1 | |
---|
2 | ! $Id: cv3_routines.F90 2160 2014-11-28 15:36:29Z dcugnet $ |
---|
3 | |
---|
4 | |
---|
5 | |
---|
6 | SUBROUTINE cv3_param(nd, delt) |
---|
7 | |
---|
8 | use mod_phys_lmdz_para |
---|
9 | IMPLICIT NONE |
---|
10 | |
---|
11 | !------------------------------------------------------------ |
---|
12 | !Set parameters for convectL for iflag_con = 3 |
---|
13 | !------------------------------------------------------------ |
---|
14 | |
---|
15 | |
---|
16 | !*** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
17 | !*** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
18 | !*** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
19 | !*** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
20 | !*** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
21 | !*** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
22 | !*** OF CLOUD *** |
---|
23 | |
---|
24 | ![TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
25 | !*** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
26 | !*** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
27 | !*** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
28 | !*** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
29 | |
---|
30 | !*** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
31 | !*** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
32 | !*** IT MUST BE LESS THAN 0 *** |
---|
33 | |
---|
34 | include "cv3param.h" |
---|
35 | include "conema3.h" |
---|
36 | |
---|
37 | INTEGER nd |
---|
38 | REAL delt ! timestep (seconds) |
---|
39 | |
---|
40 | |
---|
41 | CHARACTER (LEN=20) :: modname = 'cv3_param' |
---|
42 | CHARACTER (LEN=80) :: abort_message |
---|
43 | |
---|
44 | LOGICAL, SAVE :: first = .TRUE. |
---|
45 | !$OMP THREADPRIVATE(first) |
---|
46 | |
---|
47 | !glb noff: integer limit for convection (nd-noff) |
---|
48 | ! minorig: First level of convection |
---|
49 | |
---|
50 | ! -- limit levels for convection: |
---|
51 | |
---|
52 | noff = 1 |
---|
53 | minorig = 1 |
---|
54 | nl = nd - noff |
---|
55 | nlp = nl + 1 |
---|
56 | nlm = nl - 1 |
---|
57 | |
---|
58 | IF (first) THEN |
---|
59 | |
---|
60 | ! -- "microphysical" parameters: |
---|
61 | sigdz = 0.01 |
---|
62 | spfac = 0.15 |
---|
63 | pbcrit = 150.0 |
---|
64 | ptcrit = 500.0 |
---|
65 | ! IM beg: ajout fis. reglage ep |
---|
66 | flag_epkeorig = 1 |
---|
67 | elcrit = 0.0003 |
---|
68 | tlcrit = -55.0 |
---|
69 | ! IM lu dans physiq.def via conf_phys.F90 epmax = 0.993 |
---|
70 | |
---|
71 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
72 | |
---|
73 | ! -- misc: |
---|
74 | |
---|
75 | dtovsh = -0.2 ! dT for overshoot |
---|
76 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
77 | ! cc dttrig = 5. ! (loose) condition for triggering |
---|
78 | dttrig = 10. ! (loose) condition for triggering |
---|
79 | flag_wb = 1 |
---|
80 | wbmax = 6. ! (m/s) adiab updraught speed at LFC (used in cv3p1_closure) |
---|
81 | |
---|
82 | ! -- rate of approach to quasi-equilibrium: |
---|
83 | |
---|
84 | dtcrit = -2.0 |
---|
85 | tau = 8000. |
---|
86 | |
---|
87 | ! -- interface cloud parameterization: |
---|
88 | |
---|
89 | delta = 0.01 ! cld |
---|
90 | |
---|
91 | ! -- interface with boundary-layer (gust factor): (sb) |
---|
92 | |
---|
93 | betad = 10.0 ! original value (from convect 4.3) |
---|
94 | |
---|
95 | !$OMP MASTER |
---|
96 | OPEN (99, FILE='conv_param.data', STATUS='old', FORM='formatted', ERR=9999) |
---|
97 | READ (99, *, END=9998) dpbase |
---|
98 | READ (99, *, END=9998) pbcrit |
---|
99 | READ (99, *, END=9998) ptcrit |
---|
100 | READ (99, *, END=9998) sigdz |
---|
101 | READ (99, *, END=9998) spfac |
---|
102 | READ (99, *, END=9998) tau |
---|
103 | READ (99, *, END=9998) flag_wb |
---|
104 | READ (99, *, END=9998) wbmax |
---|
105 | 9998 CONTINUE |
---|
106 | CLOSE (99) |
---|
107 | 9999 CONTINUE |
---|
108 | WRITE (*, *) 'dpbase=', dpbase |
---|
109 | WRITE (*, *) 'pbcrit=', pbcrit |
---|
110 | WRITE (*, *) 'ptcrit=', ptcrit |
---|
111 | WRITE (*, *) 'sigdz=', sigdz |
---|
112 | WRITE (*, *) 'spfac=', spfac |
---|
113 | WRITE (*, *) 'tau=', tau |
---|
114 | WRITE (*, *) 'flag_wb =', flag_wb |
---|
115 | WRITE (*, *) 'wbmax =', wbmax |
---|
116 | |
---|
117 | ! IM Lecture du fichier ep_param.data |
---|
118 | OPEN (79, FILE='ep_param.data', STATUS='old', FORM='formatted', ERR=7999) |
---|
119 | READ (79, *, END=7998) flag_epkeorig |
---|
120 | READ (79, *, END=7998) elcrit |
---|
121 | READ (79, *, END=7998) tlcrit |
---|
122 | 7998 CONTINUE |
---|
123 | CLOSE (79) |
---|
124 | 7999 CONTINUE |
---|
125 | WRITE (*, *) 'flag_epKEorig', flag_epkeorig |
---|
126 | WRITE (*, *) 'elcrit=', elcrit |
---|
127 | WRITE (*, *) 'tlcrit=', tlcrit |
---|
128 | ! IM end: ajout fis. reglage ep |
---|
129 | !$OMP END MASTER |
---|
130 | |
---|
131 | CALL bcast(dpbase) |
---|
132 | CALL bcast(pbcrit) |
---|
133 | CALL bcast(ptcrit) |
---|
134 | CALL bcast(sigdz) |
---|
135 | CALL bcast(spfac) |
---|
136 | CALL bcast(tau) |
---|
137 | CALL bcast(flag_wb) |
---|
138 | CALL bcast(wbmax) |
---|
139 | |
---|
140 | CALL bcast(flag_epkeorig) |
---|
141 | CALL bcast(elcrit) |
---|
142 | CALL bcast(tlcrit) |
---|
143 | |
---|
144 | first = .FALSE. |
---|
145 | |
---|
146 | END IF ! (first) |
---|
147 | |
---|
148 | beta = 1.0 - delt/tau |
---|
149 | alpha1 = 1.5E-3 |
---|
150 | !JYG Correction bug alpha |
---|
151 | alpha1 = alpha1*1.5 |
---|
152 | alpha = alpha1*delt/tau |
---|
153 | !JYG Bug |
---|
154 | ! cc increase alpha to compensate W decrease: |
---|
155 | ! c alpha = alpha*1.5 |
---|
156 | |
---|
157 | RETURN |
---|
158 | END SUBROUTINE cv3_param |
---|
159 | |
---|
160 | SUBROUTINE cv3_prelim(len, nd, ndp1, t, q, p, ph, & |
---|
161 | lv, lf, cpn, tv, gz, h, hm, th) |
---|
162 | IMPLICIT NONE |
---|
163 | |
---|
