source: LMDZ5/branches/LMDZ_tree_FC/libf/phylmd/yamada4.F90 @ 3796

Last change on this file since 3796 was 2924, checked in by fcheruy, 8 years ago

Creation of LMDZ branch to incorporate tree drag from ORCHIDEE.
Should merge in LMDZ trunk quickly

  1. Cheruy with assistance from LF
  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 36.2 KB
Line 
1!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
3SUBROUTINE yamada4(ni, nsrf, ngrid, dt, g, rconst, plev, temp, zlev, zlay, u, v, teta, &
4    cd, tke, km, kn, kq, ustar, iflag_pbl, drgpro)
5
6  USE dimphy
7  USE ioipsl_getin_p_mod, ONLY : getin_p
8
9  IMPLICIT NONE
10  include "iniprint.h"
11  ! .......................................................................
12  ! ym#include "dimensions.h"
13  ! ym#include "dimphy.h"
14  ! ************************************************************************************************
15  !
16  ! yamada4: subroutine qui calcule le transfert turbulent avec une fermeture d'ordre 2 ou 2.5
17  !
18  ! Reference: Simulation of nocturnal drainage flows by a q2l Turbulence Closure Model
19  !            Yamada T.
20  !            J. Atmos. Sci, 40, 91-106, 1983
21  !
22  !************************************************************************************************
23  ! Input :
24  !'======
25  ! ni: indice horizontal sur la grille de base, non restreinte
26  ! nsrf: type de surface
27  ! ngrid: nombre de mailles concern??es sur l'horizontal
28  ! dt : pas de temps
29  ! g  : g
30  ! rconst: constante de l'air sec
31  ! zlev : altitude a chaque niveau (interface inferieure de la couche
32  ! de meme indice)
33  ! zlay : altitude au centre de chaque couche
34  ! u,v : vitesse au centre de chaque couche
35  ! (en entree : la valeur au debut du pas de temps)
36  ! teta : temperature potentielle virtuelle au centre de chaque couche
37  ! (en entree : la valeur au debut du pas de temps)
38  ! cd : cdrag pour la quantit?? de mouvement
39  ! (en entree : la valeur au debut du pas de temps)
40  ! ustar: vitesse de friction calcul??e par une formule diagnostique
41  ! iflag_pbl: flag pour choisir des options du sch??ma de turbulence
42  !
43  !             iflag_pbl doit valoir entre 6 et 9
44  !             l=6, on prend  systematiquement une longueur d'equilibre
45  !             iflag_pbl=6 : MY 2.0
46  !             iflag_pbl=7 : MY 2.0.Fournier
47  !             iflag_pbl=8/9 : MY 2.5
48  !             iflag_pbl=8 with special obsolete treatments for convergence
49  !             with Cmpi5 NPv3.1 simulations
50  !             iflag_pbl=10/11 :  New scheme M2 and N2 explicit and dissiptation exact
51  !             iflag_pbl=12 = 11 with vertical diffusion off q2
52  !
53  !             2013/04/01 (FH hourdin@lmd.jussieu.fr)
54  !             Correction for very stable PBLs (iflag_pbl=10 and 11)
55  !             iflag_pbl=8 converges numerically with NPv3.1
56  !             iflag_pbl=11 -> the model starts with NP from start files created by ce0l
57  !                          -> the model can run with longer time-steps.
58  !             2016/11/30 (EV etienne.vignon@univ-grenoble-alpes.fr)
59  !               On met tke (=q2/2) en entr??e plut??t que q2
60  !               On corrige l'update de la tke
61  !
62  ! Inpout/Output :
63  !==============
64  ! tke : tke au bas de chaque couche
65  ! (en entree : la valeur au debut du pas de temps)
66  ! (en sortie : la valeur a la fin du pas de temps)
67 
68  ! Outputs:
69  !==========
70  ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque
71  ! couche)
72  ! (en sortie : la valeur a la fin du pas de temps)
73  ! kn : diffusivite turbulente des scalaires (au bas de chaque couche)
74  ! (en sortie : la valeur a la fin du pas de temps)
75  !
76  !.......................................................................
77
78  !=======================================================================
79  ! Declarations:
80  !=======================================================================
81
82
83  ! Inputs/Outputs
84  !----------------
85  REAL dt, g, rconst
86  REAL plev(klon, klev+1), temp(klon, klev)
87  REAL ustar(klon)
88  REAL kmin, qmin, pblhmin(klon), coriol(klon)
89  REAL zlev(klon, klev+1)
90  REAL zlay(klon, klev)
91  REAL u(klon, klev)
92  REAL v(klon, klev)
93  REAL teta(klon, klev)
94  REAL cd(klon)
95  REAL tke(klon, klev+1)
96  REAL unsdz(klon, klev)
97  REAL unsdzdec(klon, klev+1)
98  REAL kn(klon, klev+1)
99  REAL km(klon, klev+1)
100  INTEGER iflag_pbl, ngrid, nsrf
101  INTEGER ni(klon)
102
103!FC
104  REAL drgpro(klon,klev)
105  REAL winds(klon,klev)
106
107  ! Local
108  !-------
109
110  INCLUDE "clesphys.h"
111
112  REAL q2(klon, klev+1)
113  REAL kmpre(klon, klev+1), tmp2, qpre
114  REAL mpre(klon, klev+1)
115  REAL kq(klon, klev+1)
116  REAL ff(klon, klev+1), delta(klon, klev+1)
117  REAL aa(klon, klev+1), aa0, aa1
118  INTEGER nlay, nlev
119  LOGICAL first
120  INTEGER ipas
121  SAVE first, ipas
122  ! FH/IM     data first,ipas/.true.,0/
123  DATA first, ipas/.FALSE., 0/
124  !$OMP THREADPRIVATE( first,ipas)
