsc < 0) snow_lsc = 0.
[766]3029
[2839]3030!+JLD
3031!    write(*,9000) 'phys lsc',"enerbil: bil_q, bil_e,",rain_lsc+snow_lsc &
3032!        & ,((rcw-rcpd)*rain_lsc + (rcs-rcpd)*snow_lsc)*t_seri(1,1)-rlvtt*rain_lsc+rlstt*snow_lsc &
3033!        & ,rain_lsc,snow_lsc
3034!    write(*,9000) "rcpv","rcw",rcpv,rcw,rcs,t_seri(1,1)
3035!-JLD
[2488]3036    CALL add_phys_tend(du0,dv0,d_t_lsc,d_q_lsc,d_ql_lsc,d_qi_lsc,paprs, &
[2839]3037         'lsc',abortphy,flag_inhib_tend,itap,0)
3038    call prt_enerbil('lsc',itap)
[2641]3039    rain_num(:)=0.
[2669]3040    DO k = 1, klev
[2641]3041       DO i = 1, klon
3042          IF (ql_seri(i,k)>oliqmax) THEN
3043             rain_num(i)=rain_num(i)+(ql_seri(i,k)-oliqmax)*zmasse(i,k)/pdtphys
3044             ql_seri(i,k)=oliqmax
3045          ENDIF
3046       ENDDO
3047    ENDDO
[2669]3048    IF (nqo==3) THEN
3049    DO k = 1, klev
3050       DO i = 1, klon
3051          IF (qs_seri(i,k)>oicemax) THEN
3052             rain_num(i)=rain_num(i)+(qs_seri(i,k)-oicemax)*zmasse(i,k)/pdtphys
3053             qs_seri(i,k)=oicemax
3054          ENDIF
3055       ENDDO
3056    ENDDO
3057    ENDIF
[2641]3058
[2488]3059    !---------------------------------------------------------------------------
3060    DO k = 1, klev
3061       DO i = 1, klon
3062          cldfra(i,k) = rneb(i,k)
3063          !CR: a quoi ca sert? Faut-il ajouter qs_seri?
3064          IF (.NOT.new_oliq) cldliq(i,k) = ql_seri(i,k)
3065       ENDDO
3066    ENDDO
3067    IF (check) THEN
3068       za = qcheck(klon,klev,paprs,q_seri,ql_seri,cell_area)
3069       WRITE(lunout,*)"apresilp=", za
3070       zx_t = 0.0
3071       za = 0.0
3072       DO i = 1, klon
3073          za = za + cell_area(i)/REAL(klon)
3074          zx_t = zx_t + (rain_lsc(i) &
3075               + snow_lsc(i))*cell_area(i)/REAL(klon)
3076       ENDDO
3077       zx_t = zx_t/za*dtime
3078       WRITE(lunout,*)"Precip=", zx_t
3079    ENDIF
[766]3080
[2720]3081    IF (mydebug) THEN
3082       CALL writefield_phy('u_seri',u_seri,nbp_lev)
3083       CALL writefield_phy('v_seri',v_seri,nbp_lev)
3084       CALL writefield_phy('t_seri',t_seri,nbp_lev)
3085       CALL writefield_phy('q_seri',q_seri,nbp_lev)
3086    ENDIF
[524]3087
[2488]3088    !
3089    !-------------------------------------------------------------------
3090    !  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
3091    !-------------------------------------------------------------------
[524]3092
[2488]3093    ! 1. NUAGES CONVECTIFS
3094    !
3095    !IM cf FH
3096    !     IF (iflag_cld_th.eq.-1) THEN ! seulement pour Tiedtke
3097    IF (iflag_cld_th.le.-1) THEN ! seulement pour Tiedtke
3098       snow_tiedtke=0.
3099       !     print*,'avant calcul de la pseudo precip '
3100       !     print*,'iflag_cld_th',iflag_cld_th
[2720]3101       IF (iflag_cld_th.eq.-1) THEN
[2488]3102          rain_tiedtke=rain_con
[2720]3103       ELSE
[2488]3104          !       print*,'calcul de la pseudo precip '
3105          rain_tiedtke=0.
3106          !         print*,'calcul de la pseudo precip 0'
[2720]3107          DO k=1,klev
3108             DO i=1,klon
3109                IF (d_q_con(i,k).lt.0.) THEN
[2488]3110                   rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i,k)/pdtphys &
3111                        *(paprs(i,k)-paprs(i,k+1))/rg
[2720]3112                ENDIF
3113             ENDDO
3114          ENDDO
3115       ENDIF
[2488]3116       !
3117       !     call dump2d(iim,jjm,rain_tiedtke(2:klon-1),'PSEUDO PRECIP ')
3118       !
[524]3119
[2488]3120       ! Nuages diagnostiques pour Tiedtke
3121       CALL diagcld1(paprs,pplay, &
3122                                !IM cf FH. rain_con,snow_con,ibas_con,itop_con,
3123            rain_tiedtke,snow_tiedtke,ibas_con,itop_con, &
3124            diafra,dialiq)
3125       DO k = 1, klev
3126          DO i = 1, klon
3127             IF (diafra(i,k).GT.cldfra(i,k)) THEN
3128                cldliq(i,k) = dialiq(i,k)
3129                cldfra(i,k) = diafra(i,k)
3130             ENDIF
3131          ENDDO
3132       ENDDO
[524]3133
[2488]3134    ELSE IF (iflag_cld_th.ge.3) THEN
3135       !  On prend pour les nuages convectifs le max du calcul de la
3136       !  convection et du calcul du pas de temps precedent diminue d'un facteur
3137       !  facttemps
3138       facteur = pdtphys *facttemps
[2720]3139       DO k=1,klev
3140          DO i=1,klon
[2488]3141             rnebcon(i,k)=rnebcon(i,k)*facteur
[2720]3142             IF (rnebcon0(i,k)*clwcon0(i,k).GT.rnebcon(i,k)*clwcon(i,k)) THEN
[2488]3143                rnebcon(i,k)=rnebcon0(i,k)
3144                clwcon(i,k)=clwcon0(i,k)
[2720]3145             ENDIF
3146          ENDDO
3147       ENDDO
[2488]3148
3149       !   On prend la somme des fractions nuageuses et des contenus en eau
[524]3150
[2720]3151       IF (iflag_cld_th>=5) THEN
[1411]3152
[2720]3153          DO k=1,klev
[2488]3154             ptconvth(:,k)=fm_therm(:,k+1)>0.
[2720]3155          ENDDO
[1496]3156
[2720]3157          IF (iflag_coupl==4) THEN
[1496]3158
[2488]3159             ! Dans le cas iflag_coupl==4, on prend la somme des convertures
3160             ! convectives et lsc dans la partie des thermiques
3161             ! Le controle par iflag_coupl est peut etre provisoire.
[2720]3162             DO k=1,klev
3163                DO i=1,klon
3164                   IF (ptconv(i,k).AND.ptconvth(i,k)) THEN
[2488]3165                      cldliq(i,k)=cldliq(i,k)+rnebcon(i,k)*clwcon(i,k)
3166                      cldfra(i,k)=min(cldfra(i,k)+rnebcon(i,k),1.)
[2720]3167                   ELSE IF (ptconv(i,k)) THEN
[2488]3168                      cldfra(i,k)=rnebcon(i,k)
3169                      cldliq(i,k)=rnebcon(i,k)*clwcon(i,k)
[2720]3170                   ENDIF
3171                ENDDO
3172             ENDDO
[1496]3173
[2720]3174          ELSE IF (iflag_coupl==5) THEN
3175             DO k=1,klev
3176                DO i=1,klon
[2488]3177                   cldfra(i,k)=min(cldfra(i,k)+rnebcon(i,k),1.)
3178                   cldliq(i,k)=cldliq(i,k)+rnebcon(i,k)*clwcon(i,k)
[2720]3179                ENDDO
3180             ENDDO
[1525]3181
[2720]3182          ELSE
[1525]3183
[2488]3184             ! Si on est sur un point touche par la convection
3185             ! profonde et pas par les thermiques, on prend la
3186             ! couverture nuageuse et l'eau nuageuse de la convection
3187             ! profonde.
[1411]3188
[2488]3189             !IM/FH: 2011/02/23
3190             ! definition des points sur lesquels ls thermiques sont actifs
[1496]3191
[2720]3192             DO k=1,klev
3193                DO i=1,klon
3194                   IF (ptconv(i,k).AND. .NOT.ptconvth(i,k)) THEN
[2488]3195                      cldfra(i,k)=rnebcon(i,k)
3196                      cldliq(i,k)=rnebcon(i,k)*clwcon(i,k)
[2720]3197                   ENDIF
3198                ENDDO
3199             ENDDO
[1496]3200
[2720]3201          ENDIF
[1496]3202
[2720]3203       ELSE
[1496]3204
[2488]3205          ! Ancienne version
3206          cldfra(:,:)=min(max(cldfra(:,:),rnebcon(:,:)),1.)
3207          cldliq(:,:)=cldliq(:,:)+rnebcon(:,:)*clwcon(:,:)
[2720]3208       ENDIF
[1411]3209
[2488]3210    ENDIF
[1507]3211
[2488]3212    !     plulsc(:)=0.