164 | ! ===================================================================== |
---|
165 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
166 | ! "ori": from convect4.3 (vectorized) |
---|
167 | ! "convect3": to be exactly consistent with convect3 |
---|
168 | ! ===================================================================== |
---|
169 | |
---|
170 | ! inputs: |
---|
171 | INTEGER len, nd, ndp1 |
---|
172 | REAL t(len, nd), q(len, nd), p(len, nd), ph(len, ndp1) |
---|
173 | |
---|
174 | ! outputs: |
---|
175 | REAL lv(len, nd), lf(len, nd), cpn(len, nd), tv(len, nd) |
---|
176 | REAL gz(len, nd), h(len, nd), hm(len, nd) |
---|
177 | REAL th(len, nd) |
---|
178 | |
---|
179 | ! local variables: |
---|
180 | INTEGER k, i |
---|
181 | REAL rdcp |
---|
182 | REAL tvx, tvy ! convect3 |
---|
183 | REAL cpx(len, nd) |
---|
184 | |
---|
185 | include "cvthermo.h" |
---|
186 | include "cv3param.h" |
---|
187 | |
---|
188 | |
---|
189 | ! ori do 110 k=1,nlp |
---|
190 | ! abderr do 110 k=1,nl ! convect3 |
---|
191 | DO k = 1, nlp |
---|
192 | |
---|
193 | DO i = 1, len |
---|
194 | ! debug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
195 | lv(i, k) = lv0 - clmcpv*(t(i,k)-273.15) |
---|
196 | lf(i, k) = lf0 - clmci*(t(i,k)-273.15) |
---|
197 | cpn(i, k) = cpd*(1.0-q(i,k)) + cpv*q(i, k) |
---|
198 | cpx(i, k) = cpd*(1.0-q(i,k)) + cl*q(i, k) |
---|
199 | ! ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
200 | tv(i, k) = t(i, k)*(1.0+q(i,k)/eps-q(i,k)) |
---|
201 | rdcp = (rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i, k) |
---|
202 | th(i, k) = t(i, k)*(1000.0/p(i,k))**rdcp |
---|
203 | END DO |
---|
204 | END DO |
---|
205 | |
---|
206 | ! gz = phi at the full levels (same as p). |
---|
207 | |
---|
208 | DO i = 1, len |
---|
209 | gz(i, 1) = 0.0 |
---|
210 | END DO |
---|
211 | ! ori do 140 k=2,nlp |
---|
212 | DO k = 2, nl ! convect3 |
---|
213 | DO i = 1, len |
---|
214 | tvx = t(i, k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
---|
215 | tvy = t(i, k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
---|
216 | gz(i, k) = gz(i, k-1) + 0.5*rrd*(tvx+tvy)* & !convect3 |
---|
217 | (p(i,k-1)-p(i,k))/ph(i, k) !convect3 |
---|
218 | |
---|
219 | ! c print *,' gz(',k,')',gz(i,k),' tvx',tvx,' tvy ',tvy |
---|
220 | |
---|
221 | ! ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
222 | ! ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
223 | END DO |
---|
224 | END DO |
---|
225 | |
---|
226 | ! h = phi + cpT (dry static energy). |
---|
227 | ! hm = phi + cp(T-Tbase)+Lq |
---|
228 | |
---|
229 | ! ori do 170 k=1,nlp |
---|
230 | DO k = 1, nl ! convect3 |
---|
231 | DO i = 1, len |
---|
232 | h(i, k) = gz(i, k) + cpn(i, k)*t(i, k) |
---|
233 | hm(i, k) = gz(i, k) + cpx(i, k)*(t(i,k)-t(i,1)) + lv(i, k)*q(i, k) |
---|
234 | END DO |
---|
235 | END DO |
---|
236 | |
---|
237 | RETURN |
---|
238 | END SUBROUTINE cv3_prelim |
---|
239 | |
---|
240 | SUBROUTINE cv3_feed(len, nd, ok_conserv_q, & |
---|
241 | t, q, u, v, p, ph, hm, gz, & |
---|
242 | p1feed, p2feed, wght, & |
---|
243 | wghti, tnk, thnk, qnk, qsnk, unk, vnk, & |
---|
244 | cpnk, hnk, nk, icb, icbmax, iflag, gznk, plcl) |
---|
245 | IMPLICIT NONE |
---|
246 | |
---|
247 | ! ================================================================ |
---|
248 | ! Purpose: CONVECTIVE FEED |
---|
249 | |
---|
250 | ! Main differences with cv_feed: |
---|
251 | ! - ph added in input |
---|
252 | ! - here, nk(i)=minorig |
---|
253 | ! - icb defined differently (plcl compared with ph instead of p) |
---|
254 | |
---|
255 | ! Main differences with convect3: |
---|
256 | ! - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
257 | ! - values iflag different (but tests identical) |
---|
258 | ! - A,B explicitely defined (!...) |
---|
259 | ! ================================================================ |
---|
260 | |
---|
261 | include "cv3param.h" |
---|
262 | include "cvthermo.h" |
---|
263 | |
---|
264 | !inputs: |
---|
265 | INTEGER len, nd |
---|
266 | LOGICAL ok_conserv_q |
---|
267 | REAL t(len, nd), q(len, nd), p(len, nd) |
---|
268 | REAL u(len, nd), v(len, nd) |
---|
269 | REAL hm(len, nd), gz(len, nd) |
---|
270 | REAL ph(len, nd+1) |
---|
271 | REAL p1feed(len) |
---|
272 | ! , wght(len) |
---|
273 | REAL wght(nd) |
---|
274 | !input-output |
---|
275 | REAL p2feed(len) |
---|
276 | !outputs: |
---|
277 | INTEGER iflag(len), nk(len), icb(len), icbmax |
---|
278 | ! real wghti(len) |
---|
279 | REAL wghti(len, nd) |
---|
280 | REAL tnk(len), thnk(len), qnk(len), qsnk(len) |
---|
281 | REAL unk(len), vnk(len) |
---|
282 | REAL cpnk(len), hnk(len), gznk(len) |
---|
283 | REAL plcl(len) |
---|
284 | |
---|
285 | !local variables: |
---|
286 | INTEGER i, k, iter, niter |
---|
287 | INTEGER ihmin(len) |
---|
288 | REAL work(len) |
---|
289 | REAL pup(len), plo(len), pfeed(len) |
---|
290 | REAL plclup(len), plcllo(len), plclfeed(len) |
---|
291 | REAL pfeedmin(len) |
---|
292 | REAL posit(len) |
---|
293 | LOGICAL nocond(len) |
---|
294 | |
---|
295 | !jyg20140217< |
---|
296 | INTEGER iostat |
---|
297 | LOGICAL, SAVE :: first |
---|
298 | LOGICAL, SAVE :: ok_new_feed |
---|
299 | REAL, SAVE :: dp_lcl_feed |
---|
300 | !$OMP THREADPRIVATE (first,ok_new_feed,dp_lcl_feed) |
---|
301 | DATA first/.TRUE./ |
---|
302 | DATA dp_lcl_feed/2./ |
---|
303 | |
---|
304 | IF (first) THEN |
---|
305 | !$OMP MASTER |
---|
306 | ok_new_feed = ok_conserv_q |
---|
307 | OPEN (98, FILE='cv3feed_param.data', STATUS='old', FORM='formatted', IOSTAT=iostat) |
---|
308 | IF (iostat==0) THEN |
---|
309 | READ (98, *, END=998) ok_new_feed |
---|
310 | 998 CONTINUE |
---|
311 | CLOSE (98) |
---|
312 | END IF |
---|
313 | PRINT *, ' ok_new_feed: ', ok_new_feed |
---|
314 | first = .FALSE. |
---|
315 | !$OMP END MASTER |
