[524] | 1 | ! |
---|
[1403] | 2 | ! $Id: grid_atob.F 2220 2015-03-03 13:41:13Z fhourdin $ |
---|
[524] | 3 | ! |
---|
| 4 | SUBROUTINE grille_m(imdep, jmdep, xdata, ydata, entree, |
---|
| 5 | . imar, jmar, x, y, sortie) |
---|
| 6 | c======================================================================= |
---|
| 7 | c z.x.li (le 1 avril 1994) (voir aussi A. Harzallah et L. Fairhead) |
---|
| 8 | c |
---|
| 9 | c Methode naive pour transformer un champ d'une grille fine a une |
---|
| 10 | c grille grossiere. Je considere que les nouveaux points occupent |
---|
| 11 | c une zone adjacente qui comprend un ou plusieurs anciens points |
---|
| 12 | c |
---|
| 13 | c Aucune ponderation est consideree (voir grille_p) |
---|
| 14 | c |
---|
| 15 | c (c) |
---|
| 16 | c ----d----- |
---|
| 17 | c | . . . .| |
---|
| 18 | c | | |
---|
| 19 | c (b)a . * . .b(a) |
---|
| 20 | c | | |
---|
| 21 | c | . . . .| |
---|
| 22 | c ----c----- |
---|
| 23 | c (d) |
---|
| 24 | C======================================================================= |
---|
| 25 | c INPUT: |
---|
| 26 | c imdep, jmdep: dimensions X et Y pour depart |
---|
| 27 | c xdata, ydata: coordonnees X et Y pour depart |
---|
| 28 | c entree: champ d'entree a transformer |
---|
| 29 | c OUTPUT: |
---|
| 30 | c imar, jmar: dimensions X et Y d'arrivee |
---|
| 31 | c x, y: coordonnees X et Y d'arrivee |
---|
| 32 | c sortie: champ de sortie deja transforme |
---|
| 33 | C======================================================================= |
---|
| 34 | IMPLICIT none |
---|
| 35 | |
---|
| 36 | INTEGER imdep, jmdep |
---|
| 37 | REAL xdata(imdep),ydata(jmdep) |
---|
| 38 | REAL entree(imdep,jmdep) |
---|
| 39 | c |
---|
| 40 | INTEGER imar, jmar |
---|
| 41 | REAL x(imar),y(jmar) |
---|
| 42 | REAL sortie(imar,jmar) |
---|
| 43 | c |
---|
| 44 | INTEGER i, j, ii, jj |
---|
| 45 | REAL a(2200),b(2200),c(1100),d(1100) |
---|
| 46 | REAL number(2200,1100) |
---|
| 47 | REAL distans(2200*1100) |
---|
| 48 | INTEGER i_proche, j_proche, ij_proche |
---|
| 49 | #ifdef CRAY |
---|
| 50 | INTEGER ISMIN |
---|
| 51 | #else |
---|
| 52 | REAL zzmin |
---|
| 53 | #endif |
---|
[2160] | 54 | include "iniprint.h" |
---|
[524] | 55 | c |
---|
| 56 | IF (imar.GT.2200 .OR. jmar.GT.1100) THEN |
---|
| 57 | PRINT*, 'imar ou jmar trop grand', imar, jmar |
---|
[1930] | 58 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 59 | ENDIF |
---|
| 60 | c |
---|
| 61 | c Calculer les limites des zones des nouveaux points |
---|
| 62 | c |
---|
| 63 | |
---|
| 64 | a(1) = x(1) - (x(2)-x(1))/2.0 |
---|
| 65 | b(1) = (x(1)+x(2))/2.0 |
---|
| 66 | DO i = 2, imar-1 |
---|
| 67 | a(i) = b(i-1) |
---|
| 68 | b(i) = (x(i)+x(i+1))/2.0 |
---|
| 69 | ENDDO |
---|
| 70 | a(imar) = b(imar-1) |
---|
| 71 | b(imar) = x(imar) + (x(imar)-x(imar-1))/2.0 |
---|
| 72 | |
---|
| 73 | c(1) = y(1) - (y(2)-y(1))/2.0 |
---|
| 74 | d(1) = (y(1)+y(2))/2.0 |
---|
| 75 | DO j = 2, jmar-1 |
---|
| 76 | c(j) = d(j-1) |
---|
| 77 | d(j) = (y(j)+y(j+1))/2.0 |
---|
| 78 | ENDDO |
---|
| 79 | c(jmar) = d(jmar-1) |
---|
| 80 | d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0 |
---|
| 81 | |
---|
| 82 | DO i = 1, imar |
---|
| 83 | DO j = 1, jmar |
---|
| 84 | number(i,j) = 0.0 |
---|
| 85 | sortie(i,j) = 0.0 |
---|
| 86 | ENDDO |
---|
| 87 | ENDDO |
---|
| 88 | c |
---|
| 89 | c Determiner la zone sur laquelle chaque ancien point se trouve |
---|
| 90 | c |
---|
| 91 | c |
---|
| 92 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 93 | |
---|
| 94 | DO ii = 1, imar |
---|
| 95 | DO jj = 1, jmar |
---|
| 96 | DO i = 1, imdep |
---|
| 97 | IF( ( xdata(i)-a(ii).GE.1.e-5.AND.xdata(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 98 | . ( xdata(i)-a(ii).LE.1.e-5.AND.xdata(i)-b(ii).GE.1.e-5 ) ) |
---|
| 99 | . THEN |
---|
| 100 | DO j = 1, jmdep |
---|
| 101 | IF( (ydata(j)-c(jj).GE.1.e-5.AND.ydata(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 102 | . ( ydata(j)-c(jj).LE.1.e-5.AND.ydata(j)-d(jj).GE.1.e-5 ) ) |
---|
| 103 | . THEN |
---|
| 104 | number(ii,jj) = number(ii,jj) + 1.0 |
---|
| 105 | sortie(ii,jj) = sortie(ii,jj) + entree(i,j) |
---|
| 106 | ENDIF |
---|
| 107 | ENDDO |
---|
| 108 | ENDIF |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | c |
---|
| 113 | c Si aucun ancien point tombe sur une zone, c'est un probleme |
---|
| 114 | c |
---|
| 115 | |
---|
| 116 | DO i = 1, imar |
---|
| 117 | DO j = 1, jmar |
---|
| 118 | IF (number(i,j) .GT. 0.001) THEN |
---|
| 119 | sortie(i,j) = sortie(i,j) / number(i,j) |
---|
| 120 | ELSE |
---|
