1 | module FLOTT_GWD_rando_m |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | SUBROUTINE FLOTT_GWD_rando(DTIME, pp, tt, uu, vv, prec, zustr, zvstr, d_u, & |
---|
8 | d_v) |
---|
9 | |
---|
10 | ! Parametrization of the momentum flux deposition due to a discrete |
---|
11 | ! number of gravity waves. |
---|
12 | ! Author: F. Lott |
---|
13 | ! July, 12th, 2012 |
---|
14 | ! Gaussian distribution of the source, source is precipitation |
---|
15 | ! Reference: Lott (JGR, vol 118, page 8897, 2013) |
---|
16 | |
---|
17 | use dimphy, only: klon, klev |
---|
18 | use assert_m, only: assert |
---|
19 | |
---|
20 | include "YOMCST.h" |
---|
21 | include "clesphys.h" |
---|
22 | include "YOEGWD.h" |
---|
23 | |
---|
24 | ! 0. DECLARATIONS: |
---|
25 | |
---|
26 | ! 0.1 INPUTS |
---|
27 | REAL, intent(in)::DTIME ! Time step of the Physics |
---|
28 | REAL, intent(in):: pp(:, :) ! (KLON, KLEV) Pressure at full levels |
---|
29 | REAL, intent(in):: prec(:) ! (klon) Precipitation (kg/m^2/s) |
---|
30 | REAL, intent(in):: TT(:, :) ! (KLON, KLEV) Temp at full levels |
---|
31 | REAL, intent(in):: UU(:, :) ! (KLON, KLEV) Zonal wind at full levels |
---|
32 | REAL, intent(in):: VV(:, :) ! (KLON, KLEV) Merid wind at full levels |
---|
33 | |
---|
34 | ! 0.2 OUTPUTS |
---|
35 | REAL, intent(out):: zustr(:), zvstr(:) ! (KLON) Surface Stresses |
---|
36 | |
---|
37 | REAL, intent(inout):: d_u(:, :), d_v(:, :) |
---|
38 | ! (KLON, KLEV) tendencies on winds |
---|
39 | |
---|
40 | ! O.3 INTERNAL ARRAYS |
---|
41 | REAL BVLOW(klon) |
---|
42 | |
---|
43 | INTEGER II, LL |
---|
44 | |
---|
45 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
46 | |
---|
47 | REAL DELTAT |
---|
48 | |
---|
49 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
50 | |
---|
51 | INTEGER, PARAMETER:: NK = 2, NP = 2, NO = 2, NW = NK * NP * NO |
---|
52 | INTEGER JK, JP, JO, JW |
---|
53 | REAL KMIN, KMAX ! Min and Max horizontal wavenumbers |
---|
54 | REAL CMIN, CMAX ! Min and Max absolute ph. vel. |
---|
55 | REAL CPHA ! absolute PHASE VELOCITY frequency |
---|
56 | REAL ZK(NW, KLON) ! Horizontal wavenumber amplitude |
---|
57 | REAL ZP(NW, KLON) ! Horizontal wavenumber angle |
---|
58 | REAL ZO(NW, KLON) ! Absolute frequency ! |
---|
59 | |
---|
60 | ! Waves Intr. freq. at the 1/2 lev surrounding the full level |
---|
61 | REAL ZOM(NW, KLON), ZOP(NW, KLON) |
---|
62 | |
---|
63 | ! Wave EP-fluxes at the 2 semi levels surrounding the full level |
---|
64 | REAL WWM(NW, KLON), WWP(NW, KLON) |
---|
65 | |
---|
66 | REAL RUW0(NW, KLON) ! Fluxes at launching level |
---|
67 | |
---|
68 | REAL RUWP(NW, KLON), RVWP(NW, KLON) |
---|
69 | ! Fluxes X and Y for each waves at 1/2 Levels |
---|
70 | |
---|
71 | INTEGER LAUNCH, LTROP ! Launching altitude and tropo altitude |
---|
72 | |
---|
73 | REAL XLAUNCH ! Controle the launching altitude |
---|
74 | REAL XTROP ! SORT of Tropopause altitude |
---|
75 | REAL RUW(KLON, KLEV + 1) ! Flux x at semi levels |
---|
76 | REAL RVW(KLON, KLEV + 1) ! Flux y at semi levels |
---|
77 | |
---|
