1 | ! |
---|
2 | ! $Id: top_bound.F 2641 2016-09-29 21:26:46Z aborella $ |
---|
3 | ! |
---|
4 | SUBROUTINE top_bound(vcov,ucov,teta,masse,dt) |
---|
5 | |
---|
6 | USE comconst_mod, ONLY: iflag_top_bound, mode_top_bound, |
---|
7 | & tau_top_bound |
---|
8 | USE comvert_mod, ONLY: presnivs, preff, scaleheight |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | c |
---|
12 | include "dimensions.h" |
---|
13 | include "paramet.h" |
---|
14 | include "comgeom2.h" |
---|
15 | |
---|
16 | |
---|
17 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
18 | C F. LOTT DEC. 2006 |
---|
19 | c ( 10/12/06 ) |
---|
20 | |
---|
21 | c======================================================================= |
---|
22 | c |
---|
23 | c Auteur: F. LOTT |
---|
24 | c ------- |
---|
25 | c |
---|
26 | c Objet: |
---|
27 | c ------ |
---|
28 | c |
---|
29 | c Dissipation linéaire (ex top_bound de la physique) |
---|
30 | c |
---|
31 | c======================================================================= |
---|
32 | |
---|
33 | ! top_bound sponge layer model: |
---|
34 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
35 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
36 | ! of the characteristic quenching/relaxation time scale |
---|
37 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
38 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
39 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
40 | ! can be toward the average zonal field or just zero (see below). |
---|
41 | |
---|
42 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
43 | |
---|
44 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst_mod) |
---|
45 | ! iflag_top_bound=0 for no sponge |
---|
46 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
47 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
48 | ! mode_top_bound=0: no relaxation |
---|
49 | ! mode_top_bound=1: u and v relax towards 0 |
---|
50 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
51 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
52 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
53 | ! the topmost layer (Hz) |
---|
54 | |
---|
55 | |
---|
56 | #include "comdissipn.h" |
---|
57 | #include "iniprint.h" |
---|
58 | |
---|
59 | c Arguments: |
---|
60 | c ---------- |
---|
61 | |
---|
62 | real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
---|
63 | real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
---|
64 | real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
---|
65 | real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
---|
66 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
67 | |
---|
68 | c Local: |
---|
69 | c ------ |
---|
70 | |
---|
71 | REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
---|
72 | REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
---|
73 | |
---|
74 | integer i |
---|
75 | REAL,SAVE :: rdamp(llm) ! quenching coefficient |
---|
76 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
77 | |
---|
78 | LOGICAL,SAVE :: first=.true. |
---|
79 | |
---|
80 | INTEGER j,l |
---|
81 | |
---|
82 | if (iflag_top_bound.eq.0) return |
---|
83 | |
---|
84 | if (first) then |
---|
85 | if (iflag_top_bound.eq.1) then |
---|
86 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
87 | lambda(:)=0. |
---|
88 | lambda(llm)=tau_top_bound |
---|
89 | lambda(llm-1)=tau_top_bound/2. |
---|
90 | lambda(llm-2)=tau_top_bound/4. |
---|
91 | lambda(llm-3)=tau_top_bound/8. |
---|
92 | else if (iflag_top_bound.eq.2) then |
---|
93 | ! sponge quenching over topmost layers down to pressures which are |
---|
94 | ! higher than 100 times the topmost layer pressure |
---|
95 | lambda(:)=tau_top_bound |
---|
96 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
97 | endif |
---|
98 | |
---|
99 | ! quenching coefficient rdamp(:) |
---|
100 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
101 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
102 | |
---|
103 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
104 | write(lunout,*)'Sponge layer coefficients' |
---|
105 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
106 | do l=1,llm |
---|
107 | if (rdamp(l).ne.0.) then |
---|
108 | write(lunout,'(6(1pe12.4,1x))') |
---|
109 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
110 | & 1./lambda(l),lambda(l) |
---|
111 | endif |
---|
112 | enddo |
---|
113 | first=.false. |
---|
114 | endif ! of if (first) |
---|
115 | |
---|
116 | CALL massbar(masse,massebx,masseby) |
---|
117 | |
---|
118 | ! compute zonal average of vcov and u |
---|
119 | if (mode_top_bound.ge.2) then |
---|
120 | do l=1,llm |
---|
121 | do j=1,jjm |
---|
122 | vzon(j,l)=0. |
---|
123 | zm=0. |
---|
124 | do i=1,iim |
---|
125 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
126 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
127 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
128 | zm=zm+masseby(i,j,l) |
---|
129 | enddo |
---|
130 | vzon(j,l)=vzon(j,l)/zm |
---|
131 | enddo |
---|
132 | enddo |
---|
133 | |
---|
134 | do l=1,llm |
---|
135 | do j=2,jjm ! excluding poles |
---|
136 | uzon(j,l)=0. |
---|
137 | zm=0. |
---|
138 | do i=1,iim |
---|
139 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
140 | zm=zm+massebx(i,j,l) |
---|
141 | enddo |
---|
142 | uzon(j,l)=uzon(j,l)/zm |
---|
143 | enddo |
---|
144 | enddo |
---|
145 | else ! ucov and vcov will relax towards 0 |
---|
146 | vzon(:,:)=0. |
---|
147 | uzon(:,:)=0. |
---|
148 | endif ! of if (mode_top_bound.ge.2) |
---|
149 | |
---|
150 | ! compute zonal average of potential temperature, if necessary |
---|
151 | if (mode_top_bound.ge.3) then |
---|
152 | do l=1,llm |
---|
153 | do j=2,jjm ! excluding poles |
---|
154 | zm=0. |
---|
155 | tzon(j,l)=0. |
---|
156 | do i=1,iim |
---|
157 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
158 | zm=zm+masse(i,j,l) |
---|
159 | enddo |
---|
160 | tzon(j,l)=tzon(j,l)/zm |
---|
161 | enddo |
---|
162 | enddo |
---|
163 | endif ! of if (mode_top_bound.ge.3) |
---|
164 | |
---|
165 | if (mode_top_bound.ge.1) then |
---|
166 | ! Apply sponge quenching on vcov: |
---|
167 | do l=1,llm |
---|
168 | do i=1,iip1 |
---|
169 | do j=1,jjm |
---|
170 | vcov(i,j,l)=vcov(i,j,l) |
---|
171 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
172 | enddo |
---|
173 | enddo |
---|
174 | enddo |
---|
175 | |
---|
176 | ! Apply sponge quenching on ucov: |
---|
177 | do l=1,llm |
---|
178 | do i=1,iip1 |
---|
179 | do j=2,jjm ! excluding poles |
---|
180 | ucov(i,j,l)=ucov(i,j,l) |
---|
181 | & -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
182 | enddo |
---|
183 | enddo |
---|
184 | enddo |
---|
185 | endif ! of if (mode_top_bound.ge.1) |
---|
186 | |
---|
187 | if (mode_top_bound.ge.3) then |
---|
188 | ! Apply sponge quenching on teta: |
---|
189 | do l=1,llm |
---|
190 | do i=1,iip1 |
---|
191 | do j=2,jjm ! excluding poles |
---|
192 | teta(i,j,l)=teta(i,j,l) |
---|
193 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
194 | enddo |
---|
195 | enddo |
---|
196 | enddo |
---|
197 | endif ! of if (mode_top_bound.ge.3) |
---|
198 | |
---|
199 | END |
---|