[2160] | 121 | if (prt_level >= 1) PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 122 | ccc CALL ABORT_GCM("", "", 1) |
---|
[524] | 123 | CALL dist_sphe(x(i),y(j),xdata,ydata,imdep,jmdep,distans) |
---|
| 124 | #ifdef CRAY |
---|
| 125 | ij_proche = ISMIN(imdep*jmdep,distans,1) |
---|
| 126 | #else |
---|
| 127 | ij_proche = 1 |
---|
| 128 | zzmin = distans(ij_proche) |
---|
| 129 | DO ii = 2, imdep*jmdep |
---|
| 130 | IF (distans(ii).LT.zzmin) THEN |
---|
| 131 | zzmin = distans(ii) |
---|
| 132 | ij_proche = ii |
---|
| 133 | ENDIF |
---|
| 134 | ENDDO |
---|
| 135 | #endif |
---|
| 136 | j_proche = (ij_proche-1)/imdep + 1 |
---|
| 137 | i_proche = ij_proche - (j_proche-1)*imdep |
---|
[2160] | 138 | if (prt_level >= 1) PRINT*, "solution:", ij_proche, i_proche, |
---|
| 139 | $ j_proche |
---|
[524] | 140 | sortie(i,j) = entree(i_proche,j_proche) |
---|
| 141 | ENDIF |
---|
| 142 | ENDDO |
---|
| 143 | ENDDO |
---|
| 144 | |
---|
| 145 | RETURN |
---|
| 146 | END |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | SUBROUTINE grille_p(imdep, jmdep, xdata, ydata, entree, |
---|
| 150 | . imar, jmar, x, y, sortie) |
---|
| 151 | c======================================================================= |
---|
| 152 | c z.x.li (le 1 avril 1994) (voir aussi A. Harzallah et L. Fairhead) |
---|
| 153 | c |
---|
| 154 | c Methode naive pour transformer un champ d'une grille fine a une |
---|
| 155 | c grille grossiere. Je considere que les nouveaux points occupent |
---|
| 156 | c une zone adjacente qui comprend un ou plusieurs anciens points |
---|
| 157 | c |
---|
| 158 | c Consideration de la distance des points (voir grille_m) |
---|
| 159 | c |
---|
| 160 | c (c) |
---|
| 161 | c ----d----- |
---|
| 162 | c | . . . .| |
---|
| 163 | c | | |
---|
| 164 | c (b)a . * . .b(a) |
---|
| 165 | c | | |
---|
| 166 | c | . . . .| |
---|
| 167 | c ----c----- |
---|
| 168 | c (d) |
---|
| 169 | C======================================================================= |
---|
| 170 | c INPUT: |
---|
| 171 | c imdep, jmdep: dimensions X et Y pour depart |
---|
| 172 | c xdata, ydata: coordonnees X et Y pour depart |
---|
| 173 | c entree: champ d'entree a transformer |
---|
| 174 | c OUTPUT: |
---|
| 175 | c imar, jmar: dimensions X et Y d'arrivee |
---|
| 176 | c x, y: coordonnees X et Y d'arrivee |
---|
| 177 | c sortie: champ de sortie deja transforme |
---|
| 178 | C======================================================================= |
---|
| 179 | IMPLICIT none |
---|
| 180 | |
---|
| 181 | INTEGER imdep, jmdep |
---|
| 182 | REAL xdata(imdep),ydata(jmdep) |
---|
| 183 | REAL entree(imdep,jmdep) |
---|
| 184 | c |
---|
| 185 | INTEGER imar, jmar |
---|
| 186 | REAL x(imar),y(jmar) |
---|
| 187 | REAL sortie(imar,jmar) |
---|
| 188 | c |
---|
| 189 | INTEGER i, j, ii, jj |
---|
| 190 | REAL a(400),b(400),c(200),d(200) |
---|
| 191 | REAL number(400,200) |
---|
| 192 | INTEGER indx(400,200), indy(400,200) |
---|
| 193 | REAL dist(400,200), distsom(400,200) |
---|
| 194 | c |
---|
| 195 | IF (imar.GT.400 .OR. jmar.GT.200) THEN |
---|
| 196 | PRINT*, 'imar ou jmar trop grand', imar, jmar |
---|
[1930] | 197 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 198 | ENDIF |
---|
| 199 | c |
---|
| 200 | IF (imdep.GT.400 .OR. jmdep.GT.200) THEN |
---|
| 201 | PRINT*, 'imdep ou jmdep trop grand', imdep, jmdep |
---|
[1930] | 202 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 203 | ENDIF |
---|
| 204 | c |
---|
| 205 | c calculer les bords a et b de la nouvelle grille |
---|
| 206 | c |
---|
| 207 | a(1) = x(1) - (x(2)-x(1))/2.0 |
---|
| 208 | b(1) = (x(1)+x(2))/2.0 |
---|
| 209 | DO i = 2, imar-1 |
---|
| 210 | a(i) = b(i-1) |
---|
| 211 | b(i) = (x(i)+x(i+1))/2.0 |
---|
| 212 | ENDDO |
---|
| 213 | a(imar) = b(imar-1) |
---|
| 214 | b(imar) = x(imar) + (x(imar)-x(imar-1))/2.0 |
---|
| 215 | |
---|
| 216 | c |
---|
| 217 | c calculer les bords c et d de la nouvelle grille |
---|
| 218 | c |
---|
| 219 | c(1) = y(1) - (y(2)-y(1))/2.0 |
---|
| 220 | d(1) = (y(1)+y(2))/2.0 |
---|
| 221 | DO j = 2, jmar-1 |
---|
| 222 | c(j) = d(j-1) |
---|
| 223 | d(j) = (y(j)+y(j+1))/2.0 |
---|
| 224 | ENDDO |
---|
| 225 | c(jmar) = d(jmar-1) |
---|
| 226 | d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0 |
---|
| 227 | |
---|
| 228 | c |
---|
| 229 | c trouver les indices (indx,indy) de la nouvelle grille sur laquelle |
---|
| 230 | c un point de l'ancienne grille est tombe. |
---|
| 231 | c |
---|
| 232 | c |
---|
| 233 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 234 | |
---|