78 | REAL PRMAX ! Maximum value of PREC, and for which our linear formula |
---|
79 | ! for GWs parameterisation apply |
---|
80 | |
---|
81 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
82 | |
---|
83 | REAL RDISS, ZOISEC ! COEFF DE DISSIPATION, SECURITY FOR INTRINSIC FREQ |
---|
84 | |
---|
85 | ! 0.3.3 BACKGROUND FLOW AT 1/2 LEVELS AND VERTICAL COORDINATE |
---|
86 | |
---|
87 | REAL H0 ! Characteristic Height of the atmosphere |
---|
88 | REAL DZ ! Characteristic depth of the source! |
---|
89 | REAL PR, TR ! Reference Pressure and Temperature |
---|
90 | |
---|
91 | REAL ZH(KLON, KLEV + 1) ! Log-pressure altitude |
---|
92 | |
---|
93 | REAL UH(KLON, KLEV + 1), VH(KLON, KLEV + 1) ! Winds at 1/2 levels |
---|
94 | REAL PH(KLON, KLEV + 1) ! Pressure at 1/2 levels |
---|
95 | REAL PSEC ! Security to avoid division by 0 pressure |
---|
96 | REAL PHM1(KLON, KLEV + 1) ! 1/Press at 1/2 levels |
---|
97 | REAL BV(KLON, KLEV + 1) ! Brunt Vaisala freq. (BVF) at 1/2 levels |
---|
98 | REAL BVSEC ! Security to avoid negative BVF |
---|
99 | |
---|
100 | !----------------------------------------------------------------- |
---|
101 | |
---|
102 | ! 1. INITIALISATIONS |
---|
103 | |
---|
104 | ! 1.1 Basic parameter |
---|
105 | |
---|
106 | ! Are provided from elsewhere (latent heat of vaporization, dry |
---|
107 | ! gaz constant for air, gravity constant, heat capacity of dry air |
---|
108 | ! at constant pressure, earth rotation rate, pi). |
---|
109 | |
---|
110 | ! 1.2 Tuning parameters of V14 |
---|
111 | |
---|
112 | RDISS = 1. ! Diffusion parameter |
---|
113 | |
---|
114 | PRMAX = 20. / 24. /3600. |
---|
115 | ! maximum of rain for which our theory applies (in kg/m^2/s) |
---|
116 | |
---|
117 | DZ = 1000. ! Characteristic depth of the source |
---|
118 | XLAUNCH=0.5 ! Parameter that control launching altitude |
---|
119 | XTROP=0.2 ! Parameter that control tropopause altitude |
---|
120 | DELTAT=24.*3600. ! Time scale of the waves (first introduced in 9b) |
---|
121 | |
---|
122 | KMIN = 2.E-5 |
---|
123 | ! minimum horizontal wavenumber (inverse of the subgrid scale resolution) |
---|
124 | |
---|
125 | KMAX = 1.E-3 ! Max horizontal wavenumber |
---|
126 | CMIN = 1. ! Min phase velocity |
---|
127 | CMAX = 50. ! Max phase speed velocity |
---|
128 | |
---|
129 | TR = 240. ! Reference Temperature |
---|
130 | PR = 101300. ! Reference pressure |
---|
131 | H0 = RD * TR / RG ! Characteristic vertical scale height |
---|
132 | |
---|
133 | BVSEC = 5.E-3 ! Security to avoid negative BVF |
---|
134 | PSEC = 1.E-6 ! Security to avoid division by 0 pressure |
---|
135 | ZOISEC = 1.E-6 ! Security FOR 0 INTRINSIC FREQ |
---|
136 | |
---|
137 | call assert(klon == (/size(pp, 1), size(tt, 1), size(uu, 1), & |
---|
138 | size(vv, 1), size(prec), size(zustr), size(zvstr), size(d_u, 1), & |
---|
139 | size(d_v, 1)/), "FLOTT_GWD_RANDO klon") |
---|
140 | call assert(klev == (/size(pp, 2), size(tt, 2), size(uu, 2), & |
---|
141 | size(vv, 2), size(d_u, 2), size(d_v, 2)/), "FLOTT_GWD_RANDO klev") |
---|
142 | |
---|
143 | IF(DELTAT < DTIME)THEN |
---|