3213    !     do k=1,klev,-1
3214    !        do i=1,klon
3215    !              zzz=prfl(:,k)+psfl(:,k)
3216    !           if (.not.ptconvth.zzz.gt.0.)
3217    !        enddo prfl, psfl,
3218    !     enddo
3219    !
3220    ! 2. NUAGES STARTIFORMES
3221    !
3222    IF (ok_stratus) THEN
3223       CALL diagcld2(paprs,pplay,t_seri,q_seri, diafra,dialiq)
3224       DO k = 1, klev
3225          DO i = 1, klon
3226             IF (diafra(i,k).GT.cldfra(i,k)) THEN
3227                cldliq(i,k) = dialiq(i,k)
3228                cldfra(i,k) = diafra(i,k)
3229             ENDIF
3230          ENDDO
3231       ENDDO
3232    ENDIF
3233    !
3234    ! Precipitation totale
3235    !
3236    DO i = 1, klon
3237       rain_fall(i) = rain_con(i) + rain_lsc(i)
3238       snow_fall(i) = snow_con(i) + snow_lsc(i)
3239    ENDDO
3240    !
3241    ! Calculer l'humidite relative pour diagnostique
3242    !
3243    DO k = 1, klev
3244       DO i = 1, klon
3245          zx_t = t_seri(i,k)
3246          IF (thermcep) THEN
3247             !!           if (iflag_ice_thermo.eq.0) then                 !jyg
3248             zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
3249             !!           else                                            !jyg
3250             !!           zdelta = MAX(0.,SIGN(1.,t_glace_min-zx_t))      !jyg
3251             !!           endif                                           !jyg
3252             zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
3253             zx_qs  = MIN(0.5,zx_qs)
3254             zcor   = 1./(1.-retv*zx_qs)
3255             zx_qs  = zx_qs*zcor
3256          ELSE
3257             !!           IF (zx_t.LT.t_coup) THEN             !jyg
3258             IF (zx_t.LT.rtt) THEN                  !jyg
3259                zx_qs = qsats(zx_t)/pplay(i,k)
3260             ELSE
3261                zx_qs = qsatl(zx_t)/pplay(i,k)
3262             ENDIF
3263          ENDIF
3264          zx_rh(i,k) = q_seri(i,k)/zx_qs
3265          zqsat(i,k)=zx_qs
3266       ENDDO
3267    ENDDO
[782]3268
[2488]3269    !IM Calcul temp.potentielle a 2m (tpot) et temp. potentielle
3270    !   equivalente a 2m (tpote) pour diagnostique
3271    !
3272    DO i = 1, klon
3273       tpot(i)=zt2m(i)*(100000./paprs(i,1))**RKAPPA
3274       IF (thermcep) THEN
3275          IF(zt2m(i).LT.RTT) then
3276             Lheat=RLSTT
3277          ELSE
3278             Lheat=RLVTT
3279          ENDIF
3280       ELSE
3281          IF (zt2m(i).LT.RTT) THEN
3282             Lheat=RLSTT
3283          ELSE
3284             Lheat=RLVTT
3285          ENDIF
3286       ENDIF
3287       tpote(i) = tpot(i)*      &
3288            EXP((Lheat *qsat2m(i))/(RCPD*zt2m(i)))
3289    ENDDO
[524]3290
[2488]3291    IF (type_trac == 'inca') THEN
[524]3292#ifdef INCA
[2488]3293       CALL VTe(VTphysiq)
3294       CALL VTb(VTinca)
3295       calday = REAL(days_elapsed + 1) + jH_cur
[524]3296
[2720]3297       CALL chemtime(itap+itau_phy-1, date0, dtime, itap)
[2488]3298       IF (config_inca == 'aero' .OR. config_inca == 'aeNP') THEN
3299          CALL AEROSOL_METEO_CALC( &
3300               calday,pdtphys,pplay,paprs,t,pmflxr,pmflxs, &
3301               prfl,psfl,pctsrf,cell_area, &
3302               latitude_deg,longitude_deg,u10m,v10m)
[2720]3303       ENDIF
[524]3304
[2488]3305       zxsnow_dummy(:) = 0.0
[625]3306
[2488]3307       CALL chemhook_begin (calday, &
3308            days_elapsed+1, &
3309            jH_cur, &
3310            pctsrf(1,1), &
3311            latitude_deg, &
3312            longitude_deg, &
3313            cell_area, &
3314            paprs, &
3315            pplay, &
3316            coefh(1:klon,1:klev,is_ave), &
3317            pphi, &
3318            t_seri, &
3319            u, &
3320            v, &
3321            wo(:, :, 1), &
3322            q_seri, &
3323            zxtsol, &
3324            zxsnow_dummy, &
3325            solsw, &
3326            albsol1, &
3327            rain_fall, &
3328            snow_fall, &
3329            itop_con, &
3330            ibas_con, &
3331            cldfra, &
3332            nbp_lon, &
3333            nbp_lat-1, &
3334            tr_seri, &
3335            ftsol, &
3336            paprs, &
3337            cdragh, &
3338            cdragm, &
3339            pctsrf, &
3340            pdtphys, &
3341            itap)
[616]3342
[2488]3343       CALL VTe(VTinca)
3344       CALL VTb(VTphysiq)
[959]3345#endif
[2720]3346    ENDIF !type_trac = inca
[2641]3347
3348
[2488]3349    !
[2641]3350    ! Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
3351    !
3352    IF (MOD(itaprad,radpas).EQ.0) THEN
[959]3353
[2641]3354       !
3355       !jq - introduce the aerosol direct and first indirect radiative forcings
3356       !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)
[2787]3357       IF (flag_aerosol .GT. 0) THEN
[2641]3358          IF (iflag_rrtm .EQ. 0) THEN !--old radiation
3359             IF (.NOT. aerosol_couple) THEN
3360                !
3361                CALL readaerosol_optic( &
3362                     debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref, &
3363                     pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3364                     mass_solu_aero, mass_solu_aero_pi,  &
3365                     tau_aero, piz_aero, cg_aero,  &
3366                     tausum_aero, tau3d_aero)
3367             ENDIF
3368          ELSE                       ! RRTM radiation
3369             IF (aerosol_couple .AND. config_inca == 'aero' ) THEN
3370                abort_message='config_inca=aero et rrtm=1 impossible'
[2720]3371                CALL abort_physic(modname,abort_message,1)
[2641]3372             ELSE
3373                !
3374#ifdef CPP_RRTM
3375                IF (NSW.EQ.6) THEN
[2787]3376                   !--new aerosol properties SW and LW
[2641]3377                   !
[2787]3378#ifdef CPP_Dust
3379                   !--SPL aerosol model
3380                   CALL splaerosol_optic_rrtm( ok_alw, pplay, paprs, t_seri, rhcl, &
3381                        tr_seri, mass_solu_aero, mass_solu_aero_pi,  &
3382                        tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm,  &
3383                        tausum_aero, tau3d_aero)
3384#else
3385                   !--climatologies or INCA aerosols
3386                   CALL readaerosol_optic_rrtm( debut, aerosol_couple, ok_alw, &
[2669]3387                        new_aod, flag_aerosol, flag_bc_internal_mixture, itap, jD_cur-jD_ref, &
[2641]3388                        pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3389                        tr_seri, mass_solu_aero, mass_solu_aero_pi,  &
3390                        tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm,  &
[2870]3391                        tausum_aero, drytausum_aero, tau3d_aero)
[2787]3392#endif
3393                   !
[2641]3394                ELSE IF (NSW.EQ.2) THEN
3395                   !--for now we use the old aerosol properties
3396                   !
3397                   CALL readaerosol_optic( &
3398                        debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref, &
3399                        pdtphys, pplay, paprs, t_seri, rhcl, presnivs,  &
3400                        mass_solu_aero, mass_solu_aero_pi,  &
3401                        tau_aero, piz_aero, cg_aero,  &
3402                        tausum_aero, tau3d_aero)
3403                   !
3404                   !--natural aerosols
3405                   tau_aero_sw_rrtm(:,:,1,:)=tau_aero(:,:,3,:)
3406                   piz_aero_sw_rrtm(:,:,1,:)=piz_aero(:,:,3,:)
3407                   cg_aero_sw_rrtm (:,:,1,:)=cg_aero (:,:,3,:)
3408                   !--all aerosols
3409                   tau_aero_sw_rrtm(:,:,2,:)=tau_aero(:,:,2,:)
3410                   piz_aero_sw_rrtm(:,:,2,:)=piz_aero(:,:,2,:)
3411                   cg_aero_sw_rrtm (:,:,2,:)=cg_aero (:,:,2,:)
[2787]3412                   !
3413                   !--no LW optics
3414                   tau_aero_lw_rrtm(:,:,:,:) = 1.e-15
3415                   !
[2641]3416                ELSE
3417                   abort_message='Only NSW=2 or 6 are possible with ' &
3418                        // 'aerosols and iflag_rrtm=1'
[2720]3419                   CALL abort_physic(modname,abort_message,1)
[2641]3420                ENDIF
3421#else
3422                abort_message='You should compile with -rrtm if running ' &
3423                     // 'with iflag_rrtm=1'
[2720]3424                CALL abort_physic(modname,abort_message,1)
[2641]3425#endif
3426                !
3427             ENDIF
3428          ENDIF
[2787]3429       ELSE   !--flag_aerosol = 0
[2641]3430          tausum_aero(:,:,:) = 0.
