source: LMDZ5/branches/testing/libf/phylmd/cv3_cine.F90 @ 1999

Last change on this file since 1999 was 1999, checked in by Laurent Fairhead, 10 years ago

Merged trunk changes r1920:1997 into testing branch

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 12.4 KB
Line 
1
2! $Id: cv3_cine.F90 1999 2014-03-20 09:57:19Z fairhead $
3
4SUBROUTINE cv3_cine(nloc, ncum, nd, icb, inb, pbase, plcl, p, ph, tv, tvp, &
5    cina, cinb, plfc)
6
7  ! **************************************************************
8  ! *
9  ! CV3_CINE                                                    *
10  ! *
11  ! *
12  ! written by   :   Frederique Cheruy                          *
13  ! vectorization:   Jean-Yves Grandpeix, 19/06/2003, 11.54.43  *
14  ! modified by :                                               *
15  ! **************************************************************
16
17  IMPLICIT NONE
18
19  include "YOMCST.h"
20  include "cvthermo.h"
21  include "cv3param.h"
22  ! input:
23  INTEGER ncum, nd, nloc
24  INTEGER icb(nloc), inb(nloc)
25  REAL pbase(nloc), plcl(nloc)
26  REAL p(nloc, nd), ph(nloc, nd+1)
27  REAL tv(nloc, nd), tvp(nloc, nd)
28
29  ! output
30  REAL cina(nloc), cinb(nloc), plfc(nloc)
31
32  ! local variables
33  INTEGER il, i, j, k
34  INTEGER itop(nloc), ineg(nloc), ilow(nloc)
35  INTEGER ifst(nloc), isublcl(nloc)
36  LOGICAL lswitch(nloc), lswitch1(nloc), lswitch2(nloc)
37  LOGICAL exist_lfc(nloc)
38  REAL dpmax
39  REAL deltap, dcin
40  REAL buoylcl(nloc), tvplcl(nloc), tvlcl(nloc)
41  REAL p0(nloc)
42  REAL buoyz(nloc), buoy(nloc, nd)
43
44  ! -------------------------------------------------------------
45  ! Initialization
46  ! -------------------------------------------------------------
47  DO il = 1, ncum
48    cina(il) = 0.
49    cinb(il) = 0.
50  END DO
51
52  ! --------------------------------------------------------------
53  ! Recompute buoyancies
54  ! --------------------------------------------------------------
55  DO k = 1, nd
56    DO il = 1, ncum
57      ! print*,'tvp tv=',tvp(il,k),tv(il,k)
58      buoy(il, k) = tvp(il, k) - tv(il, k)
59    END DO
60  END DO
61  ! ---------------------------------------------------------------
62
63  ! calcul de la flottabilite a LCL (Buoylcl)
64  ! ifst = first P-level above lcl
65  ! isublcl = highest P-level below lcl.
66  ! ---------------------------------------------------------------
67
68  DO il = 1, ncum
69    tvplcl(il) = tvp(il, 1)*(plcl(il)/p(il,1))**(2./7.) !For dry air, R/Cp=2/7
70  END DO
71
72  DO il = 1, ncum
73    IF (plcl(il)>p(il,icb(il))) THEN
74      ifst(il) = icb(il)
75      isublcl(il) = icb(il) - 1
76    ELSE
77      ifst(il) = icb(il) + 1
78      isublcl(il) = icb(il)
79    END IF
80  END DO
81
82  DO il = 1, ncum
83    tvlcl(il) = tv(il, ifst(il)-1) + (tv(il,ifst(il))-tv(il,ifst(il)-1))*( &
84      plcl(il)-p(il,ifst(il)-1))/(p(il,ifst(il))-p(il,ifst(il)-1))
85  END DO
86
87  DO il = 1, ncum
88    buoylcl(il) = tvplcl(il) - tvlcl(il)
89  END DO
90
91  ! ---------------------------------------------------------------
92  ! premiere couche contenant un  niveau de flotabilite positive
93  ! et premiere couche contenant un  niveau de flotabilite negative
94  ! au dessus du niveau de condensation
95  ! ---------------------------------------------------------------
96  DO il = 1, ncum
97    itop(il) = nl - 1
98    ineg(il) = nl - 1
99    exist_lfc(il) = .FALSE.
100  END DO
101  DO k = nl - 1, 1, -1
102    DO il = 1, ncum
103      IF (k>=ifst(il)) THEN
104        IF (buoy(il,k)>0.) THEN
105          itop(il) = k
106          exist_lfc(il) = .TRUE.
