[1795] | 1 | ! |
---|
| 2 | ! $Id: $ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE top_bound_loc(vcov,ucov,teta,masse,dt) |
---|
[1864] | 5 | USE parallel_lmdz |
---|
[1632] | 6 | IMPLICIT NONE |
---|
| 7 | c |
---|
| 8 | #include "dimensions.h" |
---|
| 9 | #include "paramet.h" |
---|
| 10 | #include "comconst.h" |
---|
| 11 | #include "comvert.h" |
---|
| 12 | #include "comgeom2.h" |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
| 16 | C F. LOTT DEC. 2006 |
---|
| 17 | c ( 10/12/06 ) |
---|
| 18 | |
---|
| 19 | c======================================================================= |
---|
| 20 | c |
---|
| 21 | c Auteur: F. LOTT |
---|
| 22 | c ------- |
---|
| 23 | c |
---|
| 24 | c Objet: |
---|
| 25 | c ------ |
---|
| 26 | c |
---|
| 27 | c Dissipation linéaire (ex top_bound de la physique) |
---|
| 28 | c |
---|
| 29 | c======================================================================= |
---|
| 30 | |
---|
[1795] | 31 | ! top_bound sponge layer model: |
---|
| 32 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
| 33 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
| 34 | ! of the characteristic quenching/relaxation time scale |
---|
| 35 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
| 36 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
| 37 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
| 38 | ! can be toward the average zonal field or just zero (see below). |
---|
| 39 | |
---|
| 40 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
| 41 | |
---|
| 42 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst.h) |
---|
| 43 | ! iflag_top_bound=0 for no sponge |
---|
| 44 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
| 45 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
| 46 | ! mode_top_bound=0: no relaxation |
---|
| 47 | ! mode_top_bound=1: u and v relax towards 0 |
---|
| 48 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
| 49 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
| 50 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
| 51 | ! the topmost layer (Hz) |
---|
| 52 | |
---|
| 53 | |
---|
[1632] | 54 | #include "comdissipn.h" |
---|
[1795] | 55 | #include "iniprint.h" |
---|
[1632] | 56 | |
---|
| 57 | c Arguments: |
---|
| 58 | c ---------- |
---|
| 59 | |
---|
[1795] | 60 | real,intent(inout) :: ucov(iip1,jjb_u:jje_u,llm) ! covariant zonal wind |
---|
| 61 | real,intent(inout) :: vcov(iip1,jjb_v:jje_v,llm) ! covariant meridional wind |
---|
| 62 | real,intent(inout) :: teta(iip1,jjb_u:jje_u,llm) ! potential temperature |
---|
| 63 | real,intent(in) :: masse(iip1,jjb_u:jje_u,llm) ! mass of atmosphere |
---|
| 64 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
[1632] | 65 | |
---|
[1795] | 66 | ! REAL dv(iip1,jjb_v:jje_v,llm),du(iip1,jjb_u:jje_u,llm) |
---|
| 67 | ! REAL dh(iip1,jjb_u:jje_u,llm) |
---|
| 68 | |
---|
[1632] | 69 | c Local: |
---|
| 70 | c ------ |
---|
| 71 | REAL massebx(iip1,jjb_u:jje_u,llm),masseby(iip1,jjb_v:jje_v,llm) |
---|
| 72 | REAL zm |
---|
| 73 | REAL uzon(jjb_u:jje_u,llm),vzon(jjb_v:jje_v,llm) |
---|
| 74 | REAL tzon(jjb_u:jje_u,llm) |
---|
| 75 | |
---|
| 76 | integer i |
---|
| 77 | REAL,SAVE :: rdamp(llm) |
---|
[1795] | 78 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
[1632] | 79 | LOGICAL,SAVE :: first=.true. |