[2870]3431          drytausum_aero(:,:) = 0.
[2641]3432          mass_solu_aero(:,:) = 0.
3433          mass_solu_aero_pi(:,:) = 0.
3434          IF (iflag_rrtm .EQ. 0) THEN !--old radiation
3435             tau_aero(:,:,:,:) = 1.e-15
3436             piz_aero(:,:,:,:) = 1.
3437             cg_aero(:,:,:,:)  = 0.
3438          ELSE
3439             tau_aero_sw_rrtm(:,:,:,:) = 1.e-15
3440             tau_aero_lw_rrtm(:,:,:,:) = 1.e-15
3441             piz_aero_sw_rrtm(:,:,:,:) = 1.0
3442             cg_aero_sw_rrtm(:,:,:,:)  = 0.0
3443          ENDIF
3444       ENDIF
3445       !
3446       !--STRAT AEROSOL
3447       !--updates tausum_aero,tau_aero,piz_aero,cg_aero
3448       IF (flag_aerosol_strat.GT.0) THEN
3449          IF (prt_level .GE.10) THEN
3450             PRINT *,'appel a readaerosolstrat', mth_cur
3451          ENDIF
3452          IF (iflag_rrtm.EQ.0) THEN
3453           IF (flag_aerosol_strat.EQ.1) THEN
3454             CALL readaerosolstrato(debut)
3455           ELSE
3456             abort_message='flag_aerosol_strat must equal 1 for rrtm=0'
3457             CALL abort_physic(modname,abort_message,1)
3458           ENDIF
3459          ELSE
[2009]3460#ifdef CPP_RRTM
[2720]3461#ifndef CPP_StratAer
3462          !--prescribed strat aerosols
3463          !--only in the case of non-interactive strat aerosols
[2641]3464            IF (flag_aerosol_strat.EQ.1) THEN
3465             CALL readaerosolstrato1_rrtm(debut)
3466            ELSEIF (flag_aerosol_strat.EQ.2) THEN
3467             CALL stratosphere_mask(t_seri, pplay, latitude_deg)
3468             CALL readaerosolstrato2_rrtm(debut)
3469            ELSE
3470             abort_message='flag_aerosol_strat must equal 1 or 2 for rrtm=1'
3471             CALL abort_physic(modname,abort_message,1)
3472            ENDIF
[2720]3473#endif
[2641]3474#else
3475             abort_message='You should compile with -rrtm if running ' &
3476                  // 'with iflag_rrtm=1'
3477             CALL abort_physic(modname,abort_message,1)
3478#endif
3479          ENDIF
3480       ENDIF
[2720]3481!
3482#ifdef CPP_RRTM
3483#ifdef CPP_StratAer
3484       !--compute stratospheric mask
3485       CALL stratosphere_mask(t_seri, pplay, latitude_deg)
3486       !--interactive strat aerosols
3487       CALL calcaerosolstrato_rrtm(pplay,t_seri,paprs,debut)
3488#endif
3489#endif
[2641]3490       !--fin STRAT AEROSOL
3491       !     
3492
3493       ! Calculer les parametres optiques des nuages et quelques
3494       ! parametres pour diagnostiques:
3495       !
3496       IF (aerosol_couple.AND.config_inca=='aero') THEN
3497          mass_solu_aero(:,:)    = ccm(:,:,1)
3498          mass_solu_aero_pi(:,:) = ccm(:,:,2)
[2720]3499       ENDIF
[2641]3500
3501       IF (ok_newmicro) then
3502          IF (iflag_rrtm.NE.0) THEN
3503#ifdef CPP_RRTM
3504             IF (ok_cdnc.AND.NRADLP.NE.3) THEN
[2488]3505             abort_message='RRTM choix incoherent NRADLP doit etre egal a 3 ' &
3506                  // 'pour ok_cdnc'
[2641]3507             CALL abort_physic(modname,abort_message,1)
3508             ENDIF
[2009]3509#else
3510
[2641]3511             abort_message='You should compile with -rrtm if running with '//'iflag_rrtm=1'
3512             CALL abort_physic(modname,abort_message,1)
[2009]3513#endif
[2641]3514          ENDIF
3515          CALL newmicro (ok_cdnc, bl95_b0, bl95_b1, &
3516               paprs, pplay, t_seri, cldliq, cldfra, &
3517               cldtau, cldemi, cldh, cldl, cldm, cldt, cldq, &
3518               flwp, fiwp, flwc, fiwc, &
3519               mass_solu_aero, mass_solu_aero_pi, &
3520               cldtaupi, re, fl, ref_liq, ref_ice, &
3521               ref_liq_pi, ref_ice_pi)
3522       ELSE
3523          CALL nuage (paprs, pplay, &
3524               t_seri, cldliq, cldfra, cldtau, cldemi, &
3525               cldh, cldl, cldm, cldt, cldq, &
3526               ok_aie, &
3527               mass_solu_aero, mass_solu_aero_pi, &
3528               bl95_b0, bl95_b1, &
3529               cldtaupi, re, fl)
[2488]3530       ENDIF
3531       !
[2641]3532       !IM betaCRF
[2488]3533       !
[2641]3534       cldtaurad   = cldtau
3535       cldtaupirad = cldtaupi
3536       cldemirad   = cldemi
3537       cldfrarad   = cldfra
3538
[2488]3539       !
[2641]3540       IF (lon1_beta.EQ.-180..AND.lon2_beta.EQ.180..AND. &
3541           lat1_beta.EQ.90..AND.lat2_beta.EQ.-90.) THEN
3542          !
3543          ! global
3544          !
3545          DO k=1, klev
3546             DO i=1, klon
3547                IF (pplay(i,k).GE.pfree) THEN
[2488]3548                   beta(i,k) = beta_pbl
[2641]3549                ELSE
[2488]3550                   beta(i,k) = beta_free
[2641]3551                ENDIF
3552                IF (mskocean_beta) THEN
[2488]3553                   beta(i,k) = beta(i,k) * pctsrf(i,is_oce)
[2641]3554                ENDIF
[2488]3555                cldtaurad(i,k)   = cldtau(i,k) * beta(i,k)
3556                cldtaupirad(i,k) = cldtaupi(i,k) * beta(i,k)
3557                cldemirad(i,k)   = cldemi(i,k) * beta(i,k)
3558                cldfrarad(i,k)   = cldfra(i,k) * beta(i,k)
[2641]3559             ENDDO
3560          ENDDO
3561          !
3562       ELSE
3563          !
3564          ! regional
3565          !
3566          DO k=1, klev
3567             DO i=1,klon
3568                !
3569                IF (longitude_deg(i).ge.lon1_beta.AND. &
3570                    longitude_deg(i).le.lon2_beta.AND. &
3571                    latitude_deg(i).le.lat1_beta.AND.  &
3572                    latitude_deg(i).ge.lat2_beta) THEN
3573                   IF (pplay(i,k).GE.pfree) THEN
3574                      beta(i,k) = beta_pbl
3575                   ELSE
3576                      beta(i,k) = beta_free
3577                   ENDIF
3578                   IF (mskocean_beta) THEN
3579                      beta(i,k) = beta(i,k) * pctsrf(i,is_oce)
3580                   ENDIF
3581                   cldtaurad(i,k)   = cldtau(i,k) * beta(i,k)
3582                   cldtaupirad(i,k) = cldtaupi(i,k) * beta(i,k)
3583                   cldemirad(i,k)   = cldemi(i,k) * beta(i,k)
3584                   cldfrarad(i,k)   = cldfra(i,k) * beta(i,k)
3585                ENDIF
[2488]3586             !
[2641]3587             ENDDO
[2488]3588          ENDDO
3589       !
[2641]3590       ENDIF
[766]3591
[2641]3592       !lecture de la chlorophylle pour le nouvel albedo de Sunghye Baek
3593       IF (ok_chlorophyll) THEN
[2488]3594          print*,"-- reading chlorophyll"
[2641]3595          CALL readchlorophyll(debut)
3596       ENDIF
[1863]3597
[2542]3598!--if ok_suntime_rrtm we use ancillay data for RSUN
3599!--previous values are therefore overwritten
3600!--this is needed for CMIP6 runs
3601!--and only possible for new radiation scheme
3602       IF (iflag_rrtm.EQ.1.AND.ok_suntime_rrtm) THEN
3603#ifdef CPP_RRTM
3604         CALL read_rsun_rrtm(debut)
3605#endif
3606       ENDIF
[2227]3607
[2720]3608       IF (mydebug) THEN
3609          CALL writefield_phy('u_seri',u_seri,nbp_lev)
3610          CALL writefield_phy('v_seri',v_seri,nbp_lev)
3611          CALL writefield_phy('t_seri',t_seri,nbp_lev)
3612          CALL writefield_phy('q_seri',q_seri,nbp_lev)
3613       ENDIF
[1863]3614
[2488]3615       !
3616       !sonia : If Iflag_radia >=2, pertubation of some variables
3617       !input to radiation (DICE)
3618       !