107        ELSE
108          ineg(il) = k
109        END IF
110      END IF
111    END DO
112  END DO
113
114  ! ---------------------------------------------------------------
115  ! When there is no positive buoyancy level, set Plfc, Cina and Cinb
116  ! to arbitrary extreme values.
117  ! ---------------------------------------------------------------
118  DO il = 1, ncum
119    IF (.NOT. exist_lfc(il)) THEN
120      plfc(il) = 1.111
121      cinb(il) = -1111.
122      cina(il) = -1112.
123    END IF
124  END DO
125
126
127  ! ---------------------------------------------------------------
128  ! -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0.
129  ! ---------------------------------------------------------------
130
131  ! --------------------
132  ! -- 1.0 BUOYlcl >=0.
133  ! --------------------
134
135  dpmax = 50.
136  DO il = 1, ncum
137    lswitch1(il) = buoylcl(il) >= 0. .AND. exist_lfc(il)
138    lswitch(il) = lswitch1(il)
139  END DO
140
141  ! 1.1 No inhibition case
142  ! ----------------------
143  ! If buoyancy is positive at LCL and stays positive over a large enough
144  ! pressure interval (=DPMAX), inhibition is set to zero,
145
146  DO il = 1, ncum
147    IF (lswitch(il)) THEN
148      IF (p(il,ineg(il))<p(il,icb(il))-dpmax) THEN
149        plfc(il) = plcl(il)
150        cina(il) = 0.
151        cinb(il) = 0.
152      END IF
153    END IF
154  END DO
155
156  ! 1.2 Upper inhibition only case
157  ! ------------------------------
158  DO il = 1, ncum
159    lswitch2(il) = p(il, ineg(il)) >= p(il, icb(il)) - dpmax
160    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
161  END DO
162
163  DO il = 1, ncum
164    IF (lswitch(il)) THEN
165      cinb(il) = 0.
166
167      ! 1.2.1  Calcul de la pression du niveau de flot. nulle juste au-dessus
168      ! de LCL
169      ! ---------------------------------------------------------------------------
170      IF (ineg(il)>isublcl(il)+1) THEN
171        ! In order to get P0, one may interpolate linearly buoyancies
172        ! between P(ineg) and P(ineg-1).
173        p0(il) = (buoy(il,ineg(il))*p(il,ineg(il)-1)-buoy(il,ineg( &
174          il)-1)*p(il,ineg(il)))/(buoy(il,ineg(il))-buoy(il,ineg(il)-1))
175      ELSE
176        ! In order to get P0, one has to interpolate between P(ineg) and
177        ! Plcl.
178        p0(il) = (buoy(il,ineg(il))*plcl(il)-buoylcl(il)*p(il,ineg(il)))/ &
179          (buoy(il,ineg(il))-buoylcl(il))
180      END IF
181    END IF
182  END DO
183
184  ! 1.2.2 Recompute itop (=1st layer with positive buoyancy above ineg)
185  ! -------------------------------------------------------------------
186  DO il = 1, ncum
187    IF (lswitch(il)) THEN
188      itop(il) = nl - 1
189    END IF
190  END DO
191
192  DO k = nl, 1, -1
193    DO il = 1, ncum
194      IF (lswitch(il)) THEN
195        IF (k>=ineg(il) .AND. buoy(il,k)>0) THEN
196          itop(il) = k
197        END IF
198      END IF
199    END DO
200  END DO
201
202  ! 1.2.3 Computation of PLFC
203  ! -------------------------
204  DO il = 1, ncum
205    IF (lswitch(il)) THEN
206      plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
207        il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
208    END IF
209  END DO
210
211  ! 1.2.4 Computation of CINA
212  ! -------------------------
213
214  ! Upper part of CINA : integral from P(itop-1) to Plfc
215  DO il = 1, ncum
216    IF (lswitch(il)) THEN
217      deltap = p(il, itop(il)-1) - plfc(il)
218      dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
219      cina(il) = min(0., dcin)
220    END IF
221  END DO
222
223  ! Middle part of CINA : integral from P(ineg) to P(itop-1)
224  DO k = 1, nl
225    DO il = 1, ncum
226      IF (lswitch(il)) THEN
227        IF (k>=ineg(il) .AND. k<=itop(il)-2) THEN
228          deltap = p(il, k) - p(il, k+1)
229          dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
230          cina(il) = cina(il) + min(0., dcin)
231        END IF
232      END IF
233    END DO
234  END DO
235
236  ! Lower part of CINA : integral from P0 to P(ineg)
237  DO il = 1, ncum
238    IF (lswitch(il)) THEN
239      deltap = p0(il) - p(il, ineg(il))
240      dcin = rd*buoy(il, ineg(il))*deltap/(p(il,ineg(il))+p0(il))
241      cina(il) = cina(il) + min(0., dcin)
242    END IF
243  END DO
244
245
246  ! ------------------
247  ! -- 2.0 BUOYlcl <0.