| 235 | DO ii = 1, imar |
---|
| 236 | DO jj = 1, jmar |
---|
| 237 | DO i = 1, imdep |
---|
| 238 | IF( ( xdata(i)-a(ii).GE.1.e-5.AND.xdata(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 239 | . ( xdata(i)-a(ii).LE.1.e-5.AND.xdata(i)-b(ii).GE.1.e-5 ) ) |
---|
| 240 | . THEN |
---|
| 241 | DO j = 1, jmdep |
---|
| 242 | IF( (ydata(j)-c(jj).GE.1.e-5.AND.ydata(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 243 | . ( ydata(j)-c(jj).LE.1.e-5.AND.ydata(j)-d(jj).GE.1.e-5 ) ) |
---|
| 244 | . THEN |
---|
| 245 | indx(i,j) = ii |
---|
| 246 | indy(i,j) = jj |
---|
| 247 | ENDIF |
---|
| 248 | ENDDO |
---|
| 249 | ENDIF |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | c |
---|
| 254 | c faire une verification |
---|
| 255 | c |
---|
| 256 | |
---|
| 257 | DO i = 1, imdep |
---|
| 258 | DO j = 1, jmdep |
---|
| 259 | IF (indx(i,j).GT.imar .OR. indy(i,j).GT.jmar) THEN |
---|
| 260 | PRINT*, 'Probleme grave,i,j,indx,indy=', |
---|
| 261 | . i,j,indx(i,j),indy(i,j) |
---|
[1930] | 262 | call abort_gcm("", "", 1) |
---|
[524] | 263 | ENDIF |
---|
| 264 | ENDDO |
---|
| 265 | ENDDO |
---|
| 266 | |
---|
| 267 | c |
---|
| 268 | c calculer la distance des anciens points avec le nouveau point, |
---|
| 269 | c on prend ensuite une sorte d'inverse pour ponderation. |
---|
| 270 | c |
---|
| 271 | |
---|
| 272 | DO i = 1, imar |
---|
| 273 | DO j = 1, jmar |
---|
| 274 | number(i,j) = 0.0 |
---|
| 275 | distsom(i,j) = 0.0 |
---|
| 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | DO i = 1, imdep |
---|
| 279 | DO j = 1, jmdep |
---|
| 280 | dist(i,j) = SQRT ( (xdata(i)-x(indx(i,j)))**2 |
---|
| 281 | . +(ydata(j)-y(indy(i,j)))**2 ) |
---|
| 282 | distsom(indx(i,j),indy(i,j)) = distsom(indx(i,j),indy(i,j)) |
---|
| 283 | . + dist(i,j) |
---|
| 284 | number(indx(i,j),indy(i,j)) = number(indx(i,j),indy(i,j)) +1. |
---|
| 285 | ENDDO |
---|
| 286 | ENDDO |
---|
| 287 | DO i = 1, imdep |
---|
| 288 | DO j = 1, jmdep |
---|
| 289 | dist(i,j) = 1.0 - dist(i,j)/distsom(indx(i,j),indy(i,j)) |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | |
---|
| 293 | DO i = 1, imar |
---|
| 294 | DO j = 1, jmar |
---|
| 295 | number(i,j) = 0.0 |
---|
| 296 | sortie(i,j) = 0.0 |
---|
| 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | DO i = 1, imdep |
---|
| 300 | DO j = 1, jmdep |
---|
| 301 | sortie(indx(i,j),indy(i,j)) = sortie(indx(i,j),indy(i,j)) |
---|
| 302 | . + entree(i,j) * dist(i,j) |
---|
| 303 | number(indx(i,j),indy(i,j)) = number(indx(i,j),indy(i,j)) |
---|
| 304 | . + dist(i,j) |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | DO i = 1, imar |
---|
| 308 | DO j = 1, jmar |
---|
| 309 | IF (number(i,j) .GT. 0.001) THEN |
---|
| 310 | sortie(i,j) = sortie(i,j) / number(i,j) |
---|
| 311 | ELSE |
---|
| 312 | PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 313 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 314 | ENDIF |
---|
| 315 | ENDDO |
---|
| 316 | ENDDO |
---|
| 317 | |
---|
| 318 | RETURN |
---|
| 319 | END |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | SUBROUTINE mask_c_o(imdep, jmdep, xdata, ydata, relief, |
---|
| 325 | . imar, jmar, x, y, mask) |
---|
| 326 | c======================================================================= |
---|
| 327 | c z.x.li (le 1 avril 1994): A partir du champ de relief, on fabrique |
---|
| 328 | c un champ indicateur (masque) terre/ocean |
---|
| 329 | c terre:1; ocean:0 |
---|
| 330 | c |
---|
| 331 | c Methode naive (voir grille_m) |
---|
| 332 | C======================================================================= |
---|
| 333 | IMPLICIT none |
---|
| 334 | |
---|
| 335 | INTEGER imdep, jmdep |
---|
| 336 | REAL xdata(imdep),ydata(jmdep) |
---|
| 337 | REAL relief(imdep,jmdep) |
---|
| 338 | c |
---|
| 339 | INTEGER imar, jmar |
---|
| 340 | REAL x(imar),y(jmar) |
---|
| 341 | REAL mask(imar,jmar) |
---|
| 342 | c |
---|
| 343 | INTEGER i, j, ii, jj |
---|
| 344 | REAL a(2200),b(2200),c(1100),d(1100) |
---|
| 345 | REAL num_tot(2200,1100), num_oce(2200,1100) |
---|
| 346 | c |
---|
| 347 | IF (imar.GT.2200 .OR. jmar.GT.1100) THEN |
---|
| 348 | PRINT*, 'imar ou jmar trop grand', imar, jmar |
---|
[1930] | 349 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 350 | ENDIF |
---|
| 351 | c |
---|
| 352 | |
---|
| 353 | a(1) = x(1) - (x(2)-x(1))/2.0 |
---|
| 354 | b(1) = (x(1)+x(2))/2.0 |
---|
| 355 | DO i = 2, imar-1 |
---|
| 356 | a(i) = b(i-1) |
---|
| 357 | b(i) = (x(i)+x(i+1))/2.0 |
---|
| 358 | ENDDO |
---|
| 359 | a(imar) = b(imar-1) |
---|
| 360 | b(imar) = x(imar) + (x(imar)-x(imar-1))/2.0 |