---|
316 | END IF |
---|
317 | !jyg> |
---|
318 | ! ------------------------------------------------------------------- |
---|
319 | ! --- Origin level of ascending parcels for convect3: |
---|
320 | ! ------------------------------------------------------------------- |
---|
321 | |
---|
322 | DO i = 1, len |
---|
323 | nk(i) = minorig |
---|
324 | gznk(i) = gz(i, nk(i)) |
---|
325 | END DO |
---|
326 | |
---|
327 | ! ------------------------------------------------------------------- |
---|
328 | ! --- Adjust feeding layer thickness so that lifting up to the top of |
---|
329 | ! --- the feeding layer does not induce condensation (i.e. so that |
---|
330 | ! --- plcl < p2feed). |
---|
331 | ! --- Method : iterative secant method. |
---|
332 | ! ------------------------------------------------------------------- |
---|
333 | |
---|
334 | ! 1- First bracketing of the solution : ph(nk+1), p2feed |
---|
335 | |
---|
336 | ! 1.a- LCL associated with p2feed |
---|
337 | DO i = 1, len |
---|
338 | pup(i) = p2feed(i) |
---|
339 | END DO |
---|
340 | CALL cv3_vertmix(len, nd, iflag, p1feed, pup, p, ph, & |
---|
341 | t, q, u, v, wght, & |
---|
342 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plclup) |
---|
343 | ! 1.b- LCL associated with ph(nk+1) |
---|
344 | DO i = 1, len |
---|
345 | plo(i) = ph(i, nk(i)+1) |
---|
346 | END DO |
---|
347 | CALL cv3_vertmix(len, nd, iflag, p1feed, plo, p, ph, & |
---|
348 | t, q, u, v, wght, & |
---|
349 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plcllo) |
---|
350 | ! 2- Iterations |
---|
351 | niter = 5 |
---|
352 | DO iter = 1, niter |
---|
353 | DO i = 1, len |
---|
354 | plcllo(i) = min(plo(i), plcllo(i)) |
---|
355 | plclup(i) = max(pup(i), plclup(i)) |
---|
356 | nocond(i) = plclup(i) <= pup(i) |
---|
357 | END DO |
---|
358 | DO i = 1, len |
---|
359 | IF (nocond(i)) THEN |
---|
360 | pfeed(i) = pup(i) |
---|
361 | ELSE |
---|
362 | !JYG20140217< |
---|
363 | IF (ok_new_feed) THEN |
---|
364 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i)-dp_lcl_feed)+ & |
---|
365 | plo(i)*(plclup(i)-pup(i)+dp_lcl_feed))/ & |
---|
366 | (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
---|
367 | ELSE |
---|
368 | pfeed(i) = (pup(i)*(plo(i)-plcllo(i))+ & |
---|
369 | plo(i)*(plclup(i)-pup(i)))/ & |
---|
370 | (plo(i)-plcllo(i)+plclup(i)-pup(i)) |
---|
371 | END IF |
---|
372 | !JYG> |
---|
373 | END IF |
---|
374 | END DO |
---|
375 | !jyg20140217< |
---|
376 | ! For the last iteration, make sure that the top of the feeding layer |
---|
377 | ! and LCL are not in the same layer: |
---|
378 | IF (ok_new_feed) THEN |
---|
379 | IF (iter==niter) THEN |
---|
380 | DO k = minorig, nd |
---|
381 | DO i = 1, len |
---|
382 | IF (ph(i,k)>=plclfeed(i)) pfeedmin(i) = ph(i, k) |
---|
383 | END DO |
---|
384 | END DO |
---|
385 | DO i = 1, len |
---|
386 | pfeed(i) = max(pfeedmin(i), pfeed(i)) |
---|
387 | END DO |
---|
388 | END IF |
---|
389 | END IF |
---|
390 | !jyg> |
---|
391 | |
---|
392 | CALL cv3_vertmix(len, nd, iflag, p1feed, pfeed, p, ph, & |
---|
393 | t, q, u, v, wght, & |
---|
394 | wghti, nk, tnk, thnk, qnk, qsnk, unk, vnk, plclfeed) |
---|
395 | !jyg20140217< |
---|
396 | IF (ok_new_feed) THEN |
---|
397 | DO i = 1, len |
---|
398 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i)+dp_lcl_feed)+1.)*0.5 |
---|
399 | IF (plclfeed(i)-pfeed(i)+dp_lcl_feed==0.) posit(i) = 1. |
---|
400 | END DO |
---|
401 | ELSE |
---|
402 | DO i = 1, len |
---|
403 | posit(i) = (sign(1.,plclfeed(i)-pfeed(i))+1.)*0.5 |
---|
404 | IF (plclfeed(i)==pfeed(i)) posit(i) = 1. |
---|
405 | END DO |
---|
406 | END IF |
---|
407 | !jyg> |
---|
408 | DO i = 1, len |
---|
409 | ! - posit = 1 when lcl is below top of feeding layer (plclfeed>pfeed) |
---|
410 | ! - => pup=pfeed |
---|
411 | ! - posit = 0 when lcl is above top of feeding layer (plclfeed<pfeed) |
---|
412 | ! - => plo=pfeed |
---|
413 | pup(i) = posit(i)*pfeed(i) + (1.-posit(i))*pup(i) |
---|
414 | plo(i) = (1.-posit(i))*pfeed(i) + posit(i)*plo(i) |
---|
415 | plclup(i) = posit(i)*plclfeed(i) + (1.-posit(i))*plclup(i) |
---|
416 | plcllo(i) = (1.-posit(i))*plclfeed(i) + posit(i)*plcllo(i) |
---|
417 | END DO |
---|
418 | END DO ! iter |
---|
419 | DO i = 1, len |
---|
420 | p2feed(i) = pfeed(i) |
---|
421 | plcl(i) = plclfeed(i) |
---|
422 | END DO |
---|
423 | |
---|
424 | DO i = 1, len |
---|
425 | cpnk(i) = cpd*(1.0-qnk(i)) + cpv*qnk(i) |
---|
426 | hnk(i) = gz(i, 1) + cpnk(i)*tnk(i) |
---|
427 | END DO |
---|
428 | |
---|
429 | ! ------------------------------------------------------------------- |
---|
430 | ! --- Check whether parcel level temperature and specific humidity |
---|
431 | ! --- are reasonable |
---|
432 | ! ------------------------------------------------------------------- |
---|
433 | DO i = 1, len |
---|
434 | IF (((tnk(i)<250.0) .OR. (qnk(i)<=0.0)) .AND. (iflag(i)==0)) iflag(i) = 7 |
---|
435 | END DO |
---|
436 | |
---|
437 | ! ------------------------------------------------------------------- |
---|
438 | ! --- Calculate first level above lcl (=icb) |
---|
439 | ! ------------------------------------------------------------------- |
---|
440 | |
---|
441 | !@ do 270 i=1,len |
---|
442 | !@ icb(i)=nlm |
---|
443 | !@ 270 continue |
---|
444 | !@c |
---|
445 | !@ do 290 k=minorig,nl |
---|
446 | !@ do 280 i=1,len |
---|
447 | !@ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
448 | !@ & icb(i)=min(icb(i),k) |
---|
449 | !@ 280 continue |
---|
450 | !@ 290 continue |
---|
451 | !@c |
---|
452 | !@ do 300 i=1,len |
---|
453 | !@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
454 | !@ 300 continue |
---|
455 | |
---|
456 | DO i = 1, len |
---|
457 | icb(i) = nlm |
---|
458 | END DO |
---|
459 | |
---|
460 | ! la modification consiste a comparer plcl a ph et non a p: |