125  LOGICAL,SAVE :: hboville=.TRUE.
126  REAL,SAVE :: viscom,viscoh
127  !$OMP THREADPRIVATE( hboville,viscom,viscoh)
128  INTEGER ig, k
129  REAL ri, zrif, zalpha, zsm, zsn
130  REAL rif(klon, klev+1), sm(klon, klev+1), alpha(klon, klev)
131  REAL m2(klon, klev+1), dz(klon, klev+1), zq, n2(klon, klev+1)
132  REAL dtetadz(klon, klev+1)
133  REAL m2cstat, mcstat, kmcstat
134  REAL l(klon, klev+1)
135  REAL zz(klon, klev+1)
136  INTEGER iter
137  REAL dissip(klon,klev), tkeprov,tkeexp, shear(klon,klev), buoy(klon,klev)
138  REAL,SAVE :: ric0,ric,rifc, b1, kap
139  !$OMP THREADPRIVATE(ric0,ric,rifc,b1,kap)
140  DATA b1, kap/16.6, 0.4/
141  REAL,SAVE :: seuilsm, seuilalpha
142  !$OMP THREADPRIVATE(seuilsm, seuilalpha)
143  REAL,SAVE :: lmixmin
144  !$OMP THREADPRIVATE(lmixmin)
145  LOGICAL, SAVE :: new_yamada4
146  INTEGER, SAVE :: yamada4_num
147  !$OMP THREADPRIVATE(new_yamada4,yamada4_num)
148  REAL, SAVE :: yun,ydeux
149  REAL :: disseff
150  !$OMP THREADPRIVATE(yun,ydeux)
151  REAL frif, falpha, fsm
152  REAL rino(klon, klev+1), smyam(klon, klev), styam(klon, klev), &
153    lyam(klon, klev), knyam(klon, klev), w2yam(klon, klev), t2yam(klon, klev)
154  LOGICAL, SAVE :: firstcall = .TRUE.
155  !$OMP THREADPRIVATE(firstcall)
156
157
158
159  ! Fonctions utilis??es
160  !--------------------
161
162  frif(ri) = 0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156))
163  falpha(ri) = 1.318*(0.2231-ri)/(0.2341-ri)
164  fsm(ri) = 1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri))
165 
166
167  IF (firstcall) THEN
168! Seuil dans le code de turbulence
169    new_yamada4=.false.
170    CALL getin_p('new_yamada4',new_yamada4)
171
172    IF (new_yamada4) THEN
173! Corrections et reglages issus du travail de these d'Etienne Vignon.
174       ric=0.143 ! qui donne des valeurs proches des seuils proposes
175                 ! dans YAMADA 1983 : sm=0.0845 (0.085 dans Y83)
176                 !                    sm=1.1213 (1.12  dans Y83)
177       CALL getin_p('yamada4_ric',ric)
178       ric0=0.19489      ! ric=0.195 originalement, mais produisait sm<0
179       ric=min(ric,ric0) ! Au dela de ric0, sm devient n??gatif
180       rifc=frif(ric)
181       seuilsm=fsm(frif(ric))
182       seuilalpha=falpha(frif(ric))
183       yun=1.
184       ydeux=2.
185       hboville=.FALSE.
186       viscom=1.46E-5
187       viscoh=2.06E-5
188       lmixmin=0.
189       yamada4_num=5
190    ELSE
191       ric=0.195
192       rifc=0.191
193       seuilalpha=1.12
194       seuilsm=0.085
195       yun=2.
196       ydeux=1.
197       hboville=.TRUE.
198       viscom=0.
199       viscoh=0.
200       lmixmin=1.
201       yamada4_num=0
202    ENDIF
203
204    PRINT*,'YAMADA4 RIc, RIfc, Sm_min, Alpha_min',ric,rifc,seuilsm,seuilalpha
205    firstcall = .FALSE.
206    CALL getin_p('lmixmin',lmixmin)
207    CALL getin_p('yamada4_hboville',hboville)
208    CALL getin_p('yamada4_num',yamada4_num)
209  END IF
210
211
212
213!===============================================================================
214! Flags, tests et ??valuations de constantes
215!===============================================================================
216
217! On utilise ou non la routine de Holstalg Boville pour les cas tres stables
218
219
220  IF (.NOT. (iflag_pbl>=6 .AND. iflag_pbl<=12)) THEN
221    STOP 'probleme de coherence dans appel a MY'
222  END IF
223
224
225  nlay = klev
226  nlev = klev + 1
227  ipas = ipas + 1
228
229
230!========================================================================
231! Calcul des increments verticaux
232!=========================================================================
233
234 
235! Attention: zlev n'est pas declare a nlev
236  DO ig = 1, ngrid
237    zlev(ig, nlev) = zlay(ig, nlay) + (zlay(ig,nlay)-zlev(ig,nlev-1))
238  END DO
239
240
241  DO k = 1, nlay
242    DO ig = 1, ngrid
243      unsdz(ig, k) = 1.E+0/(zlev(ig,k+1)-zlev(ig,k))
244    END DO
245  END DO
246  DO ig = 1, ngrid
247    unsdzdec(ig, 1) = 1.E+0/(zlay(ig,1)-zlev(ig,1))
248  END DO
249  DO k = 2, nlay
250    DO ig = 1, ngrid
251      unsdzdec(ig, k) = 1.E+0/(zlay(ig,k)-zlay(ig,k-1))
252    END DO
253  END DO
254  DO ig = 1, ngrid
255    unsdzdec(ig, nlay+1) = 1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay))
256  END DO
257
258!=========================================================================
259! Richardson number and stability functions
260!=========================================================================
261 
262! initialize arrays:
263
264  m2(1:ngrid, :) = 0.0
265  sm(1:ngrid, :) = 0.0
266  rif(1:ngrid, :) = 0.0
267
268!------------------------------------------------------------
269  DO k = 2, klev
270
271    DO ig = 1, ngrid
272      dz(ig, k) = zlay(ig, k) - zlay(ig, k-1)
273      m2(ig, k) = ((u(ig,k)-u(ig,k-1))**2+(v(ig,k)-v(ig, &
274        k-1))**2)/(dz(ig,k)*dz(ig,k))
275      dtetadz(ig, k) = (teta(ig,k)-teta(ig,k-1))/dz(ig, k)
276      n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig,k-1)+teta(ig,k))
277      ri = n2(ig, k)/max(m2(ig,k), 1.E-10)
278      IF (ri<ric) THEN
279        rif(ig, k) = frif(ri)
280      ELSE
281        rif(ig, k) = rifc
282      END IF
283if (new_yamada4) then
284        alpha(ig, k) = max(falpha(rif(ig,k)),seuilalpha)
285        sm(ig, k) = max(fsm(rif(ig,k)),seuilsm)
286else
287      IF (rif(ig,k)<0.16) THEN
