[1754] | 1 | subroutine ener_conserv(klon,klev,pdtphys, & |
---|
[2870] | 2 | & puo,pvo,pto,pqo,pql0,pqs0, & |
---|
| 3 | & pun,pvn,ptn,pqn,pqln,pqsn,dtke,masse,exner,d_t_ec) |
---|
[1754] | 4 | |
---|
| 5 | !============================================================= |
---|
| 6 | ! Energy conservation |
---|
| 7 | ! Based on the TKE equation |
---|
| 8 | ! The M2 and N2 terms at the origin of TKE production are |
---|
| 9 | ! concerted into heating in the d_t_ec term |
---|
| 10 | ! Option 1 is the standard |
---|
| 11 | ! 101 is for M2 term only |
---|
| 12 | ! 101 for N2 term only |
---|
| 13 | ! -1 is a previours treatment for kinetic energy only |
---|
| 14 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
| 15 | !============================================================= |
---|
| 16 | |
---|
| 17 | !============================================================= |
---|
| 18 | ! Declarations |
---|
| 19 | !============================================================= |
---|
| 20 | |
---|
| 21 | ! From module |
---|
[2870] | 22 | USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs, & |
---|
| 23 | & d_u_con,d_v_con,d_t_con,d_t_diss |
---|
[2056] | 24 | USE phys_local_var_mod, ONLY : d_t_eva,d_t_lsc,d_q_eva,d_q_lsc |
---|
| 25 | USE phys_output_var_mod, ONLY : bils_ec,bils_ech,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss |
---|
[2886] | 26 | USE add_phys_tend_mod, ONLY : fl_cor_ebil |
---|
[1754] | 27 | |
---|
| 28 | IMPLICIT none |
---|
| 29 | #include "YOMCST.h" |
---|
| 30 | #include "YOETHF.h" |
---|
| 31 | #include "clesphys.h" |
---|
[1761] | 32 | #include "compbl.h" |
---|
[1754] | 33 | |
---|
| 34 | ! Arguments |
---|
| 35 | INTEGER, INTENT(IN) :: klon,klev |
---|
| 36 | REAL, INTENT(IN) :: pdtphys |
---|
[2870] | 37 | REAL, DIMENSION(klon,klev), INTENT(IN) :: puo,pvo,pto,pqo,pql0,pqs0 |
---|
| 38 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pun,pvn,ptn,pqn,pqln,pqsn |
---|
| 39 | REAL, DIMENSION(klon,klev), INTENT(IN) :: masse,exner |
---|
| 40 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: dtke |
---|
| 41 | ! |
---|
| 42 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_t_ec |
---|
[1754] | 43 | |
---|
| 44 | ! Local |
---|
[2870] | 45 | integer k,i |
---|
[1754] | 46 | REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt |
---|
| 47 | REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt |
---|
[2056] | 48 | REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu,d_t_ech |
---|
[1754] | 49 | REAL ZRCPD |
---|
| 50 | |
---|
| 51 | character*80 abort_message |
---|
| 52 | character*20 :: modname |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | modname='ener_conser' |
---|
| 56 | d_t_ec(:,:)=0. |
---|
| 57 | |
---|
| 58 | IF (iflag_ener_conserv==-1) THEN |
---|
| 59 | !+jld ec_conser |
---|
| 60 | DO k = 1, klev |
---|
| 61 | DO i = 1, klon |
---|
[2886] | 62 | IF (fl_cor_ebil .GT. 0) then |
---|
| 63 | ZRCPD = RCPD*(1.0+RVTMP2*(pqn(i,k)+pqln(i,k)+pqsn(i,k))) |
---|
| 64 | ELSE |
---|
| 65 | ZRCPD = RCPD*(1.0+RVTMP2*pqn(i,k)) |
---|
| 66 | ENDIF |
---|
| 67 | d_t_ec(i,k)=0.5/ZRCPD & |
---|
| 68 | & *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2) |
---|
| 69 | ENDDO |
---|
| 70 | ENDDO |
---|
[1754] | 71 | !-jld ec_conser |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | ELSEIF (iflag_ener_conserv>=1) THEN |
---|
| 76 | |
---|
| 77 | IF (iflag_ener_conserv<=2) THEN |
---|
[1761] | 78 | ! print*,'ener_conserv pbl=',iflag_pbl |
---|
| 79 | IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv |
---|
| 80 | d_t(:,:)=d_t_ajs(:,:) ! d_t_ajs = adjust + thermals |
---|
| 81 | d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:) |
---|
| 82 | d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:) |
---|
| 83 | ELSE |
---|
| 84 | d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) ! d_t_ajs = adjust + thermals |
---|
| 85 | d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) |
---|
| 86 | d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) |
---|
| 87 | ENDIF |
---|
[1754] | 88 | ELSEIF (iflag_ener_conserv==101) THEN |
---|
| 89 | d_t(:,:)=0. |
---|
| 90 | d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:) |
---|
| 91 | d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:) |
---|
| 92 | ELSEIF (iflag_ener_conserv==110) THEN |
---|
| 93 | d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:) |
---|
| 94 | d_u(:,:)=0. |
---|
| 95 | d_v(:,:)=0. |
---|
| 96 | ELSE |
---|
| 97 | abort_message = 'iflag_ener_conserv non prevu' |
---|
[2408] | 98 | CALL abort_physic (modname,abort_message,1) |
---|
[1754] | 99 | ENDIF |
---|
| 100 | |
---|
| 101 | !---------------------------------------------------------------------------- |
---|