---|
| 80 | INTEGER j,l,jjb,jje |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | if (iflag_top_bound == 0) return |
---|
[1795] | 84 | |
---|
[1632] | 85 | if (first) then |
---|
| 86 | c$OMP BARRIER |
---|
| 87 | c$OMP MASTER |
---|
| 88 | if (iflag_top_bound == 1) then |
---|
[1795] | 89 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
| 90 | lambda(:)=0. |
---|
| 91 | lambda(llm)=tau_top_bound |
---|
| 92 | lambda(llm-1)=tau_top_bound/2. |
---|
| 93 | lambda(llm-2)=tau_top_bound/4. |
---|
| 94 | lambda(llm-3)=tau_top_bound/8. |
---|
[1632] | 95 | else if (iflag_top_bound == 2) then |
---|
[1795] | 96 | ! sponge quenching over topmost layers down to pressures which are |
---|
| 97 | ! higher than 100 times the topmost layer pressure |
---|
| 98 | lambda(:)=tau_top_bound |
---|
[1632] | 99 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
| 100 | endif |
---|
[1795] | 101 | |
---|
| 102 | ! quenching coefficient rdamp(:) |
---|
| 103 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
| 104 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
| 105 | |
---|
| 106 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
| 107 | write(lunout,*)'Sponge layer coefficients' |
---|
| 108 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
| 109 | do l=1,llm |
---|
| 110 | if (rdamp(l).ne.0.) then |
---|
| 111 | write(lunout,'(6(1pe12.4,1x))') |
---|
| 112 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
| 113 | & 1./lambda(l),lambda(l) |
---|
| 114 | endif |
---|
| 115 | enddo |
---|
[1632] | 116 | first=.false. |
---|
| 117 | c$OMP END MASTER |
---|
| 118 | c$OMP BARRIER |
---|
[1795] | 119 | endif ! of if (first) |
---|
[1632] | 120 | |
---|
| 121 | |
---|
| 122 | CALL massbar_loc(masse,massebx,masseby) |
---|
| 123 | |
---|
[1795] | 124 | ! compute zonal average of vcov (or set it to zero) |
---|
| 125 | if (mode_top_bound.ge.2) then |
---|
| 126 | jjb=jj_begin |
---|
| 127 | jje=jj_end |
---|
| 128 | IF (pole_sud) jje=jj_end-1 |
---|
[1632] | 129 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 130 | do l=1,llm |
---|
[1632] | 131 | do j=jjb,jje |
---|
| 132 | zm=0. |
---|
| 133 | vzon(j,l)=0 |
---|
| 134 | do i=1,iim |
---|
[1795] | 135 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
| 136 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
[1632] | 137 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
| 138 | zm=zm+masseby(i,j,l) |
---|
| 139 | enddo |
---|
| 140 | vzon(j,l)=vzon(j,l)/zm |
---|
| 141 | enddo |
---|
[1795] | 142 | enddo |
---|
[1632] | 143 | c$OMP END DO NOWAIT |
---|
[1795] | 144 | else |
---|
[1632] | 145 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 146 | do l=1,llm |
---|
| 147 | vzon(:,l)=0. |
---|
| 148 | enddo |
---|
[1632] | 149 | c$OMP END DO NOWAIT |
---|
[1795] | 150 | endif ! of if (mode_top_bound.ge.2) |
---|
[1632] | 151 | |
---|
[1795] | 152 | ! compute zonal average of u (or set it to zero) |
---|
| 153 | if (mode_top_bound.ge.2) then |
---|
| 154 | jjb=jj_begin |
---|
| 155 | jje=jj_end |
---|
| 156 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 157 | IF (pole_sud) jje=jj_end-1 |
---|
[1632] | 158 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 159 | do l=1,llm |
---|
[1632] | 160 | do j=jjb,jje |
---|
| 161 | uzon(j,l)=0. |