288        alpha(ig, k) = falpha(rif(ig,k))
289        sm(ig, k) = fsm(rif(ig,k))
290      ELSE
291        alpha(ig, k) = seuilalpha
292        sm(ig, k) = seuilsm
293      END IF
294
295end if
296      zz(ig, k) = b1*m2(ig, k)*(1.-rif(ig,k))*sm(ig, k)
297    END DO
298  END DO
299
300
301
302
303
304  !=======================================================================
305  !     DIFFERENT TYPES  DE SCHEMA de  YAMADA
306  !=======================================================================
307
308  ! On commence par calculer q2 a partir de la tke
309
310  IF (new_yamada4) THEN
311      DO k=1,klev+1
312         q2(1:ngrid,k)=tke(1:ngrid,k)*ydeux
313      ENDDO
314  ELSE
315      DO k=1,klev+1
316         q2(1:ngrid,k)=tke(1:ngrid,k)
317      ENDDO
318  ENDIF
319
320! ====================================================================
321! Computing the mixing length
322! ====================================================================
323
324 
325  CALL mixinglength(ni,nsrf,ngrid,iflag_pbl,pbl_lmixmin_alpha,lmixmin,zlay,zlev,u,v,q2,n2, l)
326
327
328  !--------------
329  ! Yamada 2.0
330  !--------------
331  IF (iflag_pbl==6) THEN
332 
333    DO k = 2, klev
334      q2(1:ngrid, k) = l(1:ngrid, k)**2*zz(1:ngrid, k)
335    END DO
336
337
338  !------------------
339  ! Yamada 2.Fournier
340  !------------------
341
342  ELSE IF (iflag_pbl==7) THEN
343
344
345    ! Calcul de l,  km, au pas precedent
346    !....................................
347    DO k = 2, klev
348      DO ig = 1, ngrid
349        delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k))
350        kmpre(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k)
351        mpre(ig, k) = sqrt(m2(ig,k))
352      END DO
353    END DO
354
355    DO k = 2, klev - 1
356      DO ig = 1, ngrid
357        m2cstat = max(alpha(ig,k)*n2(ig,k)+delta(ig,k)/b1, 1.E-12)
358        mcstat = sqrt(m2cstat)
359
360     ! Puis on ecrit la valeur de q qui annule l'equation de m supposee en q3
361     !.........................................................................
362
363        IF (k==2) THEN
364          kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ &
365            unsdz(ig,k-1)*cd(ig)*(sqrt(u(ig,3)**2+v(ig,3)**2)-mcstat/unsdzdec &
366            (ig,k)-mpre(ig,k+1)/unsdzdec(ig,k+1))**2)/(unsdz(ig,k)+unsdz(ig,k &
367            -1))
368        ELSE
369          kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ &
370            unsdz(ig,k-1)*kmpre(ig,k-1)*mpre(ig,k-1))/ &
371            (unsdz(ig,k)+unsdz(ig,k-1))
372        END IF
373
374        tmp2 = kmcstat/(sm(ig,k)/q2(ig,k))/l(ig, k)
375        q2(ig, k) = max(tmp2, 1.E-12)**(2./3.)
376
377      END DO
378    END DO
379
380
381    ! ------------------------
382    ! Yamada 2.5 a la Didi
383    !-------------------------
384
385  ELSE IF (iflag_pbl==8 .OR. iflag_pbl==9) THEN
386
387    ! Calcul de l, km, au pas precedent
388    !....................................
389    DO k = 2, klev
390      DO ig = 1, ngrid
391        delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k))
392        IF (delta(ig,k)<1.E-20) THEN
393          delta(ig, k) = 1.E-20
394        END IF
395        km(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k)
396        aa0 = (m2(ig,k)-alpha(ig,k)*n2(ig,k)-delta(ig,k)/b1)
397        aa1 = (m2(ig,k)*(1.-rif(ig,k))-delta(ig,k)/b1)
398        aa(ig, k) = aa1*dt/(delta(ig,k)*l(ig,k))
399        qpre = sqrt(q2(ig,k))
400        IF (aa(ig,k)>0.) THEN
401          q2(ig, k) = (qpre+aa(ig,k)*qpre*qpre)**2
402        ELSE
403          q2(ig, k) = (qpre/(1.-aa(ig,k)*qpre))**2
404        END IF
405        ! else ! iflag_pbl=9
406        ! if (aa(ig,k)*qpre.gt.0.9) then
407        ! q2(ig,k)=(qpre*10.)**2
408        ! else
409        ! q2(ig,k)=(qpre/(1.-aa(ig,k)*qpre))**2
410        ! endif
411        ! endif
412        q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4)
413      END DO
414    END DO
415
416  ELSE IF (iflag_pbl>=10) THEN
417
418    IF (yamada4_num>=1) THEN
419 
420    DO k = 2, klev - 1
421      DO ig=1,ngrid
422      q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4)
423      km(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k)
424      shear(ig,k)=km(ig, k)*m2(ig, k)
425      buoy(ig,k)=km(ig, k)*m2(ig, k)*(-1.*rif(ig,k))
426      dissip(ig,k)=((sqrt(q2(ig,k)))**3)/(b1*l(ig,k))
427     ENDDO
428    ENDDO
429
430    IF (yamada4_num==1) THEN ! Schema du MAR tel quel
431       DO k = 2, klev - 1
432         DO ig=1,ngrid
433         tkeprov=q2(ig,k)/ydeux
434         tkeprov= tkeprov*                           &
435           &  (tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k))))/ &
436           &  (tkeprov+dt*((-1.)*min(0.,buoy(ig,k))+dissip(ig,k)))
437         q2(ig,k)=tkeprov*ydeux
438        ENDDO
439       ENDDO
440    ELSE IF (yamada4_num==2) THEN ! version modifiee avec integration exacte pour la dissipation
441       DO k = 2, klev - 1
442         DO ig=1,ngrid
443         tkeprov=q2(ig,k)/ydeux
444         disseff=dissip(ig,k)-min(0.,buoy(ig,k))
445         tkeprov = tkeprov/(1.+dt*disseff/(2.*tkeprov))**2
446         tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k)))
447         q2(ig,k)=tkeprov*ydeux
448         ! En cas stable, on traite la flotabilite comme la
449         ! dissipation, en supposant que buoy/q2^3 est constant.