144 | PRINT *, 'flott_gwd_rando: deltat < dtime!' |
---|
145 | STOP 1 |
---|
146 | ENDIF |
---|
147 | |
---|
148 | IF (KLEV < NW) THEN |
---|
149 | PRINT *, 'flott_gwd_rando: you will have problem with random numbers' |
---|
150 | STOP 1 |
---|
151 | ENDIF |
---|
152 | |
---|
153 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
154 | |
---|
155 | ! Pressure and Inv of pressure |
---|
156 | DO LL = 2, KLEV |
---|
157 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
158 | PHM1(:, LL) = 1. / PH(:, LL) |
---|
159 | end DO |
---|
160 | |
---|
161 | PH(:, KLEV + 1) = 0. |
---|
162 | PHM1(:, KLEV + 1) = 1. / PSEC |
---|
163 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
164 | |
---|
165 | ! Launching altitude |
---|
166 | |
---|
167 | LAUNCH=0 |
---|
168 | LTROP =0 |
---|
169 | DO LL = 1, KLEV |
---|
170 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XLAUNCH) LAUNCH = LL |
---|
171 | ENDDO |
---|
172 | DO LL = 1, KLEV |
---|
173 | IF (PH(KLON / 2, LL) / PH(KLON / 2, 1) > XTROP) LTROP = LL |
---|
174 | ENDDO |
---|
175 | |
---|
176 | ! Log pressure vert. coordinate |
---|
177 | DO LL = 1, KLEV + 1 |
---|
178 | ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
179 | end DO |
---|
180 | |
---|
181 | ! BV frequency |
---|
182 | DO LL = 2, KLEV |
---|
183 | ! BVSEC: BV Frequency (UH USED IS AS A TEMPORARY ARRAY DOWN TO WINDS) |
---|
184 | UH(:, LL) = 0.5 * (TT(:, LL) + TT(:, LL - 1)) & |
---|
185 | * RD**2 / RCPD / H0**2 + (TT(:, LL) & |
---|
186 | - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1)) * RD / H0 |
---|
187 | end DO |
---|
188 | BVLOW = 0.5 * (TT(:, LTROP )+ TT(:, LAUNCH)) & |
---|
189 | * RD**2 / RCPD / H0**2 + (TT(:, LTROP ) & |
---|
190 | - TT(:, LAUNCH))/(ZH(:, LTROP )- ZH(:, LAUNCH)) * RD / H0 |
---|
191 | |
---|
192 | UH(:, 1) = UH(:, 2) |
---|
193 | UH(:, KLEV + 1) = UH(:, KLEV) |
---|
194 | BV(:, 1) = UH(:, 2) |
---|
195 | BV(:, KLEV + 1) = UH(:, KLEV) |
---|
196 | ! SMOOTHING THE BV HELPS |
---|
197 | DO LL = 2, KLEV |
---|
198 | BV(:, LL)=(UH(:, LL+1)+2.*UH(:, LL)+UH(:, LL-1))/4. |
---|
199 | end DO |
---|
200 | |
---|
201 | BV=MAX(SQRT(MAX(BV, 0.)), BVSEC) |
---|
202 | BVLOW=MAX(SQRT(MAX(BVLOW, 0.)), BVSEC) |
---|
203 | |
---|
204 | ! WINDS |
---|
205 | DO LL = 2, KLEV |
---|
206 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
207 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
208 | end DO |
---|
209 | UH(:, 1) = 0. |
---|
210 | VH(:, 1) = 0. |
---|
211 | UH(:, KLEV + 1) = UU(:, KLEV) |
---|
212 | VH(:, KLEV + 1) = VV(:, KLEV) |
---|
213 | |
---|
214 | ! 3 WAVES CHARACTERISTICS CHOSEN RANDOMLY AT THE LAUNCH ALTITUDE |
---|
215 | |
---|
216 | ! The mod functions of weird arguments are used to produce the |
---|
217 | ! waves characteristics in an almost stochastic way |
---|
218 | |
---|
219 | JW = 0 |
---|
220 | DO JP = 1, NP |
---|
221 | DO JK = 1, NK |
---|
222 | DO JO = 1, NO |
---|
223 | JW = JW + 1 |
---|
224 | ! Angle |
---|
225 | DO II = 1, KLON |
---|
226 | ! Angle (0 or PI so far) |
---|
227 | ZP(JW, II) = (SIGN(1., 0.5 - MOD(TT(II, JW) * 10., 1.)) + 1.) & |
---|