---|
| 361 | |
---|
| 362 | c(1) = y(1) - (y(2)-y(1))/2.0 |
---|
| 363 | d(1) = (y(1)+y(2))/2.0 |
---|
| 364 | DO j = 2, jmar-1 |
---|
| 365 | c(j) = d(j-1) |
---|
| 366 | d(j) = (y(j)+y(j+1))/2.0 |
---|
| 367 | ENDDO |
---|
| 368 | c(jmar) = d(jmar-1) |
---|
| 369 | d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0 |
---|
| 370 | |
---|
| 371 | DO i = 1, imar |
---|
| 372 | DO j = 1, jmar |
---|
| 373 | num_oce(i,j) = 0.0 |
---|
| 374 | num_tot(i,j) = 0.0 |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | |
---|
| 378 | c |
---|
| 379 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 380 | |
---|
| 381 | DO ii = 1, imar |
---|
| 382 | DO jj = 1, jmar |
---|
| 383 | DO i = 1, imdep |
---|
| 384 | IF( ( xdata(i)-a(ii).GE.1.e-5.AND.xdata(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 385 | . ( xdata(i)-a(ii).LE.1.e-5.AND.xdata(i)-b(ii).GE.1.e-5 ) ) |
---|
| 386 | . THEN |
---|
| 387 | DO j = 1, jmdep |
---|
| 388 | IF( (ydata(j)-c(jj).GE.1.e-5.AND.ydata(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 389 | . ( ydata(j)-c(jj).LE.1.e-5.AND.ydata(j)-d(jj).GE.1.e-5 ) ) |
---|
| 390 | . THEN |
---|
| 391 | num_tot(ii,jj) = num_tot(ii,jj) + 1.0 |
---|
| 392 | IF (.NOT. ( relief(i,j) - 0.9. GE. 1.e-5 ) ) |
---|
| 393 | . num_oce(ii,jj) = num_oce(ii,jj) + 1.0 |
---|
| 394 | ENDIF |
---|
| 395 | ENDDO |
---|
| 396 | ENDIF |
---|
| 397 | ENDDO |
---|
| 398 | ENDDO |
---|
| 399 | ENDDO |
---|
| 400 | c |
---|
| 401 | c |
---|
| 402 | c |
---|
| 403 | DO i = 1, imar |
---|
| 404 | DO j = 1, jmar |
---|
| 405 | IF (num_tot(i,j) .GT. 0.001) THEN |
---|
| 406 | IF ( num_oce(i,j)/num_tot(i,j) - 0.5 .GE. 1.e-5 ) THEN |
---|
| 407 | mask(i,j) = 0. |
---|
| 408 | ELSE |
---|
| 409 | mask(i,j) = 1. |
---|
| 410 | ENDIF |
---|
| 411 | ELSE |
---|
| 412 | PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 413 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 414 | ENDIF |
---|
| 415 | ENDDO |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
| 418 | RETURN |
---|
| 419 | END |
---|
| 420 | c |
---|
| 421 | c |
---|
| 422 | |
---|
| 423 | |
---|
| 424 | SUBROUTINE rugosite(imdep, jmdep, xdata, ydata, entree, |
---|
| 425 | . imar, jmar, x, y, sortie, mask) |
---|
| 426 | c======================================================================= |
---|
| 427 | c z.x.li (le 1 avril 1994): Transformer la longueur de rugosite d'une |
---|
| 428 | c grille fine a une grille grossiere. Sur l'ocean, on impose une valeur |
---|
| 429 | c fixe (0.001m). |
---|
| 430 | c |
---|
| 431 | c Methode naive (voir grille_m) |
---|
| 432 | C======================================================================= |
---|
| 433 | IMPLICIT none |
---|
| 434 | |
---|
| 435 | INTEGER imdep, jmdep |
---|
| 436 | REAL xdata(imdep),ydata(jmdep) |
---|
| 437 | REAL entree(imdep,jmdep) |
---|
| 438 | c |
---|
| 439 | INTEGER imar, jmar |
---|
| 440 | REAL x(imar),y(jmar) |
---|
| 441 | REAL sortie(imar,jmar), mask(imar,jmar) |
---|
| 442 | c |
---|
| 443 | INTEGER i, j, ii, jj |
---|
| 444 | REAL a(400),b(400),c(400),d(400) |
---|
| 445 | REAL num_tot(400,400) |
---|
| 446 | REAL distans(400*400) |
---|
| 447 | INTEGER i_proche, j_proche, ij_proche |
---|
| 448 | #ifdef CRAY |
---|
| 449 | INTEGER ISMIN |
---|
| 450 | #else |
---|
| 451 | REAL zzmin |
---|
| 452 | #endif |
---|
[2160] | 453 | include "iniprint.h" |
---|
[524] | 454 | c |
---|
| 455 | IF (imar.GT.400 .OR. jmar.GT.400) THEN |
---|
| 456 | PRINT*, 'imar ou jmar trop grand', imar, jmar |
---|
[1930] | 457 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 458 | ENDIF |
---|
| 459 | c |
---|
| 460 | |
---|
| 461 | a(1) = x(1) - (x(2)-x(1))/2.0 |
---|
| 462 | b(1) = (x(1)+x(2))/2.0 |
---|
| 463 | DO i = 2, imar-1 |
---|
| 464 | a(i) = b(i-1) |
---|
| 465 | b(i) = (x(i)+x(i+1))/2.0 |
---|
| 466 | ENDDO |
---|
| 467 | a(imar) = b(imar-1) |
---|
| 468 | b(imar) = x(imar) + (x(imar)-x(imar-1))/2.0 |
---|
| 469 | |
---|
| 470 | c(1) = y(1) - (y(2)-y(1))/2.0 |
---|
| 471 | d(1) = (y(1)+y(2))/2.0 |
---|
| 472 | DO j = 2, jmar-1 |
---|
| 473 | c(j) = d(j-1) |
---|
| 474 | d(j) = (y(j)+y(j+1))/2.0 |
---|
| 475 | ENDDO |
---|
| 476 | c(jmar) = d(jmar-1) |
---|
| 477 | d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0 |
---|
| 478 | |
---|
| 479 | DO i = 1, imar |
---|
| 480 | DO j = 1, jmar |
---|
| 481 | num_tot(i,j) = 0.0 |
---|
| 482 | sortie(i,j) = 0.0 |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
| 485 | |
---|
| 486 | c |
---|
| 487 | c |
---|
| 488 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 489 | |