450         ! Puis on prend la solution exacte
451        ENDDO
452       ENDDO
453    ELSE IF (yamada4_num==3) THEN ! version modifiee avec integration exacte pour la dissipation
454       DO k = 2, klev - 1
455         DO ig=1,ngrid
456         tkeprov=q2(ig,k)/ydeux
457         disseff=dissip(ig,k)-min(0.,buoy(ig,k))
458         tkeprov=tkeprov*exp(-dt*disseff/tkeprov)
459         tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k)))
460         q2(ig,k)=tkeprov*ydeux
461         ! En cas stable, on traite la flotabilite comme la
462         ! dissipation, en supposant que buoy/q2^3 est constant.
463         ! Puis on prend la solution exacte
464        ENDDO
465       ENDDO
466    ELSE IF (yamada4_num==4) THEN ! version modifiee avec integration exacte pour la dissipation
467       DO k = 2, klev - 1
468         DO ig=1,ngrid
469         tkeprov=q2(ig,k)/ydeux
470         tkeprov= tkeprov+dt*(shear(ig,k)+max(0.,buoy(ig,k)))
471         tkeprov= tkeprov*                           &
472           &  tkeprov/ &
473           &  (tkeprov+dt*((-1.)*min(0.,buoy(ig,k))+dissip(ig,k)))
474         q2(ig,k)=tkeprov*ydeux
475         ! En cas stable, on traite la flotabilite comme la
476         ! dissipation, en supposant que buoy/q2^3 est constant.
477         ! Puis on prend la solution exacte
478        ENDDO
479       ENDDO
480    ELSE IF (yamada4_num==5) THEN ! version modifiee avec integration exacte pour la dissipation
481       DO k = 2, klev - 1
482         DO ig=1,ngrid
483         tkeprov=q2(ig,k)/ydeux
484
485!             if(ifl_pbltree .eq. 0) then
486!         disseff=dissip(ig,k)-min(0.,buoy(ig,k))
487!         tkeexp=exp(-dt*disseff/tkeprov)
488!         tkeprov= shear(ig,k)*tkeprov/disseff*(1.-tkeexp)+tkeprov*tkeexp
489!           else
490!FC on ajoute la dissipation due aux arbres
491         disseff=dissip(ig,k)-min(0.,buoy(ig,k)) + drgpro(ig,k)*tkeprov
492         tkeexp=exp(-dt*disseff/tkeprov)
493! on prend en compte la tke cree par les arbres
494         winds(ig,k)=sqrt(u(ig,k)**2+v(ig,k)**2)
495         tkeprov= (shear(ig,k)+ &
496          & drgpro(ig,k)*(winds(ig,k))**3)*tkeprov/disseff*(1.-tkeexp)+tkeprov*tkeexp
497!               endif
498
499         q2(ig,k)=tkeprov*ydeux
500
501         ! En cas stable, on traite la flotabilite comme la
502         ! dissipation, en supposant que buoy/q2^3 est constant.
503         ! Puis on prend la solution exacte
504        ENDDO
505       ENDDO
506    ELSE IF (yamada4_num==6) THEN ! version modifiee avec integration exacte pour la dissipation
507       DO k = 2, klev - 1
508         DO ig=1,ngrid
509         tkeprov=q2(ig,k)/ydeux
510         tkeprov=tkeprov+max(buoy(ig,k)+shear(ig,k),0.)*dt
511         disseff=dissip(ig,k)-min(0.,buoy(ig,k)+shear(ig,k))
512         tkeexp=exp(-dt*disseff/tkeprov)
513         tkeprov= tkeprov*tkeexp
514         q2(ig,k)=tkeprov*ydeux
515         ! En cas stable, on traite la flotabilite comme la
516         ! dissipation, en supposant que buoy/q2^3 est constant.