228 | * RPI / 2. |
---|
229 | ! Horizontal wavenumber amplitude |
---|
230 | ZK(JW, II) = KMIN + (KMAX - KMIN) * MOD(TT(II, JW) * 100., 1.) |
---|
231 | ! Horizontal phase speed |
---|
232 | CPHA = CMIN + (CMAX - CMIN) * MOD(TT(II, JW)**2, 1.) |
---|
233 | ! Absolute frequency is imposed |
---|
234 | ZO(JW, II) = CPHA * ZK(JW, II) |
---|
235 | ! Intrinsic frequency is imposed |
---|
236 | ZO(JW, II) = ZO(JW, II) & |
---|
237 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
238 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
239 | ! Momentum flux at launch lev |
---|
240 | RUW0(JW, II) = GWD_RANDO_RUWMAX |
---|
241 | ENDDO |
---|
242 | end DO |
---|
243 | end DO |
---|
244 | end DO |
---|
245 | |
---|
246 | ! 4. COMPUTE THE FLUXES |
---|
247 | |
---|
248 | ! 4.1 Vertical velocity at launching altitude to ensure |
---|
249 | ! the correct value to the imposed fluxes. |
---|
250 | |
---|
251 | DO JW = 1, NW |
---|
252 | |
---|
253 | ! Evaluate intrinsic frequency at launching altitude: |
---|
254 | ZOP(JW, :) = ZO(JW, :) & |
---|
255 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
256 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
257 | |
---|
258 | ! VERSION WITH CONVECTIVE SOURCE |
---|
259 | |
---|
260 | ! Vertical velocity at launch level, value to ensure the |
---|
261 | ! imposed factor related to the convective forcing: |
---|
262 | ! precipitations. |
---|
263 | |
---|
264 | ! tanh limitation to values above prmax: |
---|
265 | WWP(JW, :) = RUW0(JW, :) & |
---|
266 | * (RD / RCPD / H0 * RLVTT * PRMAX * TANH(PREC / PRMAX))**2 |
---|
267 | |
---|
268 | ! Factor related to the characteristics of the waves: |
---|
269 | WWP(JW, :) = WWP(JW, :) * ZK(JW, :)**3 / KMIN / BVLOW & |
---|
270 | / MAX(ABS(ZOP(JW, :)), ZOISEC)**3 |
---|
271 | |
---|
272 | ! Moderation by the depth of the source (dz here): |
---|
273 | WWP(JW, :) = WWP(JW, :) & |
---|
274 | * EXP(- BVLOW**2 / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 * ZK(JW, :)**2 & |
---|
275 | * DZ**2) |
---|
276 | |
---|
277 | ! Put the stress in the right direction: |
---|
278 | RUWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
279 | * BV(:, LAUNCH) * COS(ZP(JW, :)) * WWP(JW, :)**2 |
---|
280 | RVWP(JW, :) = ZOP(JW, :) / MAX(ABS(ZOP(JW, :)), ZOISEC)**2 & |
---|
281 | * BV(:, LAUNCH) * SIN(ZP(JW, :)) * WWP(JW, :)**2 |
---|
282 | end DO |
---|
283 | |
---|
284 | ! 4.2 Uniform values below the launching altitude |
---|
285 | |
---|
286 | DO LL = 1, LAUNCH |
---|
287 | RUW(:, LL) = 0 |
---|
288 | RVW(:, LL) = 0 |
---|
289 | DO JW = 1, NW |
---|
290 | RUW(:, LL) = RUW(:, LL) + RUWP(JW, :) |
---|
291 | RVW(:, LL) = RVW(:, LL) + RVWP(JW, :) |
---|
292 | end DO |
---|
293 | end DO |
---|
294 | |
---|
295 | ! 4.3 Loop over altitudes, with passage from one level to the next |
---|
296 | ! done by i) conserving the EP flux, ii) dissipating a little, |
---|
297 | ! iii) testing critical levels, and vi) testing the breaking. |
---|
298 | |
---|
299 | DO LL = LAUNCH, KLEV - 1 |
---|
300 | ! Warning: all the physics is here (passage from one level |
---|
