[1795] | 1 | ! |
---|
| 2 | ! $Id: top_bound_p.F 2641 2016-09-29 21:26:46Z fhourdin $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE top_bound_p(vcov,ucov,teta,masse,dt) |
---|
[1864] | 5 | USE parallel_lmdz |
---|
[2641] | 6 | USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, |
---|
| 7 | & tau_top_bound |
---|
| 8 | USE comvert_mod, ONLY: presnivs, preff, scaleheight |
---|
| 9 | |
---|
[1000] | 10 | IMPLICIT NONE |
---|
| 11 | c |
---|
| 12 | #include "dimensions.h" |
---|
| 13 | #include "paramet.h" |
---|
[1279] | 14 | #include "comgeom2.h" |
---|
[1000] | 15 | |
---|
| 16 | |
---|
| 17 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
| 18 | C F. LOTT DEC. 2006 |
---|
| 19 | c ( 10/12/06 ) |
---|
| 20 | |
---|
| 21 | c======================================================================= |
---|
| 22 | c |
---|
| 23 | c Auteur: F. LOTT |
---|
| 24 | c ------- |
---|
| 25 | c |
---|
| 26 | c Objet: |
---|
| 27 | c ------ |
---|
| 28 | c |
---|
| 29 | c Dissipation linéaire (ex top_bound de la physique) |
---|
| 30 | c |
---|
| 31 | c======================================================================= |
---|
| 32 | |
---|
[1795] | 33 | ! top_bound sponge layer model: |
---|
| 34 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
| 35 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
| 36 | ! of the characteristic quenching/relaxation time scale |
---|
| 37 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
| 38 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
| 39 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
| 40 | ! can be toward the average zonal field or just zero (see below). |
---|
| 41 | |
---|
| 42 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
| 43 | |
---|
[2641] | 44 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
---|
[1795] | 45 | ! iflag_top_bound=0 for no sponge |
---|
| 46 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
| 47 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
| 48 | ! mode_top_bound=0: no relaxation |
---|
| 49 | ! mode_top_bound=1: u and v relax towards 0 |
---|
| 50 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
| 51 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
| 52 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
| 53 | ! the topmost layer (Hz) |
---|
| 54 | |
---|
| 55 | |
---|
[1000] | 56 | #include "comdissipn.h" |
---|
[1795] | 57 | #include "iniprint.h" |
---|
[1000] | 58 | |
---|
| 59 | c Arguments: |
---|
| 60 | c ---------- |
---|
| 61 | |
---|
[1795] | 62 | real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
---|
| 63 | real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
---|
| 64 | real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
---|
| 65 | real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
---|
| 66 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
[1000] | 67 | |
---|
| 68 | c Local: |
---|
| 69 | c ------ |
---|
[1279] | 70 | REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
---|
[1000] | 71 | REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
---|
| 72 | |
---|
[2641] | 73 | integer i |
---|
[1795] | 74 | REAL,SAVE :: rdamp(llm) ! quenching coefficient |
---|
| 75 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
[1279] | 76 | LOGICAL,SAVE :: first=.true. |
---|
[1000] | 77 | INTEGER j,l,jjb,jje |
---|
| 78 | |
---|
| 79 | |
---|
[1279] | 80 | if (iflag_top_bound == 0) return |
---|
[1795] | 81 | |
---|
[1279] | 82 | if (first) then |
---|
| 83 | c$OMP BARRIER |
---|
| 84 | c$OMP MASTER |
---|
| 85 | if (iflag_top_bound == 1) then |
---|
[1795] | 86 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
| 87 | lambda(:)=0. |
---|
| 88 | lambda(llm)=tau_top_bound |
---|
| 89 | lambda(llm-1)=tau_top_bound/2. |
---|
| 90 | lambda(llm-2)=tau_top_bound/4. |
---|
| 91 | lambda(llm-3)=tau_top_bound/8. |
---|
[1279] | 92 | else if (iflag_top_bound == 2) then |
---|
[1795] | 93 | ! sponge quenching over topmost layers down to pressures which are |
---|
| 94 | ! higher than 100 times the topmost layer pressure |
---|
| 95 | lambda(:)=tau_top_bound |
---|
[1279] | 96 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
| 97 | endif |
---|
[1795] | 98 | |
---|
| 99 | ! quenching coefficient rdamp(:) |
---|
| 100 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
| 101 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
| 102 | |
---|
| 103 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
| 104 | write(lunout,*)'Sponge layer coefficients' |
---|
| 105 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
| 106 | do l=1,llm |
---|
| 107 | if (rdamp(l).ne.0.) then |
---|
| 108 | write(lunout,'(6(1pe12.4,1x))') |
---|
| 109 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
| 110 | & 1./lambda(l),lambda(l) |
---|
| 111 | endif |
---|
| 112 | enddo |
---|
[1279] | 113 | first=.false. |
---|
| 114 | c$OMP END MASTER |
---|
| 115 | c$OMP BARRIER |
---|
[1795] | 116 | endif ! of if (first) |
---|
[1279] | 117 | |