3619       IF (iflag_radia .ge. 2) THEN
3620          zsav_tsol (:) = zxtsol(:)
[2720]3621          CALL perturb_radlwsw(zxtsol,iflag_radia)
[2488]3622       ENDIF
[2328]3623
[2488]3624       IF (aerosol_couple.AND.config_inca=='aero') THEN
[959]3625#ifdef INCA
[2488]3626          CALL radlwsw_inca  &
3627               (kdlon,kflev,dist, rmu0, fract, solaire, &
3628               paprs, pplay,zxtsol,albsol1, albsol2, t_seri,q_seri, &
[2720]3629               size(wo,3), wo, &
[2488]3630               cldfrarad, cldemirad, cldtaurad, &
3631               heat,heat0,cool,cool0,albpla, &
3632               topsw,toplw,solsw,sollw, &
3633               sollwdown, &
3634               topsw0,toplw0,solsw0,sollw0, &
3635               lwdn0, lwdn, lwup0, lwup,  &
3636               swdn0, swdn, swup0, swup, &
3637               ok_ade, ok_aie, &
3638               tau_aero, piz_aero, cg_aero, &
3639               topswad_aero, solswad_aero, &
3640               topswad0_aero, solswad0_aero, &
3641               topsw_aero, topsw0_aero, &
3642               solsw_aero, solsw0_aero, &
3643               cldtaupirad, &
3644               topswai_aero, solswai_aero)
[955]3645#endif
[2488]3646       ELSE
3647          !
3648          !IM calcul radiatif pour le cas actuel
3649          !
3650          RCO2 = RCO2_act
3651          RCH4 = RCH4_act
3652          RN2O = RN2O_act
3653          RCFC11 = RCFC11_act
3654          RCFC12 = RCFC12_act
3655          !
3656          IF (prt_level .GE.10) THEN
3657             print *,' ->radlwsw, number 1 '
3658          ENDIF
3659          !
3660          CALL radlwsw &
3661               (dist, rmu0, fract,  &
3662                                !albedo SB >>>
3663                                !      paprs, pplay,zxtsol,albsol1, albsol2,  &
3664               paprs, pplay,zxtsol,SFRWL,albsol_dir, albsol_dif,  &
3665                                !albedo SB <<<
3666               t_seri,q_seri,wo, &
3667               cldfrarad, cldemirad, cldtaurad, &
[2542]3668               ok_ade.OR.flag_aerosol_strat.GT.0, ok_aie, flag_aerosol, &
[2488]3669               flag_aerosol_strat, &
3670               tau_aero, piz_aero, cg_aero, &
3671               tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, &
3672               ! Rajoute par OB pour RRTM
3673               tau_aero_lw_rrtm, &
3674               cldtaupirad,new_aod, &
3675               zqsat, flwc, fiwc, &
3676               ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, &
3677               heat,heat0,cool,cool0,albpla, &
3678               topsw,toplw,solsw,sollw, &
3679               sollwdown, &
3680               topsw0,toplw0,solsw0,sollw0, &
3681               lwdn0, lwdn, lwup0, lwup,  &
3682               swdn0, swdn, swup0, swup, &
3683               topswad_aero, solswad_aero, &
3684               topswai_aero, solswai_aero, &
3685               topswad0_aero, solswad0_aero, &
3686               topsw_aero, topsw0_aero, &
3687               solsw_aero, solsw0_aero, &
3688               topswcf_aero, solswcf_aero, &
3689                                !-C. Kleinschmitt for LW diagnostics
3690               toplwad_aero, sollwad_aero,&
3691               toplwai_aero, sollwai_aero, &
3692               toplwad0_aero, sollwad0_aero,&
3693                                !-end
3694               ZLWFT0_i, ZFLDN0, ZFLUP0, &
3695               ZSWFT0_i, ZFSDN0, ZFSUP0)
[879]3696
[2720]3697#ifndef CPP_XIOS
3698          !--OB 30/05/2016 modified 21/10/2016
[2870]3699          !--here we return swaero_diag and dryaod_diag to FALSE
[2542]3700          !--and histdef will switch it back to TRUE if necessary
3701          !--this is necessary to get the right swaero at first step
[2720]3702          !--but only in the case of no XIOS as XIOS is covered elsewhere
[2542]3703          IF (debut) swaero_diag = .FALSE.
[2870]3704          IF (debut) dryaod_diag = .FALSE.
[2720]3705#endif
[2488]3706          !
3707          !IM 2eme calcul radiatif pour le cas perturbe ou au moins un
3708          !IM des taux doit etre different du taux actuel
3709          !IM Par defaut on a les taux perturbes egaux aux taux actuels
3710          !
[2720]3711          IF (ok_4xCO2atm) THEN
3712             IF (RCO2_per.NE.RCO2_act.OR.RCH4_per.NE.RCH4_act.OR.     &
3713                 RN2O_per.NE.RN2O_act.OR.RCFC11_per.NE.RCFC11_act.OR. &
3714                 RCFC12_per.NE.RCFC12_act) THEN
[2488]3715                !
3716                RCO2 = RCO2_per
3717                RCH4 = RCH4_per
3718                RN2O = RN2O_per
3719                RCFC11 = RCFC11_per
3720                RCFC12 = RCFC12_per
3721                !
3722                IF (prt_level .GE.10) THEN
3723                   print *,' ->radlwsw, number 2 '
3724                ENDIF
3725                !
3726                CALL radlwsw &
3727                     (dist, rmu0, fract,  &
3728                                !albedo SB >>>
3729                                !      paprs, pplay,zxtsol,albsol1, albsol2,  &
3730                     paprs, pplay,zxtsol,SFRWL,albsol_dir, albsol_dif, &
3731                                !albedo SB <<<
3732                     t_seri,q_seri,wo, &
[2641]3733                     cldfrarad, cldemirad, cldtaurad, &
[2542]3734                     ok_ade.OR.flag_aerosol_strat.GT.0, ok_aie, flag_aerosol, &
[2488]3735                     flag_aerosol_strat, &
3736                     tau_aero, piz_aero, cg_aero, &
3737                     tau_aero_sw_rrtm, piz_aero_sw_rrtm, cg_aero_sw_rrtm, &
3738                                ! Rajoute par OB pour RRTM
3739                     tau_aero_lw_rrtm, &
3740                     cldtaupi,new_aod, &
3741                     zqsat, flwc, fiwc, &
3742                     ref_liq, ref_ice, ref_liq_pi, ref_ice_pi, &
3743                     heatp,heat0p,coolp,cool0p,albplap, &
3744                     topswp,toplwp,solswp,sollwp, &
3745                     sollwdownp, &
3746                     topsw0p,toplw0p,solsw0p,sollw0p, &
3747                     lwdn0p, lwdnp, lwup0p, lwupp,  &
3748                     swdn0p, swdnp, swup0p, swupp, &
3749                     topswad_aerop, solswad_aerop, &
3750                     topswai_aerop, solswai_aerop, &
3751                     topswad0_aerop, solswad0_aerop, &
3752                     topsw_aerop, topsw0_aerop, &
3753                     solsw_aerop, solsw0_aerop, &
3754                     topswcf_aerop, solswcf_aerop, &
3755                                !-C. Kleinschmitt for LW diagnostics
3756                     toplwad_aerop, sollwad_aerop,&
3757                     toplwai_aerop, sollwai_aerop, &
3758                     toplwad0_aerop, sollwad0_aerop,&
3759                                !-end
3760                     ZLWFT0_i, ZFLDN0, ZFLUP0, &
3761                     ZSWFT0_i, ZFSDN0, ZFSUP0)
3762             endif
3763          endif
3764          !
3765       ENDIF ! aerosol_couple
3766       itaprad = 0
3767       !
3768       !  If Iflag_radia >=2, reset pertubed variables
3769       !
3770       IF (iflag_radia .ge. 2) THEN
3771          zxtsol(:) = zsav_tsol (:)
3772       ENDIF
3773    ENDIF ! MOD(itaprad,radpas)
3774    itaprad = itaprad + 1
[879]3775
[2488]3776    IF (iflag_radia.eq.0) THEN
3777       IF (prt_level.ge.9) THEN
3778          PRINT *,'--------------------------------------------------'
3779          PRINT *,'>>>> ATTENTION rayonnement desactive pour ce cas'
3780          PRINT *,'>>>>           heat et cool mis a zero '
3781          PRINT *,'--------------------------------------------------'
[2720]3782       ENDIF
[2488]3783       heat=0.
3784       cool=0.
3785       sollw=0.   ! MPL 01032011
3786       solsw=0.
3787       radsol=0.
3788       swup=0.    ! MPL 27102011 pour les fichiers AMMA_profiles et AMMA_scalars
3789       swup0=0.
3790       lwup=0.
3791       lwup0=0.
3792       lwdn=0.
3793       lwdn0=0.
[2720]3794    ENDIF
[782]3795
[2488]3796    !
3797    ! Calculer radsol a l'exterieur de radlwsw
3798    ! pour prendre en compte le cycle diurne
3799    ! recode par Olivier Boucher en sept 2015
3800    !
3801    radsol=solsw*swradcorr+sollw
[2641]3802
[2720]3803    IF (ok_4xCO2atm) THEN
[2488]3804       radsolp=solswp*swradcorr+sollwp
[2720]3805    ENDIF
[2359]3806
[2488]3807    !
3808    ! Ajouter la tendance des rayonnements (tous les pas)
3809    ! avec une correction pour le cycle diurne dans le SW
3810    !