301 | ! to the next) |
---|
302 | DO JW = 1, NW |
---|
303 | ZOM(JW, :) = ZOP(JW, :) |
---|
304 | WWM(JW, :) = WWP(JW, :) |
---|
305 | ! Intrinsic Frequency |
---|
306 | ZOP(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LL + 1) & |
---|
307 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LL + 1) |
---|
308 | |
---|
309 | ! No breaking (Eq.6) |
---|
310 | ! Dissipation (Eq. 8) |
---|
311 | WWP(JW, :) = WWM(JW, :) * EXP(- 2. * RDISS * PR / (PH(:, LL + 1) & |
---|
312 | + PH(:, LL)) * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
313 | / MAX(ABS(ZOP(JW, :) + ZOM(JW, :)) / 2., ZOISEC)**4 & |
---|
314 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))) |
---|
315 | |
---|
316 | ! Critical levels (forced to zero if intrinsic frequency changes sign) |
---|
317 | ! Saturation (Eq. 12) |
---|
318 | WWP(JW, :) = min(WWP(JW, :), MAX(0., & |
---|
319 | SIGN(1., ZOP(JW, :) * ZOM(JW, :))) * ABS(ZOP(JW, :))**3 & |
---|
320 | / BV(:, LL + 1) * EXP(- ZH(:, LL + 1) / H0) * GWD_RANDO_SAT**2 & |
---|
321 | * KMIN**2 / ZK(JW, :)**4) |
---|
322 | end DO |
---|
323 | |
---|
324 | ! Evaluate EP-flux from Eq. 7 and give the right orientation to |
---|
325 | ! the stress |
---|
326 | |
---|
327 | DO JW = 1, NW |
---|
328 | RUWP(JW, :) = SIGN(1., ZOP(JW, :))*COS(ZP(JW, :)) * WWP(JW, :) |
---|
329 | RVWP(JW, :) = SIGN(1., ZOP(JW, :))*SIN(ZP(JW, :)) * WWP(JW, :) |
---|
330 | end DO |
---|
331 | |
---|
332 | RUW(:, LL + 1) = 0. |
---|
333 | RVW(:, LL + 1) = 0. |
---|
334 | |
---|
335 | DO JW = 1, NW |
---|
336 | RUW(:, LL + 1) = RUW(:, LL + 1) + RUWP(JW, :) |
---|
337 | RVW(:, LL + 1) = RVW(:, LL + 1) + RVWP(JW, :) |
---|
338 | end DO |
---|
339 | end DO |
---|
340 | |
---|
341 | ! 5 CALCUL DES TENDANCES: |
---|
342 | |
---|
343 | ! 5.1 Rectification des flux au sommet et dans les basses couches |
---|
344 | |
---|
345 | RUW(:, KLEV + 1) = 0. |
---|
346 | RVW(:, KLEV + 1) = 0. |
---|
347 | RUW(:, 1) = RUW(:, LAUNCH) |
---|
348 | RVW(:, 1) = RVW(:, LAUNCH) |
---|
349 | DO LL = 1, LAUNCH |
---|
350 | RUW(:, LL) = RUW(:, LAUNCH+1) |
---|
351 | RVW(:, LL) = RVW(:, LAUNCH+1) |
---|
352 | end DO |
---|
353 | |
---|
354 | ! AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
355 | DO LL = 1, KLEV |
---|
356 | D_U(:, LL) = (1.-DTIME/DELTAT) * D_U(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
357 | RG * (RUW(:, LL + 1) - RUW(:, LL)) & |
---|
358 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
359 | D_V(:, LL) = (1.-DTIME/DELTAT) * D_V(:, LL) + DTIME/DELTAT/REAL(NW) * & |
---|
360 | RG * (RVW(:, LL + 1) - RVW(:, LL)) & |
---|
361 | / (PH(:, LL + 1) - PH(:, LL)) * DTIME |
---|
362 | ENDDO |
---|
363 | |
---|
364 | ! Cosmetic: evaluation of the cumulated stress |
---|
365 | ZUSTR = 0. |
---|
366 | ZVSTR = 0. |
---|
367 | DO LL = 1, KLEV |
---|
368 | ZUSTR = ZUSTR + D_U(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
369 | ZVSTR = ZVSTR + D_V(:, LL) / RG * (PH(:, LL + 1) - PH(:, LL))/DTIME |
---|
370 | ENDDO |
---|
371 | |
---|
372 | END SUBROUTINE FLOTT_GWD_RANDO |
---|
373 | |
---|
374 | end module FLOTT_GWD_rando_m |
---|