---|
| 490 | DO ii = 1, imar |
---|
| 491 | DO jj = 1, jmar |
---|
| 492 | DO i = 1, imdep |
---|
| 493 | IF( ( xdata(i)-a(ii).GE.1.e-5.AND.xdata(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 494 | . ( xdata(i)-a(ii).LE.1.e-5.AND.xdata(i)-b(ii).GE.1.e-5 ) ) |
---|
| 495 | . THEN |
---|
| 496 | DO j = 1, jmdep |
---|
| 497 | IF( (ydata(j)-c(jj).GE.1.e-5.AND.ydata(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 498 | . ( ydata(j)-c(jj).LE.1.e-5.AND.ydata(j)-d(jj).GE.1.e-5 ) ) |
---|
| 499 | . THEN |
---|
| 500 | sortie(ii,jj) = sortie(ii,jj) + LOG(entree(i,j)) |
---|
| 501 | num_tot(ii,jj) = num_tot(ii,jj) + 1.0 |
---|
| 502 | ENDIF |
---|
| 503 | ENDDO |
---|
| 504 | ENDIF |
---|
| 505 | ENDDO |
---|
| 506 | ENDDO |
---|
| 507 | ENDDO |
---|
| 508 | c |
---|
| 509 | |
---|
| 510 | DO i = 1, imar |
---|
| 511 | DO j = 1, jmar |
---|
| 512 | IF (NINT(mask(i,j)).EQ.1) THEN |
---|
| 513 | IF (num_tot(i,j) .GT. 0.0) THEN |
---|
| 514 | sortie(i,j) = sortie(i,j) / num_tot(i,j) |
---|
| 515 | sortie(i,j) = EXP(sortie(i,j)) |
---|
| 516 | ELSE |
---|
[2160] | 517 | if (prt_level >= 1) PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 518 | ccc CALL ABORT_GCM("", "", 1) |
---|
[524] | 519 | CALL dist_sphe(x(i),y(j),xdata,ydata,imdep,jmdep,distans) |
---|
| 520 | #ifdef CRAY |
---|
| 521 | ij_proche = ISMIN(imdep*jmdep,distans,1) |
---|
| 522 | #else |
---|
| 523 | ij_proche = 1 |
---|
| 524 | zzmin = distans(ij_proche) |
---|
| 525 | DO ii = 2, imdep*jmdep |
---|
| 526 | IF (distans(ii).LT.zzmin) THEN |
---|
| 527 | zzmin = distans(ii) |
---|
| 528 | ij_proche = ii |
---|
| 529 | ENDIF |
---|
| 530 | ENDDO |
---|
| 531 | #endif |
---|
| 532 | j_proche = (ij_proche-1)/imdep + 1 |
---|
| 533 | i_proche = ij_proche - (j_proche-1)*imdep |
---|
[2160] | 534 | if (prt_level >= 1) PRINT*, "solution:", ij_proche, i_proche, |
---|
| 535 | $ j_proche |
---|
[524] | 536 | sortie(i,j) = entree(i_proche,j_proche) |
---|
| 537 | ENDIF |
---|
| 538 | ELSE |
---|
| 539 | sortie(i,j) = 0.001 |
---|
| 540 | ENDIF |
---|
| 541 | ENDDO |
---|
| 542 | ENDDO |
---|
| 543 | |
---|
| 544 | RETURN |
---|
| 545 | END |
---|
| 546 | |
---|
| 547 | |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | SUBROUTINE sea_ice(imdep, jmdep, xdata, ydata, glace01, |
---|
| 552 | . imar, jmar, x, y, frac_ice) |
---|
| 553 | c======================================================================= |
---|
| 554 | c z.x.li (le 1 avril 1994): Transformer un champ d'indicateur de la |
---|
| 555 | c glace (1, sinon 0) d'une grille fine a un champ de fraction de glace |
---|
| 556 | c (entre 0 et 1) dans une grille plus grossiere. |
---|
| 557 | c |
---|
| 558 | c Methode naive (voir grille_m) |
---|
| 559 | C======================================================================= |
---|
| 560 | IMPLICIT none |
---|
| 561 | |
---|
| 562 | INTEGER imdep, jmdep |
---|
| 563 | REAL xdata(imdep),ydata(jmdep) |
---|
| 564 | REAL glace01(imdep,jmdep) |
---|
| 565 | c |
---|
| 566 | INTEGER imar, jmar |
---|
| 567 | REAL x(imar),y(jmar) |
---|
| 568 | REAL frac_ice(imar,jmar) |
---|
| 569 | c |
---|
| 570 | INTEGER i, j, ii, jj |
---|
| 571 | REAL a(400),b(400),c(400),d(400) |
---|
| 572 | REAL num_tot(400,400), num_ice(400,400) |
---|
| 573 | REAL distans(400*400) |
---|
| 574 | INTEGER i_proche, j_proche, ij_proche |
---|
| 575 | #ifdef CRAY |
---|
| 576 | INTEGER ISMIN |
---|
| 577 | #else |
---|
| 578 | REAL zzmin |
---|
| 579 | #endif |
---|
[2160] | 580 | include "iniprint.h" |
---|
[524] | 581 | c |
---|
| 582 | IF (imar.GT.400 .OR. jmar.GT.400) THEN |
---|
| 583 | PRINT*, 'imar ou jmar trop grand', imar, jmar |
---|
[1930] | 584 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 585 | ENDIF |
---|
| 586 | c |
---|
| 587 | |
---|
| 588 | a(1) = x(1) - (x(2)-x(1))/2.0 |
---|
| 589 | b(1) = (x(1)+x(2))/2.0 |
---|
| 590 | DO i = 2, imar-1 |
---|
| 591 | a(i) = b(i-1) |
---|
| 592 | b(i) = (x(i)+x(i+1))/2.0 |
---|
| 593 | ENDDO |
---|
| 594 | a(imar) = b(imar-1) |
---|
| 595 | b(imar) = x(imar) + (x(imar)-x(imar-1))/2.0 |
---|
| 596 | |
---|
| 597 | c(1) = y(1) - (y(2)-y(1))/2.0 |
---|
| 598 | d(1) = (y(1)+y(2))/2.0 |
---|
| 599 | DO j = 2, jmar-1 |
---|
| 600 | c(j) = d(j-1) |
---|
| 601 | d(j) = (y(j)+y(j+1))/2.0 |
---|
| 602 | ENDDO |
---|
| 603 | c(jmar) = d(jmar-1) |
---|
| 604 | d(jmar) = y(jmar) + (y(jmar)-y(jmar-1))/2.0 |
---|
| 605 | |
---|
| 606 | DO i = 1, imar |
---|
| 607 | DO j = 1, jmar |
---|
| 608 | num_ice(i,j) = 0.0 |
---|
| 609 | num_tot(i,j) = 0.0 |
---|
| 610 | ENDDO |
---|