[2359]3811
[2488]3812    DO k=1, klev
3813       d_t_swr(:,k)=swradcorr(:)*heat(:,k)*dtime/RDAY
3814       d_t_sw0(:,k)=swradcorr(:)*heat0(:,k)*dtime/RDAY
3815       d_t_lwr(:,k)=-cool(:,k)*dtime/RDAY
3816       d_t_lw0(:,k)=-cool0(:,k)*dtime/RDAY
3817    ENDDO
[2194]3818
[2839]3819    CALL add_phys_tend(du0,dv0,d_t_swr,dq0,dql0,dqi0,paprs,'SW',abortphy,flag_inhib_tend,itap,0)
3820    call prt_enerbil('SW',itap)
3821    CALL add_phys_tend(du0,dv0,d_t_lwr,dq0,dql0,dqi0,paprs,'LW',abortphy,flag_inhib_tend,itap,0)
3822    call prt_enerbil('LW',itap)
[1863]3823
[2488]3824    !
[2720]3825    IF (mydebug) THEN
3826       CALL writefield_phy('u_seri',u_seri,nbp_lev)
3827       CALL writefield_phy('v_seri',v_seri,nbp_lev)
3828       CALL writefield_phy('t_seri',t_seri,nbp_lev)
3829       CALL writefield_phy('q_seri',q_seri,nbp_lev)
3830    ENDIF
[1863]3831
[2488]3832    ! Calculer l'hydrologie de la surface
3833    !
3834    !      CALL hydrol(dtime,pctsrf,rain_fall, snow_fall, zxevap,
3835    !     .            agesno, ftsol,fqsurf,fsnow, ruis)
3836    !
[1001]3837
[2488]3838    !
3839    ! Calculer le bilan du sol et la derive de temperature (couplage)
3840    !
3841    DO i = 1, klon
3842       !         bils(i) = radsol(i) - sens(i) - evap(i)*RLVTT
3843       ! a la demande de JLD
3844       bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
3845    ENDDO
3846    !
3847    !moddeblott(jan95)
3848    ! Appeler le programme de parametrisation de l'orographie
3849    ! a l'echelle sous-maille:
3850    !
3851    IF (prt_level .GE.10) THEN
3852       print *,' call orography ? ', ok_orodr
3853    ENDIF
3854    !
3855    IF (ok_orodr) THEN
3856       !
3857       !  selection des points pour lesquels le shema est actif:
3858       igwd=0
3859       DO i=1,klon
3860          itest(i)=0
3861          !        IF ((zstd(i).gt.10.0)) THEN
3862          IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN
3863             itest(i)=1
3864             igwd=igwd+1
3865             idx(igwd)=i
3866          ENDIF
3867       ENDDO
3868       !        igwdim=MAX(1,igwd)
3869       !
3870       IF (ok_strato) THEN
[1863]3871
[2488]3872          CALL drag_noro_strato(klon,klev,dtime,paprs,pplay, &
3873               zmea,zstd, zsig, zgam, zthe,zpic,zval, &
3874               igwd,idx,itest, &
3875               t_seri, u_seri, v_seri, &
3876               zulow, zvlow, zustrdr, zvstrdr, &
3877               d_t_oro, d_u_oro, d_v_oro)
[1863]3878
[2488]3879       ELSE
3880          CALL drag_noro(klon,klev,dtime,paprs,pplay, &
3881               zmea,zstd, zsig, zgam, zthe,zpic,zval, &
3882               igwd,idx,itest, &
3883               t_seri, u_seri, v_seri, &
3884               zulow, zvlow, zustrdr, zvstrdr, &
3885               d_t_oro, d_u_oro, d_v_oro)
3886       ENDIF
3887       !
3888       !  ajout des tendances
3889       !-----------------------------------------------------------------------
3890       ! ajout des tendances de la trainee de l'orographie
3891       CALL add_phys_tend(d_u_oro,d_v_oro,d_t_oro,dq0,dql0,dqi0,paprs,'oro', &
[2839]3892            abortphy,flag_inhib_tend,itap,0)
3893       call prt_enerbil('oro',itap)
[2488]3894       !----------------------------------------------------------------------
3895       !
3896    ENDIF ! fin de test sur ok_orodr
3897    !
[2720]3898    IF (mydebug) THEN
3899       CALL writefield_phy('u_seri',u_seri,nbp_lev)
3900       CALL writefield_phy('v_seri',v_seri,nbp_lev)
3901       CALL writefield_phy('t_seri',t_seri,nbp_lev)
3902       CALL writefield_phy('q_seri',q_seri,nbp_lev)
3903    ENDIF
[1001]3904
[2488]3905    IF (ok_orolf) THEN
3906       !
3907       !  selection des points pour lesquels le shema est actif:
3908       igwd=0
3909       DO i=1,klon
3910          itest(i)=0
3911          IF ((zpic(i)-zmea(i)).GT.100.) THEN
3912             itest(i)=1
3913             igwd=igwd+1
3914             idx(igwd)=i
3915          ENDIF
3916       ENDDO
3917       !        igwdim=MAX(1,igwd)
3918       !
3919       IF (ok_strato) THEN
[1001]3920
[2488]3921          CALL lift_noro_strato(klon,klev,dtime,paprs,pplay, &
3922               latitude_deg,zmea,zstd,zpic,zgam,zthe,zpic,zval, &
3923               igwd,idx,itest, &
3924               t_seri, u_seri, v_seri, &
3925               zulow, zvlow, zustrli, zvstrli, &
3926               d_t_lif, d_u_lif, d_v_lif               )
[2333]3927
[2488]3928       ELSE
3929          CALL lift_noro(klon,klev,dtime,paprs,pplay, &
3930               latitude_deg,zmea,zstd,zpic, &
3931               itest, &
3932               t_seri, u_seri, v_seri, &
3933               zulow, zvlow, zustrli, zvstrli, &
3934               d_t_lif, d_u_lif, d_v_lif)
3935       ENDIF
[1638]3936
[2488]3937       ! ajout des tendances de la portance de l'orographie
3938       CALL add_phys_tend(d_u_lif, d_v_lif, d_t_lif, dq0, dql0, dqi0, paprs, &
[2839]3939            'lif', abortphy,flag_inhib_tend,itap,0)
3940       call prt_enerbil('lif',itap)
[2488]3941    ENDIF ! fin de test sur ok_orolf
[1638]3942
[2488]3943    IF (ok_hines) then
3944       !  HINES GWD PARAMETRIZATION
3945       east_gwstress=0.
3946       west_gwstress=0.
3947       du_gwd_hines=0.
3948       dv_gwd_hines=0.
3949       CALL hines_gwd(klon, klev, dtime, paprs, pplay, latitude_deg, t_seri, &
3950            u_seri, v_seri, zustr_gwd_hines, zvstr_gwd_hines, d_t_hin, &
3951            du_gwd_hines, dv_gwd_hines)
3952       zustr_gwd_hines=0.
3953       zvstr_gwd_hines=0.
3954       DO k = 1, klev
3955          zustr_gwd_hines(:)=zustr_gwd_hines(:)+ du_gwd_hines(:, k)/dtime &
3956               * (paprs(:, k)-paprs(:, k+1))/rg
3957          zvstr_gwd_hines(:)=zvstr_gwd_hines(:)+ dv_gwd_hines(:, k)/dtime &
3958               * (paprs(:, k)-paprs(:, k+1))/rg
3959       ENDDO
[1001]3960
[2488]3961       d_t_hin(:, :)=0.
3962       CALL add_phys_tend(du_gwd_hines, dv_gwd_hines, d_t_hin, dq0, dql0, &
[2839]3963            dqi0, paprs, 'hin', abortphy,flag_inhib_tend,itap,0)
3964       call prt_enerbil('hin',itap)
[2488]3965    ENDIF
[2333]3966
[2488]3967    IF (.not. ok_hines .and. ok_gwd_rando) then
3968       CALL acama_GWD_rando(DTIME, pplay, latitude_deg, t_seri, u_seri, &
3969            v_seri, rot, zustr_gwd_front, zvstr_gwd_front, du_gwd_front, &
3970            dv_gwd_front, east_gwstress, west_gwstress)
3971       zustr_gwd_front=0.
3972       zvstr_gwd_front=0.
3973       DO k = 1, klev
3974          zustr_gwd_front(:)=zustr_gwd_front(:)+ du_gwd_front(:, k)/dtime &
3975               * (paprs(:, k)-paprs(:, k+1))/rg
3976          zvstr_gwd_front(:)=zvstr_gwd_front(:)+ dv_gwd_front(:, k)/dtime &
3977               * (paprs(:, k)-paprs(:, k+1))/rg
3978       ENDDO
[644]3979
[2488]3980       CALL add_phys_tend(du_gwd_front, dv_gwd_front, dt0, dq0, dql0, dqi0, &
[2839]3981            paprs, 'front_gwd_rando', abortphy,flag_inhib_tend,itap,0)
3982       call prt_enerbil('front_gwd_rando',itap)
[2488]3983    ENDIF
[1938]3984
[2720]3985    IF (ok_gwd_rando) THEN
3986       CALL FLOTT_GWD_rando(DTIME, pplay, t_seri, u_seri, v_seri, &
[2488]3987            rain_fall + snow_fall, zustr_gwd_rando, zvstr_gwd_rando, &
3988            du_gwd_rando, dv_gwd_rando, east_gwstress, west_gwstress)
3989       CALL add_phys_tend(du_gwd_rando, dv_gwd_rando, dt0, dq0, dql0, dqi0, &
[2839]3990            paprs, 'flott_gwd_rando', abortphy,flag_inhib_tend,itap,0)
3991       call prt_enerbil('flott_gwd_rando',itap)
[2488]3992       zustr_gwd_rando=0.