517         ! Puis on prend la solution exacte
518        ENDDO
519       ENDDO
520    ENDIF
521
522    DO k = 2, klev - 1
523      DO ig=1,ngrid
524      q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4)
525      ENDDO
526    ENDDO
527
528   ELSE
529
530    DO k = 2, klev - 1
531      km(1:ngrid, k) = l(1:ngrid, k)*sqrt(q2(1:ngrid,k))*sm(1:ngrid, k)
532      q2(1:ngrid, k) = q2(1:ngrid, k) + ydeux*dt*km(1:ngrid, k)*m2(1:ngrid, k)*(1.-rif(1:ngrid,k))
533!     q2(1:ngrid, k) = q2(1:ngrid, k) + dt*km(1:ngrid, k)*m2(1:ngrid, k)*(1.-rif(1:ngrid,k))
534      q2(1:ngrid, k) = min(max(q2(1:ngrid,k),1.E-10), 1.E4)
535       q2(1:ngrid, k) = 1./(1./sqrt(q2(1:ngrid,k))+dt/(yun*l(1:ngrid,k)*b1))
536!     q2(1:ngrid, k) = 1./(1./sqrt(q2(1:ngrid,k))+dt/(2*l(1:ngrid,k)*b1))
537      q2(1:ngrid, k) = q2(1:ngrid, k)*q2(1:ngrid, k)
538    END DO
539
540  ENDIF
541
542  ELSE
543    STOP 'Cas nom prevu dans yamada4'
544
545  END IF ! Fin du cas 8
546
547
548  ! ====================================================================
549  ! Calcul des coefficients de melange
550  ! ====================================================================
551
552  DO k = 2, klev
553    DO ig = 1, ngrid
554      zq = sqrt(q2(ig,k))
555      km(ig, k) = l(ig, k)*zq*sm(ig, k)     ! For momentum
556      kn(ig, k) = km(ig, k)*alpha(ig, k)    ! For scalars
557      kq(ig, k) = l(ig, k)*zq*0.2           ! For TKE
558    END DO
559  END DO
560
561
562  !====================================================================
563  ! Transport diffusif vertical de la TKE par la TKE
564  !====================================================================
565
566
567    ! initialize near-surface and top-layer mixing coefficients
568    !...........................................................
569
570  kq(1:ngrid, 1) = kq(1:ngrid, 2)    ! constant (ie no gradient) near the surface
571  kq(1:ngrid, klev+1) = 0            ! zero at the top
572
573    ! Transport diffusif vertical de la TKE.
574    !.......................................
575
576  IF (iflag_pbl>=12) THEN
577    q2(1:ngrid, 1) = q2(1:ngrid, 2)
578    CALL vdif_q2(dt, g, rconst, ngrid, plev, temp, kq, q2)
579  END IF
580
581
582  !====================================================================
583  ! Traitement particulier pour les cas tres stables, introduction d'une
584  ! longueur de m??lange minimale
585  !====================================================================
586  !
587  ! Reference: Local versus Nonlocal boundary-layer diffusion in a global climate model
588  !            Holtslag A.A.M. and Boville B.A.
589  !            J. Clim., 6, 1825-1842, 1993
590
591
592 IF (hboville) THEN
593
594
595  IF (prt_level>1) THEN
596    PRINT *, 'YAMADA4 0'
597  END IF
598
599  DO ig = 1, ngrid
600    coriol(ig) = 1.E-4
601    pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546E-5)
602  END DO
603
604  IF (1==1) THEN
605    IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN
606
607      DO k = 2, klev
608        DO ig = 1, ngrid
609          IF (teta(ig,2)>teta(ig,1)) THEN
610            qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2
611            kmin = kap*zlev(ig, k)*qmin
612          ELSE
613            kmin = -1. ! kmin n'est utilise que pour les SL stables.
614          END IF
615          IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN
616
617            kn(ig, k) = kmin
618            km(ig, k) = kmin
619            kq(ig, k) = kmin
620
621 ! la longueur de melange est suposee etre l= kap z
622 ! K=l q Sm d'ou q2=(K/l Sm)**2
623
624            q2(ig, k) = (qmin/sm(ig,k))**2
625          END IF
626        END DO
627      END DO
628
629    ELSE
630      DO k = 2, klev
631        DO ig = 1, ngrid
632          IF (teta(ig,2)>teta(ig,1)) THEN
633            qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2
634            kmin = kap*zlev(ig, k)*qmin
635          ELSE
636            kmin = -1. ! kmin n'est utilise que pour les SL stables.
637          END IF
638          IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN
639            kn(ig, k) = kmin
640            km(ig, k) = kmin
641            kq(ig, k) = kmin
642 ! la longueur de melange est suposee etre l= kap z
643 ! K=l q Sm d'ou q2=(K/l Sm)**2
644            sm(ig, k) = 1.
645            alpha(ig, k) = 1.
646            q2(ig, k) = min((qmin/sm(ig,k))**2, 10.)
647            zq = sqrt(q2(ig,k))
648            km(ig, k) = l(ig, k)*zq*sm(ig, k)
649            kn(ig, k) = km(ig, k)*alpha(ig, k)
650            kq(ig, k) = l(ig, k)*zq*0.2
651          END IF
652        END DO
653      END DO
654    END IF
655
656  END IF
657
658 END IF ! hboville
659
660! Ajout d'une viscosite moleculaire
661   km(:,:)=km(:,:)+viscom
662   kn(:,:)=kn(:,:)+viscoh
663   kq(:,:)=kq(:,:)+viscoh
664
665  IF (prt_level>1) THEN
666    PRINT *, 'YAMADA4 1'
667  END IF !(prt_level>1) THEN
668
669
670 !======================================================
671 ! Estimations de w'2 et T'2 d'apres Abdela et McFarlane
672 !======================================================
673 !
674 ! Reference: A New Second-Order Turbulence Closure Scheme for the Planetary Boundary Layer
675 !            Abdella K and McFarlane N
676 !            J. Atmos. Sci., 54, 1850-1867, 1997
677
678  ! Diagnostique pour stokage
679  !..........................
680
681  IF (1==0) THEN
682    rino = rif
683    smyam(1:ngrid, 1) = 0.
684    styam(1:ngrid, 1) = 0.
685    lyam(1:ngrid, 1) = 0.
686    knyam(1:ngrid, 1) = 0.
687    w2yam(1:ngrid, 1) = 0.
688    t2yam(1:ngrid, 1) = 0.
689
690    smyam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev)
691    styam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev)*alpha(1:ngrid, 2:klev)
692    lyam(1:ngrid, 2:klev) = l(1:ngrid, 2:klev)
693    knyam(1:ngrid, 2:klev) = kn(1:ngrid, 2:klev)
694
695
696  ! Calcul de w'2 et T'2
697  !.......................