---|
461 | ! icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
462 | !@ do 290 k=minorig,nl |
---|
463 | DO k = 3, nl - 1 ! modif pour que icb soit sup/egal a 2 |
---|
464 | DO i = 1, len |
---|
465 | IF (ph(i,k)<plcl(i)) icb(i) = min(icb(i), k) |
---|
466 | END DO |
---|
467 | END DO |
---|
468 | |
---|
469 | |
---|
470 | ! print*,'icb dans cv3_feed ' |
---|
471 | ! write(*,'(64i2)') icb(2:len-1) |
---|
472 | ! call dump2d(64,43,'plcl dans cv3_feed ',plcl(2:len-1)) |
---|
473 | |
---|
474 | DO i = 1, len |
---|
475 | !@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
476 | IF ((icb(i)==nlm) .AND. (iflag(i)==0)) iflag(i) = 9 |
---|
477 | END DO |
---|
478 | |
---|
479 | DO i = 1, len |
---|
480 | icb(i) = icb(i) - 1 ! icb sup ou egal a 2 |
---|
481 | END DO |
---|
482 | |
---|
483 | ! Compute icbmax. |
---|
484 | |
---|
485 | icbmax = 2 |
---|
486 | DO i = 1, len |
---|
487 | !! icbmax=max(icbmax,icb(i)) |
---|
488 | IF (iflag(i)<7) icbmax = max(icbmax, icb(i)) ! sb Jun7th02 |
---|
489 | END DO |
---|
490 | |
---|
491 | RETURN |
---|
492 | END SUBROUTINE cv3_feed |
---|
493 | |
---|
494 | SUBROUTINE cv3_undilute1(len, nd, t, qs, gz, plcl, p, icb, tnk, qnk, gznk, & |
---|
495 | tp, tvp, clw, icbs) |
---|
496 | IMPLICIT NONE |
---|
497 | |
---|
498 | ! ---------------------------------------------------------------- |
---|
499 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
500 | |
---|
501 | ! Differences with convect4: |
---|
502 | ! - specify plcl in input |
---|
503 | ! - icbs is the first level above LCL (may differ from icb) |
---|
504 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
505 | ! - many minor differences in the iterations |
---|
506 | ! - tvp is computed in only one time |
---|
507 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
508 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
509 | ! ---------------------------------------------------------------- |
---|
510 | |
---|
511 | include "cvthermo.h" |
---|
512 | include "cv3param.h" |
---|
513 | |
---|
514 | ! inputs: |
---|
515 | INTEGER len, nd |
---|
516 | INTEGER icb(len) |
---|
517 | REAL t(len, nd), qs(len, nd), gz(len, nd) |
---|
518 | REAL tnk(len), qnk(len), gznk(len) |
---|
519 | REAL p(len, nd) |
---|
520 | REAL plcl(len) ! convect3 |
---|
521 | |
---|
522 | ! outputs: |
---|
523 | REAL tp(len, nd), tvp(len, nd), clw(len, nd) |
---|
524 | |
---|
525 | ! local variables: |
---|
526 | INTEGER i, k |
---|
527 | INTEGER icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
528 | REAL tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
529 | REAL ah0(len), cpp(len) |
---|
530 | REAL ticb(len), gzicb(len) |
---|
531 | REAL qsicb(len) ! convect3 |
---|
532 | REAL cpinv(len) ! convect3 |
---|
533 | |
---|
534 | ! ------------------------------------------------------------------- |
---|
535 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
536 | ! --- the actual temperature, and the adiabatic |
---|
537 | ! --- liquid water content. The procedure is to solve the equation. |
---|
538 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
539 | ! ------------------------------------------------------------------- |
---|
540 | |
---|
541 | |
---|
542 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
543 | |
---|
544 | DO i = 1, len |
---|
545 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) + qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
---|
546 | cpp(i) = cpd*(1.-qnk(i)) + qnk(i)*cpv |
---|
547 | cpinv(i) = 1./cpp(i) |
---|
548 | END DO |
---|
549 | |
---|
550 | ! *** Calculate lifted parcel quantities below cloud base *** |
---|
551 | |
---|
552 | DO i = 1, len !convect3 |
---|
553 | icb1(i) = max(icb(i), 2) !convect3 |
---|
554 | icb1(i) = min(icb(i), nl) !convect3 |
---|
555 | ! if icb is below LCL, start loop at ICB+1: |
---|
556 | ! (icbs est le premier niveau au-dessus du LCL) |
---|
557 | icbs(i) = icb1(i) !convect3 |
---|
558 | IF (plcl(i)<p(i,icb1(i))) THEN |
---|
559 | icbs(i) = min(icbs(i)+1, nl) !convect3 |
---|
560 | END IF |
---|
561 | END DO !convect3 |
---|
562 | |
---|
563 | DO i = 1, len !convect3 |
---|
564 | ticb(i) = t(i, icbs(i)) !convect3 |
---|
565 | gzicb(i) = gz(i, icbs(i)) !convect3 |
---|
566 | qsicb(i) = qs(i, icbs(i)) !convect3 |
---|
567 | END DO !convect3 |
---|
568 | |
---|
569 | |
---|
570 | ! Re-compute icbsmax (icbsmax2): !convect3 |
---|
571 | ! !convect3 |
---|
572 | icbsmax2 = 2 !convect3 |
---|
573 | DO i = 1, len !convect3 |
---|
574 | icbsmax2 = max(icbsmax2, icbs(i)) !convect3 |
---|
575 | END DO !convect3 |
---|
576 | |
---|
577 | ! initialization outputs: |
---|
578 | |
---|
579 | DO k = 1, icbsmax2 ! convect3 |
---|
580 | DO i = 1, len ! convect3 |
---|
581 | tp(i, k) = 0.0 ! convect3 |
---|
582 | tvp(i, k) = 0.0 ! convect3 |
---|
583 | clw(i, k) = 0.0 ! convect3 |
---|
584 | END DO ! convect3 |
---|
585 | END DO ! convect3 |
---|
586 | |
---|
587 | ! tp and tvp below cloud base: |
---|
588 | |
---|
589 | DO k = minorig, icbsmax2 - 1 |
---|
590 | DO i = 1, len |
---|
591 | tp(i, k) = tnk(i) - (gz(i,k)-gznk(i))*cpinv(i) |
---|
592 | tvp(i, k) = tp(i, k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
---|
593 | END DO |
---|
594 | END DO |
---|
595 | |
---|
596 | ! *** Find lifted parcel quantities above cloud base *** |
---|
597 | |
---|
598 | DO i = 1, len |
---|
599 | tg = ticb(i) |
---|
600 | ! ori qg=qs(i,icb(i)) |
---|
601 | qg = qsicb(i) ! convect3 |
---|
602 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
603 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
604 | |
---|
605 | ! First iteration. |
---|
606 | |
---|
607 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
608 | s = cpd*(1.-qnk(i)) + cl*qnk(i) + & ! convect3 |
---|
609 | alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