3993       zvstr_gwd_rando=0.
3994       DO k = 1, klev
3995          zustr_gwd_rando(:)=zustr_gwd_rando(:)+ du_gwd_rando(:, k)/dtime &
3996               * (paprs(:, k)-paprs(:, k+1))/rg
3997          zvstr_gwd_rando(:)=zvstr_gwd_rando(:)+ dv_gwd_rando(:, k)/dtime &
3998               * (paprs(:, k)-paprs(:, k+1))/rg
3999       ENDDO
[2720]4000    ENDIF
[766]4001
[2488]4002    ! STRESS NECESSAIRES: TOUTE LA PHYSIQUE
[1279]4003
[2720]4004    IF (mydebug) THEN
4005       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4006       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4007       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4008       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4009    ENDIF
[2136]4010
[2488]4011    DO i = 1, klon
4012       zustrph(i)=0.
4013       zvstrph(i)=0.
4014    ENDDO
4015    DO k = 1, klev
4016       DO i = 1, klon
4017          zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime* &
4018               (paprs(i,k)-paprs(i,k+1))/rg
4019          zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime* &
4020               (paprs(i,k)-paprs(i,k+1))/rg
4021       ENDDO
4022    ENDDO
4023    !
4024    !IM calcul composantes axiales du moment angulaire et couple des montagnes
4025    !
4026    IF (is_sequential .and. ok_orodr) THEN
4027       CALL aaam_bud (27,klon,klev,jD_cur-jD_ref,jH_cur, &
4028            ra,rg,romega, &
4029            latitude_deg,longitude_deg,pphis, &
4030            zustrdr,zustrli,zustrph, &
4031            zvstrdr,zvstrli,zvstrph, &
4032            paprs,u,v, &
4033            aam, torsfc)
4034    ENDIF
4035    !IM cf. FLott END
4036    !DC Calcul de la tendance due au methane
4037    IF(ok_qch4) THEN
4038       CALL METHOX(1,klon,klon,klev,q_seri,d_q_ch4,pplay)
4039       ! ajout de la tendance d'humidite due au methane
[2839]4040       d_q_ch4_dtime(:,:) = d_q_ch4(:,:)*dtime
4041       CALL add_phys_tend(du0, dv0, dt0, d_q_ch4_dtime, dql0, dqi0, paprs, &
4042            'q_ch4', abortphy,flag_inhib_tend,itap,0)
4043       d_q_ch4(:,:) = d_q_ch4_dtime(:,:)/dtime
[2720]4044    ENDIF
[2488]4045    !
4046    !
4047    !====================================================================
4048    ! Interface Simulateur COSP (Calipso, ISCCP, MISR, ..)
4049    !====================================================================
4050    ! Abderrahmane 24.08.09
4051
4052    IF (ok_cosp) THEN
4053       ! adeclarer
[1279]4054#ifdef CPP_COSP
[2488]4055       IF (itap.eq.1.or.MOD(itap,NINT(freq_cosp/dtime)).EQ.0) THEN
[1279]4056
[2488]4057          IF (prt_level .GE.10) THEN
4058             print*,'freq_cosp',freq_cosp
4059          ENDIF
4060          mr_ozone=wo(:, :, 1) * dobson_u * 1e3 / zmasse
4061          !       print*,'Dans physiq.F avant appel cosp ref_liq,ref_ice=',
4062          !     s        ref_liq,ref_ice
[2720]4063          CALL phys_cosp(itap,dtime,freq_cosp, &
[2488]4064               ok_mensuelCOSP,ok_journeCOSP,ok_hfCOSP, &
[2839]4065               ecrit_mth,ecrit_day,ecrit_hf, ok_all_xml, missing_val, &
[2488]4066               klon,klev,longitude_deg,latitude_deg,presnivs,overlap, &
4067               JrNt,ref_liq,ref_ice, &
4068               pctsrf(:,is_ter)+pctsrf(:,is_lic), &
4069               zu10m,zv10m,pphis, &
4070               zphi,paprs(:,1:klev),pplay,zxtsol,t_seri, &
4071               qx(:,:,ivap),zx_rh,cldfra,rnebcon,flwc,fiwc, &
4072               prfl(:,1:klev),psfl(:,1:klev), &
4073               pmflxr(:,1:klev),pmflxs(:,1:klev), &
4074               mr_ozone,cldtau, cldemi)
[1412]4075
[2488]4076          !     L         calipso2D,calipso3D,cfadlidar,parasolrefl,atb,betamol,
4077          !     L          cfaddbze,clcalipso2,dbze,cltlidarradar,
4078          !     M          clMISR,
4079          !     R          clisccp2,boxtauisccp,boxptopisccp,tclisccp,ctpisccp,
4080          !     I          tauisccp,albisccp,meantbisccp,meantbclrisccp)
[1279]4081
[2488]4082       ENDIF
[1279]4083
4084#endif
[2488]4085    ENDIF  !ok_cosp
[2594]4086
4087
4088! Marine
4089
4090  IF (ok_airs) then
4091
4092  IF (itap.eq.1.or.MOD(itap,NINT(freq_airs/dtime)).EQ.0) THEN
[2720]4093     write(*,*) 'je vais appeler simu_airs, ok_airs, freq_airs=', ok_airs, freq_airs
4094     CALL simu_airs(itap,rneb, t_seri, cldemi, fiwc, ref_ice, pphi, pplay, paprs,&
4095        & map_prop_hc,map_prop_hist,&
4096        & map_emis_hc,map_iwp_hc,map_deltaz_hc,map_pcld_hc,map_tcld_hc,&
4097        & map_emis_Cb,map_pcld_Cb,map_tcld_Cb,&
4098        & map_emis_ThCi,map_pcld_ThCi,map_tcld_ThCi,&
4099        & map_emis_Anv,map_pcld_Anv,map_tcld_Anv,&
4100        & map_emis_hist,map_iwp_hist,map_deltaz_hist,map_rad_hist,&
4101        & map_ntot,map_hc,map_hist,&
4102        & map_Cb,map_ThCi,map_Anv,&
4103        & alt_tropo )
[2594]4104  ENDIF
4105
4106  ENDIF  ! ok_airs
4107
4108
[2488]4109    ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4110    !AA
4111    !AA Installation de l'interface online-offline pour traceurs
4112    !AA
4113    !====================================================================
4114    !   Calcul  des tendances traceurs
4115    !====================================================================
4116    !
[959]4117
[2488]4118    IF (type_trac=='repr') THEN
4119       sh_in(:,:) = q_seri(:,:)
4120    ELSE
4121       sh_in(:,:) = qx(:,:,ivap)
[2787]4122       ch_in(:,:) = qx(:,:,iliq)
[2720]4123    ENDIF
[1565]4124
[2641]4125#ifdef CPP_Dust
4126      CALL       phytracr_spl ( debut,lafin , jD_cur,jH_cur,iflag_con,       &  ! I
4127                      pdtphys,ftsol,                                   &  ! I
4128                      t,q_seri,paprs,pplay,RHcl,                  &  ! I
4129                      pmfu, pmfd, pen_u, pde_u, pen_d, pde_d,          &  ! I
4130                      coefh(1:klon,1:klev,is_ave), cdragh, cdragm, u1, v1,                 &  ! I
4131                      u_seri, v_seri, latitude_deg, longitude_deg,  &
4132                      pphis,pctsrf,pmflxr,pmflxs,prfl,psfl,            &  ! I
4133                      da,phi,phi2,d1a,dam,mp,ep,sigd,sij,clw,elij,     &  ! I
4134                      epmlmMm,eplaMm,upwd,dnwd,itop_con,ibas_con,      &  ! I
4135                      ev,wdtrainA,  wdtrainM,wght_cvfd,              &  ! I
4136                      fm_therm, entr_therm, rneb,                      &  ! I
4137                      beta_prec_fisrt,beta_prec, & !I
4138                      zu10m,zv10m,wstar,ale_bl,ale_wake,               &  ! I
4139                      d_tr_dyn,tr_seri)
4140
4141#else
4142
[2720]4143    CALL phytrac ( &
[2488]4144         itap,     days_elapsed+1,    jH_cur,   debut, &
4145         lafin,    dtime,     u, v,     t, &
4146         paprs,    pplay,     pmfu,     pmfd, &
4147         pen_u,    pde_u,     pen_d,    pde_d, &
4148         cdragh,   coefh(1:klon,1:klev,is_ave),   fm_therm, entr_therm, &
4149         u1,       v1,        ftsol,    pctsrf, &
4150         zustar,   zu10m,     zv10m, &
4151         wstar(:,is_ave),    ale_bl,         ale_wake, &
4152         latitude_deg, longitude_deg, &
4153         frac_impa,frac_nucl, beta_prec_fisrt,beta_prec, &
4154         presnivs, pphis,     pphi,     albsol1, &
[2787]4155         sh_in,   ch_in,    rhcl,      cldfra,   rneb, &
[2488]4156         diafra,   cldliq,    itop_con, ibas_con, &
4157         pmflxr,   pmflxs,    prfl,     psfl, &
4158         da,       phi,       mp,       upwd, &
4159         phi2,     d1a,       dam,      sij, wght_cvfd, &        !<<RomP+RL
4160         wdtrainA, wdtrainM,  sigd,     clw,elij, &   !<<RomP
4161         ev,       ep,        epmlmMm,  eplaMm, &     !<<RomP
4162         dnwd,     aerosol_couple,      flxmass_w, &
4163         tau_aero, piz_aero,  cg_aero,  ccm, &
4164         rfname, &
4165         d_tr_dyn, &                                 !<<RomP
4166         tr_seri)
[2641]4167#endif
[524]4168
[2488]4169    IF (offline) THEN
[524]4170
[2488]4171       IF (prt_level.ge.9) &
4172            print*,'Attention on met a 0 les thermiques pour phystoke'
[2720]4173       CALL phystokenc ( &
[2488]4174            nlon,klev,pdtphys,longitude_deg,latitude_deg, &
4175            t,pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, &
4176            fm_therm,entr_therm, &
4177            cdragh,coefh(1:klon,1:klev,is_ave),u1,v1,ftsol,pctsrf, &
4178            frac_impa, frac_nucl, &
4179            pphis,cell_area,dtime,itap, &
4180            qx(:,:,ivap),da,phi,mp,upwd,dnwd)
[524]4181
4182
[2488]4183    ENDIF
[524]4184
[2488]4185    !