698
699    w2yam(1:ngrid, 2:klev) = q2(1:ngrid, 2:klev)*0.24 + &
700      lyam(1:ngrid, 2:klev)*5.17*kn(1:ngrid, 2:klev)*n2(1:ngrid, 2:klev)/ &
701      sqrt(q2(1:ngrid,2:klev))
702
703    t2yam(1:ngrid, 2:klev) = 9.1*kn(1:ngrid, 2:klev)* &
704      dtetadz(1:ngrid, 2:klev)**2/sqrt(q2(1:ngrid,2:klev))* &
705      lyam(1:ngrid, 2:klev)
706  END IF
707
708
709
710!============================================================================
711! Mise a jour de la tke
712!============================================================================
713
714  IF (new_yamada4) THEN
715     DO k=1,klev+1
716        tke(1:ngrid,k)=q2(1:ngrid,k)/ydeux
717     ENDDO
718  ELSE
719     DO k=1,klev+1
720        tke(1:ngrid,k)=q2(1:ngrid,k)
721     ENDDO
722  ENDIF
723
724
725!============================================================================
726
727  first = .FALSE.
728  RETURN
729
730
731END SUBROUTINE yamada4
732
733!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
734
735!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
736SUBROUTINE vdif_q2(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2)
737
738  USE dimphy
739  IMPLICIT NONE
740 
741  include "dimensions.h"
742
743!    vdif_q2: subroutine qui calcule la diffusion de la TKE par la TKE
744!             avec un schema implicite en temps avec
745!             inversion d'un syst??me tridiagonal
746!
747!     Reference: Description of the interface with the surface and
748!                the computation of the turbulet diffusion in LMDZ
749!                Technical note on LMDZ
750!                Dufresne, J-L, Ghattas, J. and Grandpeix, J-Y
751!
752!============================================================================
753! Declarations
754!============================================================================
755
756  REAL plev(klon, klev+1)
757  REAL temp(klon, klev)
758  REAL timestep
759  REAL gravity, rconst
760  REAL kstar(klon, klev+1), zz
761  REAL kmy(klon, klev+1)
762  REAL q2(klon, klev+1)
763  REAL deltap(klon, klev+1)
764  REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1)
765  INTEGER ngrid
766
767  INTEGER i, k
768
769
770!=========================================================================
771! Calcul
772!=========================================================================
773
774  DO k = 1, klev
775    DO i = 1, ngrid
776      zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k))
777      kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ &
778        (plev(i,k)-plev(i,k+1))*timestep
779    END DO
780  END DO
781
782  DO k = 2, klev
783    DO i = 1, ngrid
784      deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1))
785    END DO
786  END DO
787  DO i = 1, ngrid
788    deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2))
789    deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1))
790    denom(i, klev+1) = deltap(i, klev+1) + kstar(i, klev)
791    alpha(i, klev+1) = deltap(i, klev+1)*q2(i, klev+1)/denom(i, klev+1)
792    beta(i, klev+1) = kstar(i, klev)/denom(i, klev+1)
793  END DO
794
795  DO k = klev, 2, -1
796    DO i = 1, ngrid
797      denom(i, k) = deltap(i, k) + (1.-beta(i,k+1))*kstar(i, k) + &
798        kstar(i, k-1)
799      alpha(i, k) = (q2(i,k)*deltap(i,k)+kstar(i,k)*alpha(i,k+1))/denom(i, k)
800      beta(i, k) = kstar(i, k-1)/denom(i, k)
801    END DO
802  END DO
803
804  ! Si on recalcule q2(1)
805  !.......................
806  IF (1==0) THEN
807    DO i = 1, ngrid
808      denom(i, 1) = deltap(i, 1) + (1-beta(i,2))*kstar(i, 1)
809      q2(i, 1) = (q2(i,1)*deltap(i,1)+kstar(i,1)*alpha(i,2))/denom(i, 1)
810    END DO
811  END IF
812
813
814  DO k = 2, klev + 1
815    DO i = 1, ngrid
816      q2(i, k) = alpha(i, k) + beta(i, k)*q2(i, k-1)
817    END DO
818  END DO
819
820  RETURN
821END SUBROUTINE vdif_q2
822!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
823
824
825
826!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
827 SUBROUTINE vdif_q2e(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2)
828 
829   USE dimphy
830  IMPLICIT NONE
831
832  include "dimensions.h"
833!
834! vdif_q2e: subroutine qui calcule la diffusion de TKE par la TKE
835!           avec un schema explicite en temps
836
837
838!====================================================
839! Declarations
840!====================================================
841
842  REAL plev(klon, klev+1)
843  REAL temp(klon, klev)
844  REAL timestep
845  REAL gravity, rconst
846  REAL kstar(klon, klev+1), zz
847  REAL kmy(klon, klev+1)
848  REAL q2(klon, klev+1)
849  REAL deltap(klon, klev+1)
850  REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1)
851  INTEGER ngrid
852  INTEGER i, k
853
854
855!==================================================
856! Calcul
857!==================================================
858
859  DO k = 1, klev
860    DO i = 1, ngrid
861      zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k))
862      kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ &
863        (plev(i,k)-plev(i,k+1))*timestep
864    END DO
865  END DO
866
867  DO k = 2, klev
868    DO i = 1, ngrid
869      deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1))
870    END DO
871  END DO
872  DO i = 1, ngrid
873    deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2))
874    deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1))
875  END DO
876
877  DO k = klev, 2, -1
878    DO i = 1, ngrid
879      q2(i, k) = q2(i, k) + (kstar(i,k)*(q2(i,k+1)-q2(i, &
880        k))-kstar(i,k-1)*(q2(i,k)-q2(i,k-1)))/deltap(i, k)
881    END DO
882  END DO
883
884  DO i = 1, ngrid
885    q2(i, 1) = q2(i, 1) + (kstar(i,1)*(q2(i,2)-q2(i,1)))/deltap(i, 1)
886    q2(i, klev+1) = q2(i, klev+1) + (-kstar(i,klev)*(q2(i,klev+1)-q2(i, &
887      klev)))/deltap(i, klev+1)
888  END DO
889
890  RETURN
891END SUBROUTINE vdif_q2e
892
893!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
894
895
896!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
897
898SUBROUTINE mixinglength(ni, nsrf, ngrid,iflag_pbl,pbl_lmixmin_alpha,lmixmin,zlay,zlev,u,v,q2,n2, lmix)
899
900
901
902  USE dimphy
903  USE phys_state_var_mod, only: zstd, zsig, zmea
904  USE phys_local_var_mod, only: l_mixmin, l_mix
905
906 ! zstd: ecart type de la'altitud e sous-maille
907 ! zmea: altitude moyenne sous maille
908 ! zsig: pente moyenne de le maille
909
910  USE geometry_mod, only: cell_area
911  ! aire_cell: aire de la maille
912
913  IMPLICIT NONE
914!*************************************************************************
915! Subrourine qui calcule la longueur de m??lange dans le sch??ma de turbulence
916! avec la formule de Blackadar
917! Calcul d'un  minimum en fonction de l'orographie sous-maille:
918! L'id??e est la suivante: plus il y a de relief, plus il y a du m??lange
919! induit par les circulations meso et submeso ??chelles.