610 | s = 1./s |
---|
611 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
612 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
613 | tg = tg + s*(ah0(i)-ahg) |
---|
614 | ! ori tg=max(tg,35.0) |
---|
615 | ! debug tc=tg-t0 |
---|
616 | tc = tg - 273.15 |
---|
617 | denom = 243.5 + tc |
---|
618 | denom = max(denom, 1.0) ! convect3 |
---|
619 | ! ori if(tc.ge.0.0)then |
---|
620 | es = 6.112*exp(17.67*tc/denom) |
---|
621 | ! ori else |
---|
622 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
623 | ! ori endif |
---|
624 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
625 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
626 | |
---|
627 | ! Second iteration. |
---|
628 | |
---|
629 | |
---|
630 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
631 | ! ori s=1./s |
---|
632 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
633 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
634 | tg = tg + s*(ah0(i)-ahg) |
---|
635 | ! ori tg=max(tg,35.0) |
---|
636 | ! debug tc=tg-t0 |
---|
637 | tc = tg - 273.15 |
---|
638 | denom = 243.5 + tc |
---|
639 | denom = max(denom, 1.0) ! convect3 |
---|
640 | ! ori if(tc.ge.0.0)then |
---|
641 | es = 6.112*exp(17.67*tc/denom) |
---|
642 | ! ori else |
---|
643 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
644 | ! ori end if |
---|
645 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
646 | qg = eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
647 | |
---|
648 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
649 | |
---|
650 | ! ori c approximation here: |
---|
651 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
652 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
653 | |
---|
654 | ! convect3: no approximation: |
---|
655 | tp(i, icbs(i)) = (ah0(i)-gz(i,icbs(i))-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
656 | |
---|
657 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
658 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
659 | clw(i, icbs(i)) = qnk(i) - qg |
---|
660 | clw(i, icbs(i)) = max(0.0, clw(i,icbs(i))) |
---|
661 | |
---|
662 | rg = qg/(1.-qnk(i)) |
---|
663 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
664 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
665 | tvp(i, icbs(i)) = tp(i, icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
---|
666 | |
---|
667 | END DO |
---|
668 | |
---|
669 | ! ori do 380 k=minorig,icbsmax2 |
---|
670 | ! ori do 370 i=1,len |
---|
671 | ! ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
672 | ! ori 370 continue |
---|
673 | ! ori 380 continue |
---|
674 | |
---|
675 | |
---|
676 | ! -- The following is only for convect3: |
---|
677 | |
---|
678 | ! * icbs is the first level above the LCL: |
---|
679 | ! if plcl<p(icb), then icbs=icb+1 |
---|
680 | ! if plcl>p(icb), then icbs=icb |
---|
681 | |
---|
682 | ! * the routine above computes tvp from minorig to icbs (included). |
---|
683 | |
---|
684 | ! * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
685 | ! must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
686 | |
---|
687 | ! * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
688 | ! (tvp at other levels will be computed in cv3_undilute2.F) |
---|
689 | |
---|
690 | |
---|
691 | DO i = 1, len |
---|
692 | ticb(i) = t(i, icb(i)+1) |
---|
693 | gzicb(i) = gz(i, icb(i)+1) |
---|
694 | qsicb(i) = qs(i, icb(i)+1) |
---|
695 | END DO |
---|
696 | |
---|
697 | DO i = 1, len |
---|
698 | tg = ticb(i) |
---|
699 | qg = qsicb(i) ! convect3 |
---|
700 | ! debug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
701 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
702 | |
---|
703 | ! First iteration. |
---|
704 | |
---|
705 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
706 | s = cpd*(1.-qnk(i)) + cl*qnk(i) & ! convect3 |
---|
707 | +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
708 | s = 1./s |
---|
709 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
710 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
711 | tg = tg + s*(ah0(i)-ahg) |
---|
712 | ! ori tg=max(tg,35.0) |
---|
713 | ! debug tc=tg-t0 |
---|
714 | tc = tg - 273.15 |
---|
715 | denom = 243.5 + tc |
---|
716 | denom = max(denom, 1.0) ! convect3 |
---|
717 | ! ori if(tc.ge.0.0)then |
---|
718 | es = 6.112*exp(17.67*tc/denom) |
---|
719 | ! ori else |
---|
720 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
721 | ! ori endif |
---|
722 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
723 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
724 | |
---|
725 | ! Second iteration. |
---|
726 | |
---|
727 | |
---|
728 | ! ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
729 | ! ori s=1./s |
---|
730 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
731 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gzicb(i) ! convect3 |
---|
732 | tg = tg + s*(ah0(i)-ahg) |
---|
733 | ! ori tg=max(tg,35.0) |
---|
734 | ! debug tc=tg-t0 |
---|
735 | tc = tg - 273.15 |
---|
736 | denom = 243.5 + tc |
---|
737 | denom = max(denom, 1.0) ! convect3 |
---|
738 | ! ori if(tc.ge.0.0)then |
---|
739 | es = 6.112*exp(17.67*tc/denom) |
---|
740 | ! ori else |
---|
741 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
742 | ! ori end if |
---|
743 | ! ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
744 | qg = eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
745 | |
---|
746 | alv = lv0 - clmcpv*(ticb(i)-273.15) |
---|
747 | |
---|
748 | ! ori c approximation here: |
---|
749 | ! ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
750 | ! ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
751 | |
---|
752 | ! convect3: no approximation: |
---|
753 | tp(i, icb(i)+1) = (ah0(i)-gz(i,icb(i)+1)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
754 | |
---|