---|
| 118 | |
---|
| 119 | CALL massbar_p(masse,massebx,masseby) |
---|
[1000] | 120 | |
---|
[1795] | 121 | ! compute zonal average of vcov (or set it to zero) |
---|
| 122 | if (mode_top_bound.ge.2) then |
---|
| 123 | jjb=jj_begin |
---|
| 124 | jje=jj_end |
---|
| 125 | IF (pole_sud) jje=jj_end-1 |
---|
[1000] | 126 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 127 | do l=1,llm |
---|
[1000] | 128 | do j=jjb,jje |
---|
[1279] | 129 | zm=0. |
---|
| 130 | vzon(j,l)=0 |
---|
[1000] | 131 | do i=1,iim |
---|
[1795] | 132 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
| 133 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
[1279] | 134 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
| 135 | zm=zm+masseby(i,j,l) |
---|
[1000] | 136 | enddo |
---|
[1279] | 137 | vzon(j,l)=vzon(j,l)/zm |
---|
[1000] | 138 | enddo |
---|
[1795] | 139 | enddo |
---|
[1000] | 140 | c$OMP END DO NOWAIT |
---|
[1795] | 141 | else |
---|
[1000] | 142 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 143 | do l=1,llm |
---|
| 144 | vzon(:,l)=0. |
---|
| 145 | enddo |
---|
[1000] | 146 | c$OMP END DO NOWAIT |
---|
[1795] | 147 | endif ! of if (mode_top_bound.ge.2) |
---|
[1000] | 148 | |
---|
[1795] | 149 | ! compute zonal average of u (or set it to zero) |
---|
| 150 | if (mode_top_bound.ge.2) then |
---|
| 151 | jjb=jj_begin |
---|
| 152 | jje=jj_end |
---|
| 153 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 154 | IF (pole_sud) jje=jj_end-1 |
---|
[1000] | 155 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 156 | do l=1,llm |
---|
[1000] | 157 | do j=jjb,jje |
---|
| 158 | uzon(j,l)=0. |
---|
[1279] | 159 | zm=0. |
---|
| 160 | do i=1,iim |
---|
| 161 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
| 162 | zm=zm+massebx(i,j,l) |
---|
| 163 | enddo |
---|
| 164 | uzon(j,l)=uzon(j,l)/zm |
---|
| 165 | enddo |
---|
[1795] | 166 | enddo |
---|
[1279] | 167 | c$OMP END DO NOWAIT |
---|
[1795] | 168 | else |
---|
| 169 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 170 | do l=1,llm |
---|
| 171 | uzon(:,l)=0. |
---|
| 172 | enddo |
---|
| 173 | c$OMP END DO NOWAIT |
---|
| 174 | endif ! of if (mode_top_bound.ge.2) |
---|
[1279] | 175 | |
---|
[1795] | 176 | ! compute zonal average of potential temperature, if necessary |
---|
| 177 | if (mode_top_bound.ge.3) then |
---|
| 178 | jjb=jj_begin |
---|
| 179 | jje=jj_end |
---|
| 180 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 181 | IF (pole_sud) jje=jj_end-1 |
---|
[1279] | 182 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 183 | do l=1,llm |
---|
[1279] | 184 | do j=jjb,jje |
---|
| 185 | zm=0. |
---|
[1000] | 186 | tzon(j,l)=0. |
---|
| 187 | do i=1,iim |
---|
[1279] | 188 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
| 189 | zm=zm+masse(i,j,l) |
---|
[1000] | 190 | enddo |
---|
[1279] | 191 | tzon(j,l)=tzon(j,l)/zm |
---|
[1000] | 192 | enddo |
---|
[1795] | 193 | enddo |
---|
[1000] | 194 | c$OMP END DO NOWAIT |
---|
[1795] | 195 | endif ! of if (mode_top_bound.ge.3) |
---|
[1000] | 196 | |
---|
[1795] | 197 | if (mode_top_bound.ge.1) then |
---|
| 198 | ! Apply sponge quenching on vcov: |
---|
| 199 | jjb=jj_begin |
---|
| 200 | jje=jj_end |
---|
| 201 | IF (pole_sud) jje=jj_end-1 |
---|
[1000] | 202 | |
---|
| 203 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 204 | do l=1,llm |
---|
[1000] | 205 | do j=jjb,jje |
---|
| 206 | do i=1,iip1 |
---|
[1795] | 207 | vcov(i,j,l)=vcov(i,j,l) |
---|
| 208 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
[1000] | 209 | enddo |
---|
[1795] | 210 | enddo |
---|
[1000] | 211 | enddo |
---|
| 212 | c$OMP END DO NOWAIT |
---|
| 213 | |
---|
[1795] | 214 | ! Apply sponge quenching on ucov: |
---|
| 215 | jjb=jj_begin |
---|
| 216 | jje=jj_end |
---|
| 217 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 218 | IF (pole_sud) jje=jj_end-1 |
---|
| 219 | |
---|
| 220 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 221 | do l=1,llm |
---|
| 222 | do j=jjb,jje |
---|
| 223 | do i=1,iip1 |
---|
| 224 | ucov(i,j,l)=ucov(i,j,l) |
---|
| 225 | & -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
| 226 | enddo |
---|
| 227 | enddo |
---|
| 228 | enddo |
---|
| 229 | c$OMP END DO NOWAIT |
---|
| 230 | endif ! of if (mode_top_bound.ge.1) |
---|
| 231 | |
---|
| 232 | if (mode_top_bound.ge.3) then |
---|
| 233 | ! Apply sponge quenching on teta: |
---|
| 234 | jjb=jj_begin |
---|
| 235 | jje=jj_end |
---|
| 236 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 237 | IF (pole_sud) jje=jj_end-1 |
---|
| 238 | |
---|
| 239 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 240 | do l=1,llm |
---|
| 241 | do j=jjb,jje |
---|
| 242 | do i=1,iip1 |
---|
| 243 | teta(i,j,l)=teta(i,j,l) |
---|
| 244 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
| 245 | enddo |
---|
| 246 | enddo |
---|
| 247 | enddo |
---|
| 248 | c$OMP END DO NOWAIT |
---|
| 249 | endif ! of if (mode_top_bond.ge.3) |
---|
| 250 | |
---|
[1000] | 251 | END |
---|