920!
921! References: * The vertical distribution of wind and turbulent exchange in a neutral atmosphere
922!               Blackadar A.K.
923!               J. Geophys. Res., 64, No 8, 1962
924!
925!             * An evaluation of neutral and convective planetary boundary-layer parametrisations relative
926!               to large eddy simulations
927!               Ayotte K et al
928!               Boundary Layer Meteorology, 79, 131-175, 1996
929!
930!
931!             * Local Similarity in the Stable Boundary Layer and Mixing length Approaches: consistency of concepts
932!               Van de Wiel B.J.H et al
933!               Boundary-Lay Meteorol, 128, 103-166, 2008
934!
935!
936! Histoire:
937!----------
938! * premi??re r??daction, Etienne et Frederic, 09/06/2016
939!
940! ***********************************************************************
941
942!==================================================================
943! Declarations
944!==================================================================
945
946! Inputs
947!-------
948 INTEGER            ni(klon)           ! indice sur la grille original (non restreinte)
949 INTEGER            nsrf               ! Type de surface
950 INTEGER            ngrid              ! Nombre de points concern??s sur l'horizontal
951 INTEGER            iflag_pbl          ! Choix du sch??ma de turbulence
952 REAL            pbl_lmixmin_alpha  ! on active ou non le calcul de la longueur de melange minimum
953 REAL               lmixmin            ! Minimum absolu de la longueur de m??lange
954 REAL               zlay(klon, klev)   ! altitude du centre de la couche
955 REAL               zlev(klon, klev+1) ! atitude de l'interface inf??rieure de la couche
956 REAL               u(klon, klev)      ! vitesse du vent zonal
957 REAL               v(klon, klev)      ! vitesse du vent meridional
958 REAL               q2(klon, klev+1)   ! energie cin??tique turbulente
959 REAL               n2(klon, klev+1)   ! frequence de Brunt-Vaisala
960
961!In/out
962!-------
963
964  LOGICAL, SAVE :: firstcall = .TRUE.
965  !$OMP THREADPRIVATE(firstcall)
966
967! Outputs
968!---------
969
970 REAL               lmix(klon, klev+1)    ! Longueur de melange 
971
972
973! Local
974!-------
975 
976 INTEGER  ig,jg, k
977 REAL     h_oro(klon)
978 REAL     hlim(klon)
979 REAL, SAVE :: kap=0.4,kapb=0.4
980 REAL zq
981 REAL sq(klon), sqz(klon)
982 REAL, ALLOCATABLE, SAVE :: l0(:)
983  !$OMP THREADPRIVATE(l0)
984 REAL fl, zzz, zl0, zq2, zn2
985 REAL famorti, zzzz, zh_oro, zhlim
986 REAL l1(klon, klev+1), l2(klon,klev+1)
987 REAL winds(klon, klev)
988 REAL xcell
989 REAL zstdslope(klon) 
990 REAL lmax
991 REAL l2strat, l2neutre, extent 
992 REAL l2limit(klon)
993!===============================================================
994! Fonctions utiles
995!===============================================================
996
997! Calcul de l suivant la formule de Blackadar 1962 adapt??e par Ayotte 1996
998!..........................................................................
999
1000 fl(zzz, zl0, zq2, zn2) = max(min(l0(ig)*kap*zlev(ig, &
1001    k)/(kap*zlev(ig,k)+l0(ig)),0.5*sqrt(q2(ig,k))/sqrt( &
1002    max(n2(ig,k),1.E-10))), 1.E-5)
1003 
1004! Fonction d'amortissement de la turbulence au dessus de la montagne
1005! On augmente l'amortissement en diminuant la valeur de hlim (extent) dans le code
1006!.....................................................................
1007
1008 famorti(zzzz, zh_oro, zhlim)=(-1.)*ATAN((zzzz-zh_oro)/(zhlim-zh_oro))*2./3.1416+1.   
1009
1010  IF (ngrid==0) RETURN
1011
1012  IF (firstcall) THEN
1013    ALLOCATE (l0(klon))
1014    firstcall = .FALSE.
1015  END IF
1016
1017
1018!=====================================================================
1019!         CALCUL de la LONGUEUR de m??lange suivant BLACKADAR: l1
1020!=====================================================================
1021
1022
1023  IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN
1024
1025   
1026    ! Iterative computation of l0
1027    ! This version is kept for iflag_pbl only for convergence
1028    ! with NPv3.1 Cmip5 simulations
1029    !...................................................................