755 | ! ori clw(i,icb(i))=qnk(i)-qg |
---|
756 | ! ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
757 | clw(i, icb(i)+1) = qnk(i) - qg |
---|
758 | clw(i, icb(i)+1) = max(0.0, clw(i,icb(i)+1)) |
---|
759 | |
---|
760 | rg = qg/(1.-qnk(i)) |
---|
761 | ! ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
762 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
763 | tvp(i, icb(i)+1) = tp(i, icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
---|
764 | |
---|
765 | END DO |
---|
766 | |
---|
767 | RETURN |
---|
768 | END SUBROUTINE cv3_undilute1 |
---|
769 | |
---|
770 | SUBROUTINE cv3_trigger(len, nd, icb, plcl, p, th, tv, tvp, thnk, & |
---|
771 | pbase, buoybase, iflag, sig, w0) |
---|
772 | IMPLICIT NONE |
---|
773 | |
---|
774 | ! ------------------------------------------------------------------- |
---|
775 | ! --- TRIGGERING |
---|
776 | |
---|
777 | ! - computes the cloud base |
---|
778 | ! - triggering (crude in this version) |
---|
779 | ! - relaxation of sig and w0 when no convection |
---|
780 | |
---|
781 | ! Caution1: if no convection, we set iflag=4 |
---|
782 | ! (it used to be 0 in convect3) |
---|
783 | |
---|
784 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
785 | ! through icb only! |
---|
786 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
787 | ! ------------------------------------------------------------------- |
---|
788 | |
---|
789 | include "cv3param.h" |
---|
790 | |
---|
791 | ! input: |
---|
792 | INTEGER len, nd |
---|
793 | INTEGER icb(len) |
---|
794 | REAL plcl(len), p(len, nd) |
---|
795 | REAL th(len, nd), tv(len, nd), tvp(len, nd) |
---|
796 | REAL thnk(len) |
---|
797 | |
---|
798 | ! output: |
---|
799 | REAL pbase(len), buoybase(len) |
---|
800 | |
---|
801 | ! input AND output: |
---|
802 | INTEGER iflag(len) |
---|
803 | REAL sig(len, nd), w0(len, nd) |
---|
804 | |
---|
805 | ! local variables: |
---|
806 | INTEGER i, k |
---|
807 | REAL tvpbase, tvbase, tdif, ath, ath1 |
---|
808 | |
---|
809 | |
---|
810 | ! *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
811 | |
---|
812 | DO i = 1, len |
---|
813 | pbase(i) = plcl(i) + dpbase |
---|
814 | tvpbase = tvp(i, icb(i)) *(pbase(i)-p(i,icb(i)+1))/(p(i,icb(i))-p(i,icb(i)+1)) + & |
---|
815 | tvp(i, icb(i)+1)*(p(i,icb(i))-pbase(i)) /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
816 | tvbase = tv(i, icb(i)) *(pbase(i)-p(i,icb(i)+1))/(p(i,icb(i))-p(i,icb(i)+1)) + & |
---|
817 | tv(i, icb(i)+1)*(p(i,icb(i))-pbase(i)) /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
818 | buoybase(i) = tvpbase - tvbase |
---|
819 | END DO |
---|
820 | |
---|
821 | |
---|
822 | ! *** make sure that column is dry adiabatic between the surface *** |
---|
823 | ! *** and cloud base, and that lifted air is positively buoyant *** |
---|
824 | ! *** at cloud base *** |
---|
825 | ! *** if not, return to calling program after resetting *** |
---|
826 | ! *** sig(i) and w0(i) *** |
---|
827 | |
---|
828 | |
---|
829 | ! oct3 do 200 i=1,len |
---|
830 | ! oct3 |
---|
831 | ! oct3 tdif = buoybase(i) |
---|
832 | ! oct3 ath1 = th(i,1) |
---|
833 | ! oct3 ath = th(i,icb(i)-1) - dttrig |
---|
834 | ! oct3 |
---|
835 | ! oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
836 | ! oct3 do 60 k=1,nl |
---|
837 | ! oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
838 | ! oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
839 | ! oct3 w0(i,k) = beta*w0(i,k) |
---|
840 | ! oct3 60 continue |
---|
841 | ! oct3 iflag(i)=4 ! pour version vectorisee |
---|
842 | ! oct3c convect3 iflag(i)=0 |
---|
843 | ! oct3cccc return |
---|
844 | ! oct3 endif |
---|
845 | ! oct3 |
---|
846 | ! oct3200 continue |
---|
847 | |
---|
848 | ! -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
849 | |
---|
850 | DO k = 1, nl |
---|
851 | DO i = 1, len |
---|
852 | |
---|
853 | tdif = buoybase(i) |
---|
854 | ath1 = thnk(i) |
---|
855 | ath = th(i, icb(i)-1) - dttrig |
---|
856 | |
---|
857 | IF (tdif<dtcrit .OR. ath>ath1) THEN |
---|
858 | sig(i, k) = beta*sig(i, k) - 2.*alpha*tdif*tdif |
---|
859 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
860 | w0(i, k) = beta*w0(i, k) |
---|
861 | iflag(i) = 4 ! pour version vectorisee |
---|
862 | ! convect3 iflag(i)=0 |
---|
863 | END IF |
---|
864 | |
---|
865 | END DO |
---|
866 | END DO |
---|
867 | |
---|
868 | ! fin oct3 -- |
---|
869 | |
---|
870 | RETURN |
---|
871 | END SUBROUTINE cv3_trigger |
---|
872 | |
---|
873 | SUBROUTINE cv3_compress(len, nloc, ncum, nd, ntra, & |
---|
874 | iflag1, nk1, icb1, icbs1, & |
---|
875 | plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, & |
---|
876 | t1, q1, qs1, u1, v1, gz1, th1, & |
---|
877 | tra1, & |
---|
878 | h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, & |
---|
879 | sig1, w01, & |
---|
880 | iflag, nk, icb, icbs, & |
---|
881 | plcl, tnk, qnk, gznk, pbase, buoybase, & |
---|
882 | t, q, qs, u, v, gz, th, & |
---|
883 | tra, & |
---|
884 | h, lv, cpn, p, ph, tv, tp, tvp, clw, & |
---|
885 | sig, w0) |
---|
886 | IMPLICIT NONE |
---|
887 | |
---|
888 | include "cv3param.h" |
---|
889 | include 'iniprint.h' |
---|
890 | |
---|
891 | !inputs: |
---|
892 | INTEGER len, ncum, nd, ntra, nloc |
---|
893 | INTEGER iflag1(len), nk1(len), icb1(len), icbs1(len) |
---|
894 | REAL plcl1(len), tnk1(len), qnk1(len), gznk1(len) |
---|
895 | REAL pbase1(len), buoybase1(len) |
---|
896 | REAL t1(len, nd), q1(len, nd), qs1(len, nd), u1(len, nd), v1(len, nd) |
---|
897 | REAL gz1(len, nd), h1(len, nd), lv1(len, nd), cpn1(len, nd) |
---|
898 | REAL p1(len, nd), ph1(len, nd+1), tv1(len, nd), tp1(len, nd) |
---|
899 | REAL tvp1(len, nd), clw1(len, nd) |
---|
900 | REAL th1(len, nd) |
---|
901 | REAL sig1(len, nd), w01(len, nd) |
---|
902 | REAL tra1(len, nd, ntra) |
---|
903 | |
---|
904 | !outputs: |
---|