248  ! ------------------
249
250  DO il = 1, ncum
251    lswitch1(il) = buoylcl(il) < 0. .AND. exist_lfc(il)
252    lswitch(il) = lswitch1(il)
253  END DO
254
255  ! 2.0.1 Premiere  couche ou la flotabilite est negative au dessus du sol
256  ! ----------------------------------------------------
257  ! au cas ou elle existe  sinon ilow=1 (nk apres)
258  ! on suppose que la parcelle part de la premiere couche
259
260  DO il = 1, ncum
261    IF (lswitch(il)) THEN
262      ilow(il) = 1
263    END IF
264  END DO
265
266  DO k = nl, 1, -1
267    DO il = 1, ncum
268      IF (lswitch(il) .AND. k<=icb(il)-1) THEN
269        IF (buoy(il,k)<0.) THEN
270          ilow(il) = k
271        END IF
272      END IF
273    END DO
274  END DO
275
276  ! 2.0.2  Calcul de la pression du niveau de flot. nulle sous le nuage
277  ! ----------------------------------------------------
278  DO il = 1, ncum
279    IF (lswitch(il)) THEN
280      IF (ilow(il)>1) THEN
281        p0(il) = (buoy(il,ilow(il))*p(il,ilow(il)-1)-buoy(il,ilow( &
282          il)-1)*p(il,ilow(il)))/(buoy(il,ilow(il))-buoy(il,ilow(il)-1))
283        buoyz(il) = 0.
284      ELSE
285        p0(il) = p(il, 1)
286        buoyz(il) = buoy(il, 1)
287      END IF
288    END IF
289  END DO
290
291  ! 2.1. Computation of CINB
292  ! -----------------------
293
294  DO il = 1, ncum
295    lswitch2(il) = (isublcl(il)==1 .AND. ilow(il)==1) .OR. &
296      (isublcl(il)==ilow(il)-1)
297    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
298  END DO
299  ! c      IF (    (isublcl .EQ. 1 .AND. ilow .EQ. 1)
300  ! c     $    .OR.(isublcl .EQ. ilow-1)) THEN
301
302  ! 2.1.1 First case : Plcl just above P0
303  ! -------------------------------------
304  DO il = 1, ncum
305    IF (lswitch(il)) THEN
306      deltap = p0(il) - plcl(il)
307      dcin = rd*(buoyz(il)+buoylcl(il))*deltap/(p0(il)+plcl(il))
308      cinb(il) = min(0., dcin)
309    END IF
310  END DO
311
312  DO il = 1, ncum
313    lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il)
314  END DO
315  ! c      ELSE
316
317  ! 2.1.2 Second case : there is at least one P-level between P0 and Plcl
318  ! ---------------------------------------------------------------------
319
320  ! Lower part of CINB : integral from P0 to P(ilow)
321  DO il = 1, ncum
322    IF (lswitch(il)) THEN
323      deltap = p0(il) - p(il, ilow(il))
324      dcin = rd*(buoyz(il)+buoy(il,ilow(il)))*deltap/(p0(il)+p(il,ilow(il)))
325      cinb(il) = min(0., dcin)
326    END IF
327  END DO
328
329
330  ! Middle part of CINB : integral from P(ilow) to P(isublcl)
331  ! c      DO k = ilow,isublcl-1
332  DO k = 1, nl
333    DO il = 1, ncum
334      IF (lswitch(il) .AND. k>=ilow(il) .AND. k<=isublcl(il)-1) THEN
335        deltap = p(il, k) - p(il, k+1)
336        dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
337        cinb(il) = cinb(il) + min(0., dcin)
338      END IF
339    END DO
340  END DO
341
342  ! Upper part of CINB : integral from P(isublcl) to Plcl
343  DO il = 1, ncum
344    IF (lswitch(il)) THEN
345      deltap = p(il, isublcl(il)) - plcl(il)
346      dcin = rd*(buoy(il,isublcl(il))+buoylcl(il))*deltap/ &
347        (p(il,isublcl(il))+plcl(il))
348      cinb(il) = cinb(il) + min(0., dcin)
349    END IF
350  END DO
351
352
353  ! c      ENDIF
354
355  ! 2.2 Computation of CINA
356  ! ---------------------
357
358  DO il = 1, ncum
359    lswitch2(il) = plcl(il) > p(il, itop(il)-1)
360    lswitch(il) = lswitch1(il) .AND. lswitch2(il)
361  END DO
362
363  ! 2.2.1 FIrst case : Plcl > P(itop-1)
364  ! ---------------------------------
365  ! In order to get Plfc, one may interpolate linearly buoyancies
366  ! between P(itop) and P(itop-1).