4186    ! Calculer le transport de l'eau et de l'energie (diagnostique)
4187    !
4188    CALL transp (paprs,zxtsol, &
4189         t_seri, q_seri, u_seri, v_seri, zphi, &
4190         ve, vq, ue, uq)
4191    !
4192    !IM global posePB BEG
4193    IF(1.EQ.0) THEN
4194       !
4195       CALL transp_lay (paprs,zxtsol, &
4196            t_seri, q_seri, u_seri, v_seri, zphi, &
4197            ve_lay, vq_lay, ue_lay, uq_lay)
4198       !
4199    ENDIF !(1.EQ.0) THEN
4200    !IM global posePB END
4201    ! Accumuler les variables a stocker dans les fichiers histoire:
4202    !
[1279]4203
[2488]4204    !================================================================
4205    ! Conversion of kinetic and potential energy into heat, for
4206    ! parameterisation of subgrid-scale motions
4207    !================================================================
[1753]4208
[2488]4209    d_t_ec(:,:)=0.
4210    forall (k=1: nbp_lev) exner(:, k) = (pplay(:, k)/paprs(:,1))**RKAPPA
[2870]4211    CALL ener_conserv(klon,klev,pdtphys,u,v,t,qx(:,:,ivap),qx(:,:,iliq),qx(:,:,isol), &
4212         u_seri,v_seri,t_seri,q_seri,ql_seri,qs_seri,pbl_tke(:,:,is_ave)-tke0(:,:), &
[2488]4213         zmasse,exner,d_t_ec)
4214    t_seri(:,:)=t_seri(:,:)+d_t_ec(:,:)
[1753]4215
[2488]4216    !=======================================================================
4217    !   SORTIES
4218    !=======================================================================
4219    !
4220    !IM initialisation + calculs divers diag AMIP2
4221    !
4222    include "calcul_divers.h"
4223    !
4224    !IM Interpolation sur les niveaux de pression du NMC
4225    !   -------------------------------------------------
[2271]4226#ifdef CPP_XIOS
[2488]4227    !$OMP MASTER
4228    !On recupere la valeur de la missing value donnee dans le xml
4229    CALL xios_get_field_attr("t850",default_value=missing_val_omp)
4230    !         PRINT *,"ARNAUD value missing ",missing_val_omp
4231    !$OMP END MASTER
4232    !$OMP BARRIER
4233    missing_val=missing_val_omp
[2271]4234#endif
4235#ifndef CPP_XIOS
[2488]4236    missing_val=missing_val_nf90
[2271]4237#endif
[2488]4238    !
4239    include "calcul_STDlev.h"
4240    !
4241    ! slp sea level pressure derived from Arpege-IFS : CALL ctstar + CALL pppmer
4242    CALL diag_slp(klon,t_seri,paprs,pplay,pphis,ptstar,pt0,slp)
4243    !
[2542]4244    !cc prw  = eau precipitable
4245    !   prlw = colonne eau liquide
4246    !   prlw = colonne eau solide
4247    prw(:) = 0.
4248    prlw(:) = 0.
4249    prsw(:) = 0.
4250    DO k = 1, klev
4251       prw(:)  = prw(:)  + q_seri(:,k)*zmasse(:,k)
4252       prlw(:) = prlw(:) + ql_seri(:,k)*zmasse(:,k)
4253       prsw(:) = prsw(:) + qs_seri(:,k)*zmasse(:,k)
[2488]4254    ENDDO
4255    !
4256    IF (type_trac == 'inca') THEN
[655]4257#ifdef INCA
[2488]4258       CALL VTe(VTphysiq)
4259       CALL VTb(VTinca)
[959]4260
[2488]4261       CALL chemhook_end ( &
4262            dtime, &
4263            pplay, &
4264            t_seri, &
4265            tr_seri, &
4266            nbtr, &
4267            paprs, &
4268            q_seri, &
4269            cell_area, &
4270            pphi, &
4271            pphis, &
[2839]4272            zx_rh, &
4273            aps, bps)
[959]4274
[2488]4275       CALL VTe(VTinca)
4276       CALL VTb(VTphysiq)
[655]4277#endif
[2720]4278    ENDIF
[655]4279
[1753]4280
[2488]4281    !
4282    ! Convertir les incrementations en tendances
4283    !
4284    IF (prt_level .GE.10) THEN
4285       print *,'Convertir les incrementations en tendances '
4286    ENDIF
4287    !
[2720]4288    IF (mydebug) THEN
4289       CALL writefield_phy('u_seri',u_seri,nbp_lev)
4290       CALL writefield_phy('v_seri',v_seri,nbp_lev)
4291       CALL writefield_phy('t_seri',t_seri,nbp_lev)
4292       CALL writefield_phy('q_seri',q_seri,nbp_lev)
4293    ENDIF
[766]4294
[2488]4295    DO k = 1, klev
4296       DO i = 1, klon
4297          d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime
4298          d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime
4299          d_t(i,k) = ( t_seri(i,k)-t(i,k) ) / dtime
4300          d_qx(i,k,ivap) = ( q_seri(i,k) - qx(i,k,ivap) ) / dtime
4301          d_qx(i,k,iliq) = ( ql_seri(i,k) - qx(i,k,iliq) ) / dtime
4302          !CR: on ajoute le contenu en glace
[2720]4303          IF (nqo.eq.3) THEN
[2488]4304             d_qx(i,k,isol) = ( qs_seri(i,k) - qx(i,k,isol) ) / dtime
[2720]4305          ENDIF
[2488]4306       ENDDO
4307    ENDDO
4308    !
4309    !CR: nb de traceurs eau: nqo
4310    !  IF (nqtot.GE.3) THEN
4311    IF (nqtot.GE.(nqo+1)) THEN
4312       !     DO iq = 3, nqtot
4313       DO iq = nqo+1, nqtot
4314          DO  k = 1, klev
4315             DO  i = 1, klon
4316                ! d_qx(i,k,iq) = ( tr_seri(i,k,iq-2) - qx(i,k,iq) ) / dtime
4317                d_qx(i,k,iq) = ( tr_seri(i,k,iq-nqo) - qx(i,k,iq) ) / dtime
4318             ENDDO
4319          ENDDO
4320       ENDDO
4321    ENDIF
4322    !
4323    !IM rajout diagnostiques bilan KP pour analyse MJO par Jun-Ichi Yano
4324    !IM global posePB      include "write_bilKP_ins.h"
4325    !IM global posePB      include "write_bilKP_ave.h"
4326    !
[1412]4327
[2542]4328    !--OB mass fixer
4329    !--profile is corrected to force mass conservation of water
4330    IF (mass_fixer) THEN
4331    qql2(:)=0.0
[2488]4332    DO k = 1, klev
[2542]4333      qql2(:)=qql2(:)+(q_seri(:,k)+ql_seri(:,k)+qs_seri(:,k))*zmasse(:,k)
[2488]4334    ENDDO
[2542]4335    DO i = 1, klon
4336      !--compute ratio of what q+ql should be with conservation to what it is
4337      corrqql=(qql1(i)+(evap(i)-rain_fall(i)-snow_fall(i))*pdtphys)/qql2(i)
4338      DO k = 1, klev
4339        q_seri(i,k) =q_seri(i,k)*corrqql
4340        ql_seri(i,k)=ql_seri(i,k)*corrqql
4341      ENDDO
4342    ENDDO
4343    ENDIF
4344    !--fin mass fixer
[1742]4345
[2542]4346    ! Sauvegarder les valeurs de t et q a la fin de la physique:
4347    !