| 611 | ENDDO |
---|
| 612 | |
---|
| 613 | c |
---|
| 614 | c |
---|
| 615 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 616 | |
---|
| 617 | DO ii = 1, imar |
---|
| 618 | DO jj = 1, jmar |
---|
| 619 | DO i = 1, imdep |
---|
| 620 | IF( ( xdata(i)-a(ii).GE.1.e-5.AND.xdata(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 621 | . ( xdata(i)-a(ii).LE.1.e-5.AND.xdata(i)-b(ii).GE.1.e-5 ) ) |
---|
| 622 | . THEN |
---|
| 623 | DO j = 1, jmdep |
---|
| 624 | IF( (ydata(j)-c(jj).GE.1.e-5.AND.ydata(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 625 | . ( ydata(j)-c(jj).LE.1.e-5.AND.ydata(j)-d(jj).GE.1.e-5 ) ) |
---|
| 626 | . THEN |
---|
| 627 | num_tot(ii,jj) = num_tot(ii,jj) + 1.0 |
---|
| 628 | IF (NINT(glace01(i,j)).EQ.1 ) |
---|
| 629 | . num_ice(ii,jj) = num_ice(ii,jj) + 1.0 |
---|
| 630 | ENDIF |
---|
| 631 | ENDDO |
---|
| 632 | ENDIF |
---|
| 633 | ENDDO |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | c |
---|
| 637 | c |
---|
| 638 | |
---|
| 639 | DO i = 1, imar |
---|
| 640 | DO j = 1, jmar |
---|
| 641 | IF (num_tot(i,j) .GT. 0.001) THEN |
---|
| 642 | IF (num_ice(i,j).GT.0.001) THEN |
---|
| 643 | frac_ice(i,j) = num_ice(i,j) / num_tot(i,j) |
---|
| 644 | ELSE |
---|
| 645 | frac_ice(i,j) = 0.0 |
---|
| 646 | ENDIF |
---|
| 647 | ELSE |
---|
[2160] | 648 | if (prt_level >= 1) PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 649 | ccc CALL ABORT_GCM("", "", 1) |
---|
[524] | 650 | CALL dist_sphe(x(i),y(j),xdata,ydata,imdep,jmdep,distans) |
---|
| 651 | #ifdef CRAY |
---|
| 652 | ij_proche = ISMIN(imdep*jmdep,distans,1) |
---|
| 653 | #else |
---|
| 654 | ij_proche = 1 |
---|
| 655 | zzmin = distans(ij_proche) |
---|
| 656 | DO ii = 2, imdep*jmdep |
---|
| 657 | IF (distans(ii).LT.zzmin) THEN |
---|
| 658 | zzmin = distans(ii) |
---|
| 659 | ij_proche = ii |
---|
| 660 | ENDIF |
---|
| 661 | ENDDO |
---|
| 662 | #endif |
---|
| 663 | j_proche = (ij_proche-1)/imdep + 1 |
---|
| 664 | i_proche = ij_proche - (j_proche-1)*imdep |
---|
[2160] | 665 | if (prt_level >= 1) PRINT*, "solution:", ij_proche, i_proche, |
---|
| 666 | $ j_proche |
---|
[524] | 667 | IF (NINT(glace01(i_proche,j_proche)).EQ.1 ) THEN |
---|
| 668 | frac_ice(i,j) = 1.0 |
---|
| 669 | ELSE |
---|
| 670 | frac_ice(i,j) = 0.0 |
---|
| 671 | ENDIF |
---|
| 672 | ENDIF |
---|
| 673 | ENDDO |
---|
| 674 | ENDDO |
---|
| 675 | |
---|
| 676 | RETURN |
---|
| 677 | END |
---|
| 678 | |
---|
| 679 | |
---|
| 680 | |
---|
| 681 | SUBROUTINE rugsoro(imrel, jmrel, xrel, yrel, relief, |
---|
| 682 | . immod, jmmod, xmod, ymod, rugs) |
---|
| 683 | c======================================================================= |
---|
| 684 | c Calculer la longueur de rugosite liee au relief en utilisant |
---|
| 685 | c l'ecart-type dans une maille de 1x1 |
---|
| 686 | C======================================================================= |
---|
| 687 | IMPLICIT none |
---|
| 688 | c |
---|
| 689 | #ifdef CRAY |
---|
| 690 | INTEGER ISMIN |
---|
| 691 | #else |
---|
| 692 | REAL zzmin |
---|
| 693 | #endif |
---|
| 694 | c |
---|
| 695 | REAL amin, AMAX |
---|
| 696 | c |
---|
| 697 | INTEGER imrel, jmrel |
---|
| 698 | REAL xrel(imrel),yrel(jmrel) |
---|
| 699 | REAL relief(imrel,jmrel) |
---|
| 700 | c |
---|
| 701 | INTEGER immod, jmmod |
---|
| 702 | REAL xmod(immod),ymod(jmmod) |
---|
| 703 | REAL rugs(immod,jmmod) |
---|
| 704 | c |
---|
| 705 | INTEGER imtmp, jmtmp |
---|
| 706 | PARAMETER (imtmp=360,jmtmp=180) |
---|
| 707 | REAL xtmp(imtmp), ytmp(jmtmp) |
---|
[1279] | 708 | REAL(KIND=8) cham1tmp(imtmp,jmtmp), cham2tmp(imtmp,jmtmp) |
---|
[524] | 709 | REAL zzzz |
---|
| 710 | c |
---|
| 711 | INTEGER i, j, ii, jj |
---|
| 712 | REAL a(2200),b(2200),c(1100),d(1100) |
---|
| 713 | REAL number(2200,1100) |
---|
| 714 | c |
---|
| 715 | REAL distans(400*400) |
---|
| 716 | INTEGER i_proche, j_proche, ij_proche |
---|
| 717 | c |
---|
[2160] | 718 | include "iniprint.h" |
---|
| 719 | |
---|
[524] | 720 | IF (immod.GT.2200 .OR. jmmod.GT.1100) THEN |
---|
| 721 | PRINT*, 'immod ou jmmod trop grand', immod, jmmod |
---|
[1930] | 722 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 723 | ENDIF |
---|
| 724 | c |
---|
| 725 | c Calculs intermediares: |
---|
| 726 | c |
---|
[1403] | 727 | xtmp(1) = -180.0 + 360.0/REAL(imtmp) / 2.0 |
---|
[524] | 728 | DO i = 2, imtmp |
---|
[1403] | 729 | xtmp(i) = xtmp(i-1) + 360.0/REAL(imtmp) |
---|
[524] | 730 | ENDDO |
---|
| 731 | DO i = 1, imtmp |
---|
| 732 | xtmp(i) = xtmp(i) /180.0 * 4.0*ATAN(1.0) |
---|
| 733 | ENDDO |
---|