367  DO il = 1, ncum
368    IF (lswitch(il)) THEN
369      plfc(il) = (buoy(il,itop(il))*p(il,itop(il)-1)-buoy(il,itop( &
370        il)-1)*p(il,itop(il)))/(buoy(il,itop(il))-buoy(il,itop(il)-1))
371    END IF
372  END DO
373
374  ! Upper part of CINA : integral from P(itop-1) to Plfc
375  DO il = 1, ncum
376    IF (lswitch(il)) THEN
377      deltap = p(il, itop(il)-1) - plfc(il)
378      dcin = rd*buoy(il, itop(il)-1)*deltap/(p(il,itop(il)-1)+plfc(il))
379      cina(il) = min(0., dcin)
380    END IF
381  END DO
382
383  ! Middle part of CINA : integral from P(icb+1) to P(itop-1)
384  DO k = 1, nl
385    DO il = 1, ncum
386      IF (lswitch(il) .AND. k>=icb(il)+1 .AND. k<=itop(il)-2) THEN
387        deltap = p(il, k) - p(il, k+1)
388        dcin = 0.5*rd*(buoy(il,k)+buoy(il,k+1))*deltap/ph(il, k+1)
389        cina(il) = cina(il) + min(0., dcin)
390      END IF
391    END DO
392  END DO
393
394  ! Lower part of CINA : integral from Plcl to P(icb+1)
395  DO il = 1, ncum
396    IF (lswitch(il)) THEN
397      IF (plcl(il)>p(il,icb(il))) THEN
398        IF (icb(il)<itop(il)-1) THEN
399          deltap = p(il, icb(il)) - p(il, icb(il)+1)
400          dcin = 0.5*rd*(buoy(il,icb(il))+buoy(il,icb(il)+1))*deltap/ &
401            ph(il, icb(il)+1)
402          cina(il) = cina(il) + min(0., dcin)
403        END IF
404
405        deltap = plcl(il) - p(il, icb(il))
406        dcin = rd*(buoylcl(il)+buoy(il,icb(il)))*deltap/ &
407          (plcl(il)+p(il,icb(il)))
408        cina(il) = cina(il) + min(0., dcin)
409      ELSE
410        deltap = plcl(il) - p(il, icb(il)+1)
411        dcin = rd*(buoylcl(il)+buoy(il,icb(il)+1))*deltap/ &
412          (plcl(il)+p(il,icb(il)+1))
413        cina(il) = cina(il) + min(0., dcin)
414      END IF
415    END IF
416  END DO
417
418  DO il = 1, ncum
419    lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il)
420  END DO
421  ! c      ELSE
422
423  ! 2.2.2 Second case : Plcl lies between P(itop-1) and P(itop);
424  ! ----------------------------------------------------------
425  ! In order to get Plfc, one has to interpolate between P(itop) and Plcl.
426  DO il = 1, ncum
427    IF (lswitch(il)) THEN
428      plfc(il) = (buoy(il,itop(il))*plcl(il)-buoylcl(il)*p(il,itop(il)))/ &
429        (buoy(il,itop(il))-buoylcl(il))
430    END IF
431  END DO
432
433  DO il = 1, ncum
434    IF (lswitch(il)) THEN
435      deltap = plcl(il) - plfc(il)
436      dcin = rd*buoylcl(il)*deltap/(plcl(il)+plfc(il))
437      cina(il) = min(0., dcin)
438    END IF
439  END DO
440  ! c      ENDIF
441
442
443
444  RETURN
445END SUBROUTINE cv3_cine
Note: See TracBrowser for help on using the repository browser.