1030
1031    DO ig = 1, ngrid
1032      sq(ig) = 1.E-10
1033      sqz(ig) = 1.E-10
1034    END DO
1035    DO k = 2, klev - 1
1036      DO ig = 1, ngrid
1037        zq = sqrt(q2(ig,k))
1038        sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig,k)-zlay(ig,k-1))
1039        sq(ig) = sq(ig) + zq*(zlay(ig,k)-zlay(ig,k-1))
1040      END DO
1041    END DO
1042    DO ig = 1, ngrid
1043      l0(ig) = 0.2*sqz(ig)/sq(ig)
1044    END DO
1045    DO k = 2, klev
1046      DO ig = 1, ngrid
1047        l1(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k))
1048      END DO
1049    END DO
1050
1051  ELSE
1052
1053   
1054    ! In all other case, the assymptotic mixing length l0 is imposed (150m)
1055    !......................................................................
1056
1057    l0(1:ngrid) = 150.
1058    DO k = 2, klev
1059      DO ig = 1, ngrid
1060        l1(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k))
1061      END DO
1062    END DO
1063
1064  END IF
1065
1066!=================================================================================
1067!  CALCUL d'une longueur de melange en fonctions de la topographie sous maille: l2
1068! si plb_lmixmin_alpha=TRUE et si on se trouve sur de la terre ( pas actif sur les
1069! glacier, la glace de mer et les oc??ans)
1070!=================================================================================
1071
1072   l2(1:ngrid,:)=0.0
1073   l_mixmin(1:ngrid,:,nsrf)=0.
1074   l_mix(1:ngrid,:,nsrf)=0.
1075
1076   IF (nsrf .EQ. 1) THEN
1077
1078! coefficients
1079!--------------
1080
1081     extent=2.                                                         ! On ??tend l'impact du relief jusqu'?? extent*h, extent >1. 
1082     lmax=150.                                                         ! Longueur de m??lange max dans l'absolu
1083
1084! calculs
1085!---------
1086
1087     DO ig=1,ngrid
1088
1089      ! On calcule la hauteur du relief
1090      !.................................
1091      ! On ne peut pas prendre zstd seulement pour caracteriser le relief sous maille
1092      ! car sur un terrain pentu mais sans relief, zstd est non nul (comme en Antarctique, C. Genthon)
1093      ! On corrige donc zstd avec l'ecart type de l'altitude dans la maille sans relief
1094      ! (en gros, une maille de taille xcell avec une pente constante zstdslope)
1095      jg=ni(ig)
1096!     IF (zsig(jg) .EQ. 0.) THEN
1097!          zstdslope(ig)=0.         
1098!     ELSE
1099!     xcell=sqrt(cell_area(jg))
1100!     zstdslope(ig)=max((xcell*zsig(jg)-zmea(jg))**3 /(3.*zsig(jg)),0.)
1101!     zstdslope(ig)=sqrt(zstdslope(ig))
1102!     END IF
1103     
1104!     h_oro(ig)=max(zstd(jg)-zstdslope(ig),0.)   ! Hauteur du relief
1105      h_oro(ig)=zstd(jg)
1106      hlim(ig)=extent*h_oro(ig)     
1107     ENDDO
1108
1109     l2limit(1:ngrid)=0.
1110
1111     DO k=2,klev
1112        DO ig=1,ngrid
1113           winds(ig,k)=sqrt(u(ig,k)**2+v(ig,k)**2)
1114           IF (zlev(ig,k) .LE. h_oro(ig)) THEN  ! sous l'orographie
1115              l2strat= kapb*pbl_lmixmin_alpha*winds(ig,k)/sqrt(max(n2(ig,k),1.E-10))  ! si stratifi??, amplitude d'oscillation * kappab (voir Van de Wiel et al 2008)
1116              l2neutre=kap*zlev(ig,k)*h_oro(ig)/(kap*zlev(ig,k)+h_oro(ig))            ! Dans le cas neutre, formule de blackadar. tend asymptotiquement vers h
1117              l2neutre=MIN(l2neutre,lmax)                                             ! On majore par lmax
1118              l2limit(ig)=MIN(l2neutre,l2strat)                                       ! Calcule de l2 (minimum de la longueur en cas neutre et celle en situation stratifi??e)
1119              l2(ig,k)=l2limit(ig)
1120                                     
1121           ELSE IF (zlev(ig,k) .LE. hlim(ig)) THEN ! Si on est au dessus des montagnes, mais affect?? encore par elles
1122
1123      ! Au dessus des montagnes, on prend la l2limit au sommet des montagnes
1124      ! (la derni??re calcul??e dans la boucle k, vu que k est un indice croissant avec z)
1125      ! et on multiplie l2limit par une fonction qui d??croit entre h et hlim
1126              l2(ig,k)=l2limit(ig)*famorti(zlev(ig,k),h_oro(ig), hlim(ig))
1127           ELSE                                                                    ! Au dessus de extent*h, on prend l2=l0
1128              l2(ig,k)=0.
1129           END IF
1130        ENDDO
1131     ENDDO
1132   ENDIF                                                                        ! pbl_lmixmin_alpha
1133
1134!==================================================================================
1135! On prend le max entre la longueur de melange de blackadar et celle calcul??e
1136! en fonction de la topographie
1137!===================================================================================
1138
1139
1140 DO k=2,klev
1141    DO ig=1,ngrid
1142       lmix(ig,k)=MAX(MAX(l1(ig,k), l2(ig,k)),lmixmin)
1143   ENDDO
1144 ENDDO
1145
1146! Diagnostics
1147
1148 DO k=2,klev
1149    DO ig=1,ngrid
1150       jg=ni(ig)
1151       l_mix(jg,k,nsrf)=lmix(ig,k)
1152       l_mixmin(jg,k,nsrf)=l2(ig,k)
1153    ENDDO
1154 ENDDO
1155 DO ig=1,ngrid
1156    jg=ni(ig)
1157    l_mix(jg,1,nsrf)=hlim(ig)
1158 ENDDO
1159
1160
1161
1162END SUBROUTINE mixinglength
Note: See TracBrowser for help on using the repository browser.