905 | ! en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
906 | INTEGER iflag(nloc), nk(nloc), icb(nloc), icbs(nloc) |
---|
907 | REAL plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc) |
---|
908 | REAL pbase(nloc), buoybase(nloc) |
---|
909 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
910 | REAL gz(nloc, nd), h(nloc, nd), lv(nloc, nd), cpn(nloc, nd) |
---|
911 | REAL p(nloc, nd), ph(nloc, nd+1), tv(nloc, nd), tp(nloc, nd) |
---|
912 | REAL tvp(nloc, nd), clw(nloc, nd) |
---|
913 | REAL th(nloc, nd) |
---|
914 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
915 | REAL tra(nloc, nd, ntra) |
---|
916 | |
---|
917 | !local variables: |
---|
918 | INTEGER i, k, nn, j |
---|
919 | |
---|
920 | CHARACTER (LEN=20) :: modname = 'cv3_compress' |
---|
921 | CHARACTER (LEN=80) :: abort_message |
---|
922 | |
---|
923 | DO k = 1, nl + 1 |
---|
924 | nn = 0 |
---|
925 | DO i = 1, len |
---|
926 | IF (iflag1(i)==0) THEN |
---|
927 | nn = nn + 1 |
---|
928 | sig(nn, k) = sig1(i, k) |
---|
929 | w0(nn, k) = w01(i, k) |
---|
930 | t(nn, k) = t1(i, k) |
---|
931 | q(nn, k) = q1(i, k) |
---|
932 | qs(nn, k) = qs1(i, k) |
---|
933 | u(nn, k) = u1(i, k) |
---|
934 | v(nn, k) = v1(i, k) |
---|
935 | gz(nn, k) = gz1(i, k) |
---|
936 | h(nn, k) = h1(i, k) |
---|
937 | lv(nn, k) = lv1(i, k) |
---|
938 | cpn(nn, k) = cpn1(i, k) |
---|
939 | p(nn, k) = p1(i, k) |
---|
940 | ph(nn, k) = ph1(i, k) |
---|
941 | tv(nn, k) = tv1(i, k) |
---|
942 | tp(nn, k) = tp1(i, k) |
---|
943 | tvp(nn, k) = tvp1(i, k) |
---|
944 | clw(nn, k) = clw1(i, k) |
---|
945 | th(nn, k) = th1(i, k) |
---|
946 | END IF |
---|
947 | END DO |
---|
948 | END DO |
---|
949 | |
---|
950 | !AC! do 121 j=1,ntra |
---|
951 | !AC!ccccc do 111 k=1,nl+1 |
---|
952 | !AC! do 111 k=1,nd |
---|
953 | !AC! nn=0 |
---|
954 | !AC! do 101 i=1,len |
---|
955 | !AC! if(iflag1(i).eq.0)then |
---|
956 | !AC! nn=nn+1 |
---|
957 | !AC! tra(nn,k,j)=tra1(i,k,j) |
---|
958 | !AC! endif |
---|
959 | !AC! 101 continue |
---|
960 | !AC! 111 continue |
---|
961 | !AC! 121 continue |
---|
962 | |
---|
963 | IF (nn/=ncum) THEN |
---|
964 | WRITE (lunout, *) 'strange! nn not equal to ncum: ', nn, ncum |
---|
965 | abort_message = '' |
---|
966 | CALL abort_gcm(modname, abort_message, 1) |
---|
967 | END IF |
---|
968 | |
---|
969 | nn = 0 |
---|
970 | DO i = 1, len |
---|
971 | IF (iflag1(i)==0) THEN |
---|
972 | nn = nn + 1 |
---|
973 | pbase(nn) = pbase1(i) |
---|
974 | buoybase(nn) = buoybase1(i) |
---|
975 | plcl(nn) = plcl1(i) |
---|
976 | tnk(nn) = tnk1(i) |
---|
977 | qnk(nn) = qnk1(i) |
---|
978 | gznk(nn) = gznk1(i) |
---|
979 | nk(nn) = nk1(i) |
---|
980 | icb(nn) = icb1(i) |
---|
981 | icbs(nn) = icbs1(i) |
---|
982 | iflag(nn) = iflag1(i) |
---|
983 | END IF |
---|
984 | END DO |
---|
985 | |
---|
986 | RETURN |
---|
987 | END SUBROUTINE cv3_compress |
---|
988 | |
---|
989 | SUBROUTINE icefrac(t, clw, qi, nl, len) |
---|
990 | IMPLICIT NONE |
---|
991 | |
---|
992 | |
---|
993 | !JAM-------------------------------------------------------------------- |
---|
994 | ! Calcul de la quantité d'eau sous forme de glace |
---|
995 | ! -------------------------------------------------------------------- |
---|
996 | INTEGER nl, len |
---|
997 | REAL qi(len, nl) |
---|
998 | REAL t(len, nl), clw(len, nl) |
---|
999 | REAL fracg |
---|
1000 | INTEGER k, i |
---|
1001 | |
---|
1002 | DO k = 3, nl |
---|
1003 | DO i = 1, len |
---|
1004 | IF (t(i,k)>263.15) THEN |
---|
1005 | qi(i, k) = 0. |
---|
1006 | ELSE |
---|
1007 | IF (t(i,k)<243.15) THEN |
---|
1008 | qi(i, k) = clw(i, k) |
---|
1009 | ELSE |
---|
1010 | fracg = (263.15-t(i,k))/20 |
---|
1011 | qi(i, k) = clw(i, k)*fracg |
---|
1012 | END IF |
---|
1013 | END IF |
---|
1014 | ! print*,t(i,k),qi(i,k),'temp,testglace' |
---|
1015 | END DO |
---|
1016 | END DO |
---|
1017 | |
---|
1018 | RETURN |
---|
1019 | |
---|
1020 | END SUBROUTINE icefrac |
---|
1021 | |
---|
1022 | SUBROUTINE cv3_undilute2(nloc, ncum, nd, icb, icbs, nk, & |
---|
1023 | tnk, qnk, gznk, hnk, t, q, qs, gz, & |
---|
1024 | p, h, tv, lv, lf, pbase, buoybase, plcl, & |
---|
1025 | inb, tp, tvp, clw, hp, ep, sigp, buoy, frac) |
---|
1026 | IMPLICIT NONE |
---|
1027 | |
---|
1028 | ! --------------------------------------------------------------------- |
---|
1029 | ! Purpose: |
---|
1030 | ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
1031 | ! & |
---|
1032 | ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
1033 | ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
1034 | ! & |
---|
1035 | ! FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
1036 | |
---|
1037 | ! Main differences convect3/convect4: |
---|
1038 | ! - icbs (input) is the first level above LCL (may differ from icb) |
---|
1039 | ! - many minor differences in the iterations |
---|
1040 | ! - condensed water not removed from tvp in convect3 |
---|
1041 | ! - vertical profile of buoyancy computed here (use of buoybase) |
---|
1042 | ! - the determination of inb is different |
---|
1043 | ! - no inb1, only inb in output |
---|
1044 | ! --------------------------------------------------------------------- |
---|
1045 | |
---|
1046 | include "cvthermo.h" |
---|
1047 | include "cv3param.h" |
---|
1048 | include "conema3.h" |
---|
1049 | include "cvflag.h" |
---|
1050 | |
---|
1051 | !inputs: |
---|
1052 | INTEGER ncum, nd, nloc, j |
---|
1053 | INTEGER icb(nloc), icbs(nloc), nk(nloc) |
---|
1054 | REAL t(nloc, nd), q(nloc, nd), qs(nloc, nd), gz(nloc, nd) |
---|
1055 | REAL p(nloc, nd) |
---|
1056 | REAL tnk(nloc), qnk(nloc), gznk(nloc) |
---|
1057 | REAL hnk(nloc) |
---|
1058 | REAL lv(nloc, nd), lf(nloc, nd), tv(nloc, nd), h(nloc, nd) |
---|
1059 | REAL pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
1060 | |
---|
1061 | !outputs: |