| 102 | ! Two options wether we consider time integration in the energy conservation |
---|
| 103 | !---------------------------------------------------------------------------- |
---|
| 104 | |
---|
| 105 | if (iflag_ener_conserv==2) then |
---|
| 106 | zu(:,:)=puo(:,:) |
---|
| 107 | zv(:,:)=pvo(:,:) |
---|
| 108 | else |
---|
[1761] | 109 | IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN |
---|
| 110 | zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:) |
---|
| 111 | zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:) |
---|
| 112 | ELSE |
---|
| 113 | zu(:,:)=puo(:,:)+0.5*d_u(:,:) |
---|
| 114 | zv(:,:)=pvo(:,:)+0.5*d_v(:,:) |
---|
| 115 | ENDIF |
---|
[1754] | 116 | endif |
---|
| 117 | |
---|
| 118 | fluxu(:,klev+1)=0. |
---|
| 119 | fluxv(:,klev+1)=0. |
---|
| 120 | fluxt(:,klev+1)=0. |
---|
| 121 | |
---|
| 122 | do k=klev,1,-1 |
---|
| 123 | fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k) |
---|
| 124 | fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k) |
---|
| 125 | fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k) |
---|
| 126 | enddo |
---|
| 127 | |
---|
| 128 | dddu(:,1)=2*zu(:,1)*fluxu(:,1) |
---|
| 129 | dddv(:,1)=2*zv(:,1)*fluxv(:,1) |
---|
| 130 | dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1) |
---|
| 131 | |
---|
| 132 | do k=2,klev |
---|
| 133 | dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k) |
---|
| 134 | dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k) |
---|
| 135 | dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k) |
---|
| 136 | enddo |
---|
| 137 | dddu(:,klev+1)=0. |
---|
| 138 | dddv(:,klev+1)=0. |
---|
| 139 | dddt(:,klev+1)=0. |
---|
| 140 | |
---|
| 141 | do k=1,klev |
---|
[2056] | 142 | d_t_ech(:,k)=-(rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k)) |
---|
| 143 | d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1))/(2.*rcpd*masse(:,k))+d_t_ech(:,k) |
---|
[1754] | 144 | enddo |
---|
| 145 | |
---|
| 146 | ENDIF |
---|
| 147 | |
---|
| 148 | !================================================================ |
---|
| 149 | ! Computation of integrated enthalpie and kinetic energy variation |
---|
| 150 | ! FH (hourdin@lmd.jussieu.fr), 2013/04/25 |
---|
[2056] | 151 | ! bils_ec : energie conservation term |
---|
| 152 | ! bils_ech : part of this term linked to temperature |
---|
| 153 | ! bils_tke : change of TKE |
---|
| 154 | ! bils_diss : dissipation of TKE (when activated) |
---|
| 155 | ! bils_kinetic : change of kinetic energie of the column |
---|
| 156 | ! bils_enthalp : change of enthalpie |
---|
| 157 | ! bils_latent : change of latent heat. Computed between |
---|
| 158 | ! after reevaporation (at the beginning of the physics) |
---|
| 159 | ! and before large scale condensation (fisrtilp) |
---|
[1754] | 160 | !================================================================ |
---|
| 161 | |
---|
| 162 | bils_ec(:)=0. |
---|
[2839] | 163 | bils_ech(:)=0. |
---|
[1761] | 164 | bils_tke(:)=0. |
---|
| 165 | bils_diss(:)=0. |
---|
[1754] | 166 | bils_kinetic(:)=0. |
---|
| 167 | bils_enthalp(:)=0. |
---|
| 168 | bils_latent(:)=0. |
---|
| 169 | DO k=1,klev |
---|
| 170 | bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k) |
---|
[1761] | 171 | bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k) |
---|
| 172 | bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k) |
---|
[1754] | 173 | bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* & |
---|
| 174 | & (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) & |
---|
| 175 | & -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k)) |
---|
| 176 | bils_enthalp(:)= & |
---|
[2056] | 177 | & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)-d_t_eva(:,k)-d_t_lsc(:,k)) |
---|
| 178 | ! & bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)) |
---|
[1754] | 179 | bils_latent(:)=bils_latent(:)+masse(:,k)* & |
---|
[2056] | 180 | ! & (pqn(:,k)-pqo(:,k)) |
---|
| 181 | & (pqn(:,k)-pqo(:,k)-d_q_eva(:,k)-d_q_lsc(:,k)) |
---|
[1754] | 182 | ENDDO |
---|
| 183 | bils_ec(:)=rcpd*bils_ec(:)/pdtphys |
---|
[1761] | 184 | bils_tke(:)=bils_tke(:)/pdtphys |
---|
| 185 | bils_diss(:)=rcpd*bils_diss(:)/pdtphys |
---|
[1754] | 186 | bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys |
---|
| 187 | bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys |
---|
| 188 | bils_latent(:)=rlvtt*bils_latent(:)/pdtphys |
---|
[2056] | 189 | |
---|
| 190 | IF (iflag_ener_conserv>=1) THEN |
---|
| 191 | bils_ech(:)=0. |
---|
| 192 | DO k=1,klev |
---|
| 193 | bils_ech(:)=bils_ech(:)-d_t_ech(:,k)*masse(:,k) |
---|
| 194 | ENDDO |
---|
| 195 | bils_ech(:)=rcpd*bils_ech(:)/pdtphys |
---|
| 196 | ENDIF |
---|
| 197 | |
---|
[1754] | 198 | RETURN |
---|
| 199 | |
---|
| 200 | END |
---|