[1403] | 734 | ytmp(1) = -90.0 + 180.0/REAL(jmtmp) / 2.0 |
---|
[524] | 735 | DO j = 2, jmtmp |
---|
[1403] | 736 | ytmp(j) = ytmp(j-1) + 180.0/REAL(jmtmp) |
---|
[524] | 737 | ENDDO |
---|
| 738 | DO j = 1, jmtmp |
---|
| 739 | ytmp(j) = ytmp(j) /180.0 * 4.0*ATAN(1.0) |
---|
| 740 | ENDDO |
---|
| 741 | c |
---|
| 742 | a(1) = xtmp(1) - (xtmp(2)-xtmp(1))/2.0 |
---|
| 743 | b(1) = (xtmp(1)+xtmp(2))/2.0 |
---|
| 744 | DO i = 2, imtmp-1 |
---|
| 745 | a(i) = b(i-1) |
---|
| 746 | b(i) = (xtmp(i)+xtmp(i+1))/2.0 |
---|
| 747 | ENDDO |
---|
| 748 | a(imtmp) = b(imtmp-1) |
---|
| 749 | b(imtmp) = xtmp(imtmp) + (xtmp(imtmp)-xtmp(imtmp-1))/2.0 |
---|
| 750 | |
---|
| 751 | c(1) = ytmp(1) - (ytmp(2)-ytmp(1))/2.0 |
---|
| 752 | d(1) = (ytmp(1)+ytmp(2))/2.0 |
---|
| 753 | DO j = 2, jmtmp-1 |
---|
| 754 | c(j) = d(j-1) |
---|
| 755 | d(j) = (ytmp(j)+ytmp(j+1))/2.0 |
---|
| 756 | ENDDO |
---|
| 757 | c(jmtmp) = d(jmtmp-1) |
---|
| 758 | d(jmtmp) = ytmp(jmtmp) + (ytmp(jmtmp)-ytmp(jmtmp-1))/2.0 |
---|
| 759 | |
---|
| 760 | DO i = 1, imtmp |
---|
| 761 | DO j = 1, jmtmp |
---|
| 762 | number(i,j) = 0.0 |
---|
| 763 | cham1tmp(i,j) = 0.0 |
---|
| 764 | cham2tmp(i,j) = 0.0 |
---|
| 765 | ENDDO |
---|
| 766 | ENDDO |
---|
| 767 | c |
---|
| 768 | c |
---|
| 769 | c |
---|
| 770 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 771 | |
---|
| 772 | DO ii = 1, imtmp |
---|
| 773 | DO jj = 1, jmtmp |
---|
| 774 | DO i = 1, imrel |
---|
| 775 | IF( ( xrel(i)-a(ii).GE.1.e-5.AND.xrel(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 776 | . ( xrel(i)-a(ii).LE.1.e-5.AND.xrel(i)-b(ii).GE.1.e-5 ) ) |
---|
| 777 | . THEN |
---|
| 778 | DO j = 1, jmrel |
---|
| 779 | IF( (yrel(j)-c(jj).GE.1.e-5.AND.yrel(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 780 | . ( yrel(j)-c(jj).LE.1.e-5.AND.yrel(j)-d(jj).GE.1.e-5 ) ) |
---|
| 781 | . THEN |
---|
| 782 | number(ii,jj) = number(ii,jj) + 1.0 |
---|
| 783 | cham1tmp(ii,jj) = cham1tmp(ii,jj) + relief(i,j) |
---|
| 784 | cham2tmp(ii,jj) = cham2tmp(ii,jj) |
---|
| 785 | . + relief(i,j)*relief(i,j) |
---|
| 786 | ENDIF |
---|
| 787 | ENDDO |
---|
| 788 | ENDIF |
---|
| 789 | ENDDO |
---|
| 790 | ENDDO |
---|
| 791 | ENDDO |
---|
| 792 | c |
---|
| 793 | c |
---|
| 794 | DO i = 1, imtmp |
---|
| 795 | DO j = 1, jmtmp |
---|
| 796 | IF (number(i,j) .GT. 0.001) THEN |
---|
| 797 | cham1tmp(i,j) = cham1tmp(i,j) / number(i,j) |
---|
| 798 | cham2tmp(i,j) = cham2tmp(i,j) / number(i,j) |
---|
| 799 | zzzz=cham2tmp(i,j)-cham1tmp(i,j)**2 |
---|
| 800 | if (zzzz .lt. 0.0) then |
---|
| 801 | if (zzzz .gt. -7.5) then |
---|
| 802 | zzzz = 0.0 |
---|
| 803 | print*,'Pb rugsoro, -7.5 < zzzz < 0, => zzz = 0.0' |
---|
| 804 | else |
---|
| 805 | stop 'Pb rugsoro, zzzz <-7.5' |
---|
| 806 | endif |
---|
| 807 | endif |
---|
| 808 | cham2tmp(i,j) = SQRT(zzzz) |
---|
| 809 | ELSE |
---|
| 810 | PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 811 | CALL ABORT_GCM("", "", 1) |
---|
[524] | 812 | ENDIF |
---|
| 813 | ENDDO |
---|
| 814 | ENDDO |
---|
| 815 | c |
---|
| 816 | amin = cham2tmp(1,1) |
---|
| 817 | AMAX = cham2tmp(1,1) |
---|
| 818 | DO j = 1, jmtmp |
---|
| 819 | DO i = 1, imtmp |
---|
| 820 | IF (cham2tmp(i,j).GT.AMAX) AMAX = cham2tmp(i,j) |
---|
| 821 | IF (cham2tmp(i,j).LT.amin) amin = cham2tmp(i,j) |
---|
| 822 | ENDDO |
---|
| 823 | ENDDO |
---|
| 824 | PRINT*, 'Ecart-type 1x1:', amin, AMAX |
---|
| 825 | c |
---|
| 826 | c |
---|
| 827 | c |
---|
| 828 | a(1) = xmod(1) - (xmod(2)-xmod(1))/2.0 |
---|
| 829 | b(1) = (xmod(1)+xmod(2))/2.0 |
---|
| 830 | DO i = 2, immod-1 |
---|
| 831 | a(i) = b(i-1) |
---|
| 832 | b(i) = (xmod(i)+xmod(i+1))/2.0 |
---|
| 833 | ENDDO |
---|
| 834 | a(immod) = b(immod-1) |
---|
| 835 | b(immod) = xmod(immod) + (xmod(immod)-xmod(immod-1))/2.0 |
---|
| 836 | |
---|
| 837 | c(1) = ymod(1) - (ymod(2)-ymod(1))/2.0 |
---|
| 838 | d(1) = (ymod(1)+ymod(2))/2.0 |
---|
| 839 | DO j = 2, jmmod-1 |
---|
| 840 | c(j) = d(j-1) |
---|
| 841 | d(j) = (ymod(j)+ymod(j+1))/2.0 |
---|
| 842 | ENDDO |
---|
| 843 | c(jmmod) = d(jmmod-1) |
---|
| 844 | d(jmmod) = ymod(jmmod) + (ymod(jmmod)-ymod(jmmod-1))/2.0 |
---|
| 845 | c |
---|
| 846 | DO i = 1, immod |
---|
| 847 | DO j = 1, jmmod |
---|
| 848 | number(i,j) = 0.0 |
---|
| 849 | rugs(i,j) = 0.0 |
---|
| 850 | ENDDO |
---|
| 851 | ENDDO |
---|
| 852 | c |
---|
| 853 | c |
---|
| 854 | c |
---|
| 855 | c ..... Modif P. Le Van ( 23/08/95 ) .... |
---|
| 856 | |
---|
| 857 | DO ii = 1, immod |
---|
| 858 | DO jj = 1, jmmod |
---|
| 859 | DO i = 1, imtmp |
---|
| 860 | IF( ( xtmp(i)-a(ii).GE.1.e-5.AND.xtmp(i)-b(ii).LE.1.e-5 ).OR. |