---|
| 162 | zm=0. |
---|
| 163 | do i=1,iim |
---|
| 164 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
| 165 | zm=zm+massebx(i,j,l) |
---|
| 166 | enddo |
---|
| 167 | uzon(j,l)=uzon(j,l)/zm |
---|
| 168 | enddo |
---|
[1795] | 169 | enddo |
---|
[1632] | 170 | c$OMP END DO NOWAIT |
---|
[1795] | 171 | else |
---|
| 172 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 173 | do l=1,llm |
---|
| 174 | uzon(:,l)=0. |
---|
| 175 | enddo |
---|
| 176 | c$OMP END DO NOWAIT |
---|
| 177 | endif ! of if (mode_top_bound.ge.2) |
---|
[1632] | 178 | |
---|
[1795] | 179 | ! compute zonal average of potential temperature, if necessary |
---|
| 180 | if (mode_top_bound.ge.3) then |
---|
| 181 | jjb=jj_begin |
---|
| 182 | jje=jj_end |
---|
| 183 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 184 | IF (pole_sud) jje=jj_end-1 |
---|
[1632] | 185 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 186 | do l=1,llm |
---|
[1632] | 187 | do j=jjb,jje |
---|
| 188 | zm=0. |
---|
| 189 | tzon(j,l)=0. |
---|
| 190 | do i=1,iim |
---|
| 191 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
| 192 | zm=zm+masse(i,j,l) |
---|
| 193 | enddo |
---|
| 194 | tzon(j,l)=tzon(j,l)/zm |
---|
| 195 | enddo |
---|
[1795] | 196 | enddo |
---|
[1632] | 197 | c$OMP END DO NOWAIT |
---|
[1795] | 198 | endif ! of if (mode_top_bound.ge.3) |
---|
[1632] | 199 | |
---|
[1795] | 200 | if (mode_top_bound.ge.1) then |
---|
| 201 | ! Apply sponge quenching on vcov: |
---|
| 202 | jjb=jj_begin |
---|
| 203 | jje=jj_end |
---|
| 204 | IF (pole_sud) jje=jj_end-1 |
---|
[1632] | 205 | |
---|
| 206 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
[1795] | 207 | do l=1,llm |
---|
[1632] | 208 | do j=jjb,jje |
---|
| 209 | do i=1,iip1 |
---|
[1795] | 210 | vcov(i,j,l)=vcov(i,j,l) |
---|
| 211 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
[1632] | 212 | enddo |
---|
[1795] | 213 | enddo |
---|
[1632] | 214 | enddo |
---|
| 215 | c$OMP END DO NOWAIT |
---|
| 216 | |
---|
[1795] | 217 | ! Apply sponge quenching on ucov: |
---|
| 218 | jjb=jj_begin |
---|
| 219 | jje=jj_end |
---|
| 220 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 221 | IF (pole_sud) jje=jj_end-1 |
---|
| 222 | |
---|
| 223 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 224 | do l=1,llm |
---|
| 225 | do j=jjb,jje |
---|
| 226 | do i=1,iip1 |
---|
| 227 | ucov(i,j,l)=ucov(i,j,l) |
---|
| 228 | & -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
| 229 | enddo |
---|
| 230 | enddo |
---|
| 231 | enddo |
---|
| 232 | c$OMP END DO NOWAIT |
---|
| 233 | endif ! of if (mode_top_bound.ge.1) |
---|
| 234 | |
---|
| 235 | if (mode_top_bound.ge.3) then |
---|
| 236 | ! Apply sponge quenching on teta: |
---|
| 237 | jjb=jj_begin |
---|
| 238 | jje=jj_end |
---|
| 239 | IF (pole_nord) jjb=jj_begin+1 |
---|
| 240 | IF (pole_sud) jje=jj_end-1 |
---|
| 241 | |
---|
| 242 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
| 243 | do l=1,llm |
---|
| 244 | do j=jjb,jje |
---|
| 245 | do i=1,iip1 |
---|
| 246 | teta(i,j,l)=teta(i,j,l) |
---|
| 247 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
| 248 | enddo |
---|
| 249 | enddo |
---|
| 250 | enddo |
---|
| 251 | c$OMP END DO NOWAIT |
---|
| 252 | endif ! of if (mode_top_bond.ge.3) |
---|
| 253 | |
---|
[1632] | 254 | END |
---|