4348    u_ancien(:,:)  = u_seri(:,:)
4349    v_ancien(:,:)  = v_seri(:,:)
4350    t_ancien(:,:)  = t_seri(:,:)
4351    q_ancien(:,:)  = q_seri(:,:)
4352    ql_ancien(:,:) = ql_seri(:,:)
4353    qs_ancien(:,:) = qs_seri(:,:)
4354    CALL water_int(klon,klev,q_ancien,zmasse,prw_ancien)
4355    CALL water_int(klon,klev,ql_ancien,zmasse,prlw_ancien)
4356    CALL water_int(klon,klev,qs_ancien,zmasse,prsw_ancien)
[2488]4357    ! !! RomP >>>
4358    !CR: nb de traceurs eau: nqo
[2542]4359    IF (nqtot.GT.nqo) THEN
[2488]4360       DO iq = nqo+1, nqtot
[2542]4361          tr_ancien(:,:,iq-nqo) = tr_seri(:,:,iq-nqo)
[2488]4362       ENDDO
4363    ENDIF
4364    ! !! RomP <<<
4365    !==========================================================================
4366    ! Sorties des tendances pour un point particulier
4367    ! a utiliser en 1D, avec igout=1 ou en 3D sur un point particulier
4368    ! pour le debug
4369    ! La valeur de igout est attribuee plus haut dans le programme
4370    !==========================================================================
[879]4371
[2720]4372    IF (prt_level.ge.1) THEN
[2488]4373       write(lunout,*) 'FIN DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
4374       write(lunout,*) &
4375            'nlon,klev,nqtot,debut,lafin,jD_cur, jH_cur, pdtphys pct tlos'
4376       write(lunout,*) &
4377            nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur ,pdtphys, &
4378            pctsrf(igout,is_ter), pctsrf(igout,is_lic),pctsrf(igout,is_oce), &
4379            pctsrf(igout,is_sic)
4380       write(lunout,*) 'd_t_dyn,d_t_con,d_t_lsc,d_t_ajsb,d_t_ajs,d_t_eva'
[2720]4381       DO k=1,klev
[2488]4382          write(lunout,*) d_t_dyn(igout,k),d_t_con(igout,k), &
4383               d_t_lsc(igout,k),d_t_ajsb(igout,k),d_t_ajs(igout,k), &
4384               d_t_eva(igout,k)
[2720]4385       ENDDO
[2488]4386       write(lunout,*) 'cool,heat'
[2720]4387       DO k=1,klev
[2488]4388          write(lunout,*) cool(igout,k),heat(igout,k)
[2720]4389       ENDDO
[879]4390
[2488]4391       !jyg<     (En attendant de statuer sur le sort de d_t_oli)
4392       !jyg!     write(lunout,*) 'd_t_oli,d_t_vdf,d_t_oro,d_t_lif,d_t_ec'
4393       !jyg!     do k=1,klev
4394       !jyg!        write(lunout,*) d_t_oli(igout,k),d_t_vdf(igout,k), &
4395       !jyg!             d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k)
4396       !jyg!     enddo
4397       write(lunout,*) 'd_t_vdf,d_t_oro,d_t_lif,d_t_ec'
[2720]4398       DO k=1,klev
[2488]4399          write(lunout,*) d_t_vdf(igout,k), &
4400               d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k)
[2720]4401       ENDDO
[2488]4402       !>jyg
[879]4403
[2488]4404       write(lunout,*) 'd_ps ',d_ps(igout)
4405       write(lunout,*) 'd_u, d_v, d_t, d_qx1, d_qx2 '
[2720]4406       DO k=1,klev
[2488]4407          write(lunout,*) d_u(igout,k),d_v(igout,k),d_t(igout,k), &
4408               d_qx(igout,k,1),d_qx(igout,k,2)
[2720]4409       ENDDO
4410    ENDIF
[879]4411
[2488]4412    !============================================================
4413    !   Calcul de la temperature potentielle
4414    !============================================================
4415    DO k = 1, klev
4416       DO i = 1, klon
4417          !JYG/IM theta en debut du pas de temps
4418          !JYG/IM       theta(i,k)=t(i,k)*(100000./pplay(i,k))**(RD/RCPD)
4419          !JYG/IM theta en fin de pas de temps de physique
4420          theta(i,k)=t_seri(i,k)*(100000./pplay(i,k))**(RD/RCPD)
4421          ! thetal: 2 lignes suivantes a decommenter si vous avez les fichiers
4422          !     MPL 20130625
4423          ! fth_fonctions.F90 et parkind1.F90
4424          ! sinon thetal=theta
4425          !       thetal(i,k)=fth_thetal(pplay(i,k),t_seri(i,k),q_seri(i,k),
4426          !    :         ql_seri(i,k))
4427          thetal(i,k)=theta(i,k)
4428       ENDDO
4429    ENDDO
4430    !
[879]4431
[2488]4432    ! 22.03.04 BEG
4433    !=============================================================
4434    !   Ecriture des sorties
4435    !=============================================================
[524]4436#ifdef CPP_IOIPSL
4437
[2488]4438    ! Recupere des varibles calcule dans differents modules
4439    ! pour ecriture dans histxxx.nc
[782]4440
[2488]4441    ! Get some variables from module fonte_neige_mod
4442    CALL fonte_neige_get_vars(pctsrf,  &
[2542]4443         zxfqcalving, zxfqfonte, zxffonte, zxrunofflic)
[782]4444
[1507]4445
[2488]4446    !=============================================================
4447    ! Separation entre thermiques et non thermiques dans les sorties
4448    ! de fisrtilp
4449    !=============================================================
[1507]4450
[2720]4451    IF (iflag_thermals>=1) THEN
[2488]4452       d_t_lscth=0.
4453       d_t_lscst=0.
4454       d_q_lscth=0.
4455       d_q_lscst=0.
[2720]4456       DO k=1,klev
4457          DO i=1,klon
4458             IF (ptconvth(i,k)) THEN
[2488]4459                d_t_lscth(i,k)=d_t_eva(i,k)+d_t_lsc(i,k)
4460                d_q_lscth(i,k)=d_q_eva(i,k)+d_q_lsc(i,k)
[2720]4461             ELSE
[2488]4462                d_t_lscst(i,k)=d_t_eva(i,k)+d_t_lsc(i,k)
4463                d_q_lscst(i,k)=d_q_eva(i,k)+d_q_lsc(i,k)
[2720]4464             ENDIF
4465          ENDDO
4466       ENDDO
[1507]4467
[2720]4468       DO i=1,klon
[2488]4469          plul_st(i)=prfl(i,lmax_th(i)+1)+psfl(i,lmax_th(i)+1)
4470          plul_th(i)=prfl(i,1)+psfl(i,1)
[2720]4471       ENDDO
4472    ENDIF
[909]4473
[2488]4474    !On effectue les sorties:
[1791]4475
[2641]4476#ifdef CPP_Dust
4477  CALL phys_output_write_spl(itap, pdtphys, paprs, pphis,  &
4478       pplay, lmax_th, aerosol_couple,                 &
4479       ok_ade, ok_aie, ivap, new_aod, ok_sync,         &
4480       ptconv, read_climoz, clevSTD,                   &
4481       ptconvth, d_t, qx, d_qx, d_tr_dyn, zmasse,      &
4482       flag_aerosol, flag_aerosol_strat, ok_cdnc)
4483#else
[2488]4484    CALL phys_output_write(itap, pdtphys, paprs, pphis,  &
4485         pplay, lmax_th, aerosol_couple,                 &
[2542]4486         ok_ade, ok_aie, ivap, iliq, isol, new_aod,      &
4487         ok_sync, ptconv, read_climoz, clevSTD,          &
[2720]4488         ptconvth, d_u, d_t, qx, d_qx, zmasse,           &
[2488]4489         flag_aerosol, flag_aerosol_strat, ok_cdnc)
[2641]4490#endif
[1791]4491
[2669]4492#ifndef CPP_XIOS
[2595]4493    CALL write_paramLMDZ_phy(itap,nid_ctesGCM,ok_sync)
[2669]4494#endif
[687]4495
[524]4496#endif
4497
[2235]4498
[2488]4499    !====================================================================
4500    ! Arret du modele apres hgardfou en cas de detection d'un
4501    ! plantage par hgardfou
4502    !====================================================================
[2235]4503
4504    IF (abortphy==1) THEN
4505       abort_message ='Plantage hgardfou'
[2311]4506       CALL abort_physic (modname,abort_message,1)
[2235]4507    ENDIF
4508
[2488]4509    ! 22.03.04 END
4510    !
4511    !====================================================================
4512    ! Si c'est la fin, il faut conserver l'etat de redemarrage
4513    !====================================================================
4514    !
[782]4515
[2488]4516    IF (lafin) THEN
4517       itau_phy = itau_phy + itap
4518       CALL phyredem ("restartphy.nc")
4519       !         open(97,form="unformatted",file="finbin")
4520       !         write(97) u_seri,v_seri,t_seri,q_seri
4521       !         close(97)
4522       !$OMP MASTER
[2720]4523       IF (read_climoz >= 1) THEN
4524          IF (is_mpi_root) THEN
4525             CALL nf95_close(ncid_climoz)
4526          ENDIF
[2839]4527          DEALLOCATE(press_edg_climoz) ! pointer
4528          DEALLOCATE(press_cen_climoz) ! pointer
[2720]4529       ENDIF
[2488]4530       !$OMP END MASTER
4531    ENDIF
[1863]4532
[2488]4533    !      first=.false.
[1863]4534
[2418]4535
[2488]4536  END SUBROUTINE physiq
[2418]4537
4538END MODULE physiq_mod
Note: See TracBrowser for help on using the repository browser.