---|
| 861 | . ( xtmp(i)-a(ii).LE.1.e-5.AND.xtmp(i)-b(ii).GE.1.e-5 ) ) |
---|
| 862 | . THEN |
---|
| 863 | DO j = 1, jmtmp |
---|
| 864 | IF( (ytmp(j)-c(jj).GE.1.e-5.AND.ytmp(j)-d(jj).LE.1.e-5 ).OR. |
---|
| 865 | . ( ytmp(j)-c(jj).LE.1.e-5.AND.ytmp(j)-d(jj).GE.1.e-5 ) ) |
---|
| 866 | . THEN |
---|
| 867 | number(ii,jj) = number(ii,jj) + 1.0 |
---|
| 868 | rugs(ii,jj) = rugs(ii,jj) |
---|
[1279] | 869 | . + LOG(MAX(0.001_8,cham2tmp(i,j))) |
---|
[524] | 870 | ENDIF |
---|
| 871 | ENDDO |
---|
| 872 | ENDIF |
---|
| 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | ENDDO |
---|
| 876 | c |
---|
| 877 | c |
---|
| 878 | DO i = 1, immod |
---|
| 879 | DO j = 1, jmmod |
---|
| 880 | IF (number(i,j) .GT. 0.001) THEN |
---|
| 881 | rugs(i,j) = rugs(i,j) / number(i,j) |
---|
| 882 | rugs(i,j) = EXP(rugs(i,j)) |
---|
| 883 | ELSE |
---|
[2160] | 884 | if (prt_level >= 1) PRINT*, 'probleme,i,j=', i,j |
---|
[1930] | 885 | ccc CALL ABORT_GCM("", "", 1) |
---|
[524] | 886 | CALL dist_sphe(xmod(i),ymod(j),xtmp,ytmp,imtmp,jmtmp,distans) |
---|
| 887 | #ifdef CRAY |
---|
| 888 | ij_proche = ISMIN(imtmp*jmtmp,distans,1) |
---|
| 889 | #else |
---|
| 890 | ij_proche = 1 |
---|
| 891 | zzmin = distans(ij_proche) |
---|
| 892 | DO ii = 2, imtmp*jmtmp |
---|
| 893 | IF (distans(ii).LT.zzmin) THEN |
---|
| 894 | zzmin = distans(ii) |
---|
| 895 | ij_proche = ii |
---|
| 896 | ENDIF |
---|
| 897 | ENDDO |
---|
| 898 | #endif |
---|
| 899 | j_proche = (ij_proche-1)/imtmp + 1 |
---|
| 900 | i_proche = ij_proche - (j_proche-1)*imtmp |
---|
[2160] | 901 | if (prt_level >= 1) PRINT*, "solution:", ij_proche, i_proche, |
---|
| 902 | $ j_proche |
---|
[1279] | 903 | rugs(i,j) = LOG(MAX(0.001_8,cham2tmp(i_proche,j_proche))) |
---|
[524] | 904 | ENDIF |
---|
| 905 | ENDDO |
---|
| 906 | ENDDO |
---|
| 907 | c |
---|
| 908 | amin = rugs(1,1) |
---|
| 909 | AMAX = rugs(1,1) |
---|
| 910 | DO j = 1, jmmod |
---|
| 911 | DO i = 1, immod |
---|
| 912 | IF (rugs(i,j).GT.AMAX) AMAX = rugs(i,j) |
---|
| 913 | IF (rugs(i,j).LT.amin) amin = rugs(i,j) |
---|
| 914 | ENDDO |
---|
| 915 | ENDDO |
---|
| 916 | PRINT*, 'Ecart-type du modele:', amin, AMAX |
---|
| 917 | c |
---|
| 918 | DO j = 1, jmmod |
---|
| 919 | DO i = 1, immod |
---|
| 920 | rugs(i,j) = rugs(i,j) / AMAX * 20.0 |
---|
| 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | c |
---|
| 924 | amin = rugs(1,1) |
---|
| 925 | AMAX = rugs(1,1) |
---|
| 926 | DO j = 1, jmmod |
---|
| 927 | DO i = 1, immod |
---|
| 928 | IF (rugs(i,j).GT.AMAX) AMAX = rugs(i,j) |
---|
| 929 | IF (rugs(i,j).LT.amin) amin = rugs(i,j) |
---|
| 930 | ENDDO |
---|
| 931 | ENDDO |
---|
| 932 | PRINT*, 'Longueur de rugosite du modele:', amin, AMAX |
---|
| 933 | c |
---|
| 934 | RETURN |
---|
| 935 | END |
---|
| 936 | c |
---|
| 937 | SUBROUTINE dist_sphe(rf_lon,rf_lat,rlon,rlat,im,jm,distance) |
---|
[2220] | 938 | IMPLICIT NONE |
---|
[524] | 939 | c |
---|
| 940 | c Auteur: Laurent Li (le 30 decembre 1996) |
---|
| 941 | c |
---|
| 942 | c Ce programme calcule la distance minimale (selon le grand cercle) |
---|
| 943 | c entre deux points sur la terre |
---|
| 944 | c |
---|
| 945 | c Input: |
---|
| 946 | INTEGER im, jm ! dimensions |
---|
| 947 | REAL rf_lon ! longitude du point de reference (degres) |
---|
| 948 | REAL rf_lat ! latitude du point de reference (degres) |
---|
| 949 | REAL rlon(im), rlat(jm) ! longitude et latitude des points |
---|
| 950 | c |
---|
| 951 | c Output: |
---|
| 952 | REAL distance(im,jm) ! distances en metre |
---|
| 953 | c |
---|
| 954 | REAL rlon1, rlat1 |
---|
| 955 | REAL rlon2, rlat2 |
---|
| 956 | REAL dist |
---|
| 957 | REAL pa, pb, p, pi |
---|
| 958 | c |
---|
| 959 | REAL radius |
---|
| 960 | PARAMETER (radius=6371229.) |
---|
[2220] | 961 | INTEGER i,j |
---|
[524] | 962 | c |
---|
| 963 | pi = 4.0 * ATAN(1.0) |
---|
| 964 | c |
---|
| 965 | DO 9999 j = 1, jm |
---|
| 966 | DO 9999 i = 1, im |
---|
| 967 | c |
---|
| 968 | rlon1=rf_lon |
---|
| 969 | rlat1=rf_lat |
---|
| 970 | rlon2=rlon(i) |
---|
| 971 | rlat2=rlat(j) |
---|
| 972 | pa = pi/2.0 - rlat1*pi/180.0 ! dist. entre pole n et point a |
---|
| 973 | pb = pi/2.0 - rlat2*pi/180.0 ! dist. entre pole n et point b |
---|
| 974 | p = (rlon1-rlon2)*pi/180.0 ! angle entre a et b (leurs meridiens) |
---|
| 975 | c |
---|
| 976 | dist = ACOS( COS(pa)*COS(pb) + SIN(pa)*SIN(pb)*COS(p)) |
---|
| 977 | dist = radius * dist |
---|
| 978 | distance(i,j) = dist |
---|
| 979 | c |
---|
| 980 | 9999 CONTINUE |
---|
| 981 | c |
---|
| 982 | END |
---|