---|
1062 | INTEGER inb(nloc) |
---|
1063 | REAL tp(nloc, nd), tvp(nloc, nd), clw(nloc, nd) |
---|
1064 | REAL ep(nloc, nd), sigp(nloc, nd), hp(nloc, nd) |
---|
1065 | REAL buoy(nloc, nd) |
---|
1066 | |
---|
1067 | !local variables: |
---|
1068 | INTEGER i, k |
---|
1069 | REAL tg, qg, ahg, alv, alf, s, tc, es, esi, denom, rg, tca, elacrit |
---|
1070 | REAL als |
---|
1071 | REAL qsat_new, snew, qi(nloc, nd) |
---|
1072 | REAL by, defrac, pden, tbis |
---|
1073 | REAL ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
1074 | REAL frac(nloc, nd) |
---|
1075 | LOGICAL lcape(nloc) |
---|
1076 | INTEGER iposit(nloc) |
---|
1077 | REAL fracg |
---|
1078 | |
---|
1079 | ! ===================================================================== |
---|
1080 | ! --- SOME INITIALIZATIONS |
---|
1081 | ! ===================================================================== |
---|
1082 | |
---|
1083 | DO k = 1, nl |
---|
1084 | DO i = 1, ncum |
---|
1085 | ep(i, k) = 0.0 |
---|
1086 | sigp(i, k) = spfac |
---|
1087 | qi(i, k) = 0. |
---|
1088 | END DO |
---|
1089 | END DO |
---|
1090 | |
---|
1091 | ! ===================================================================== |
---|
1092 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
1093 | ! ===================================================================== |
---|
1094 | |
---|
1095 | ! --- The procedure is to solve the equation. |
---|
1096 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
1097 | |
---|
1098 | ! *** Calculate certain parcel quantities, including static energy *** |
---|
1099 | |
---|
1100 | |
---|
1101 | DO i = 1, ncum |
---|
1102 | ah0(i) = (cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i)+ & |
---|
1103 | ! debug qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
1104 | qnk(i)*(lv0-clmcpv*(tnk(i)-273.15)) + gznk(i) |
---|
1105 | END DO |
---|
1106 | |
---|
1107 | |
---|
1108 | ! *** Find lifted parcel quantities above cloud base *** |
---|
1109 | |
---|
1110 | |
---|
1111 | DO k = minorig + 1, nl |
---|
1112 | DO i = 1, ncum |
---|
1113 | ! ori if(k.ge.(icb(i)+1))then |
---|
1114 | IF (k>=(icbs(i)+1)) THEN ! convect3 |
---|
1115 | tg = t(i, k) |
---|
1116 | qg = qs(i, k) |
---|
1117 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
1118 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
1119 | |
---|
1120 | ! First iteration. |
---|
1121 | |
---|
1122 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
1123 | s = cpd*(1.-qnk(i)) + cl*qnk(i) + & ! convect3 |
---|
1124 | alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
---|
1125 | s = 1./s |
---|
1126 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
1127 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
---|
1128 | tg = tg + s*(ah0(i)-ahg) |
---|
1129 | ! ori tg=max(tg,35.0) |
---|
1130 | ! debug tc=tg-t0 |
---|
1131 | tc = tg - 273.15 |
---|
1132 | denom = 243.5 + tc |
---|
1133 | denom = max(denom, 1.0) ! convect3 |
---|
1134 | ! ori if(tc.ge.0.0)then |
---|
1135 | es = 6.112*exp(17.67*tc/denom) |
---|
1136 | ! ori else |
---|
1137 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
1138 | ! ori endif |
---|
1139 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
1140 | |
---|
1141 | ! Second iteration. |
---|
1142 | |
---|
1143 | ! ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
1144 | ! ori s=1./s |
---|
1145 | ! ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
1146 | ahg = cpd*tg + (cl-cpd)*qnk(i)*tg + alv*qg + gz(i, k) ! convect3 |
---|
1147 | tg = tg + s*(ah0(i)-ahg) |
---|
1148 | ! ori tg=max(tg,35.0) |
---|
1149 | ! debug tc=tg-t0 |
---|
1150 | tc = tg - 273.15 |
---|
1151 | denom = 243.5 + tc |
---|
1152 | denom = max(denom, 1.0) ! convect3 |
---|
1153 | ! ori if(tc.ge.0.0)then |
---|
1154 | es = 6.112*exp(17.67*tc/denom) |
---|
1155 | ! ori else |
---|
1156 | ! ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
1157 | ! ori endif |
---|
1158 | qg = eps*es/(p(i,k)-es*(1.-eps)) |
---|
1159 | |
---|
1160 | ! debug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
1161 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
1162 | ! print*,'cpd dans convect2 ',cpd |
---|
1163 | ! print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
1164 | ! print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
1165 | |
---|
1166 | ! ori c approximation here: |
---|
1167 | ! ori tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
1168 | |
---|
1169 | ! convect3: no approximation: |
---|
1170 | IF (cvflag_ice) THEN |
---|
1171 | tp(i, k) = max(0., (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i))) |
---|
1172 | ELSE |
---|
1173 | tp(i, k) = (ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
1174 | END IF |
---|
1175 | |
---|
1176 | clw(i, k) = qnk(i) - qg |
---|
1177 | clw(i, k) = max(0.0, clw(i,k)) |
---|
1178 | rg = qg/(1.-qnk(i)) |
---|
1179 | ! ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
1180 | ! convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
1181 | tvp(i, k) = tp(i, k)*(1.+qg/eps-qnk(i)) ! whole thing |
---|
1182 | IF (cvflag_ice) THEN |
---|
1183 | IF (clw(i,k)<1.E-11) THEN |
---|
1184 | tp(i, k) = tv(i, k) |
---|
1185 | tvp(i, k) = tv(i, k) |
---|
1186 | END IF |
---|
1187 | END IF |
---|
1188 | END IF |
---|
1189 | |
---|
1190 | IF (cvflag_ice) THEN |
---|
1191 | !CR:attention boucle en klon dans Icefrac |
---|
1192 | ! Call Icefrac(t,clw,qi,nl,nloc) |
---|
1193 | IF (t(i,k)>263.15) THEN |
---|
1194 | qi(i, k) = 0. |
---|
1195 | ELSE |
---|
1196 | IF (t(i,k)<243.15) THEN |
---|
1197 | qi(i, k) = clw(i, k) |
---|
1198 | ELSE |
---|
1199 | fracg = (263.15-t(i,k))/20 |
---|
1200 | qi(i, k) = clw(i, k)*fracg |
---|
1201 | END IF |
---|
1202 | END IF |
---|
1203 | !CR: fin test |
---|
1204 | IF (t(i,k)<263.15) THEN |
---|
1205 | !CR: on commente les calculs d'Arnaud car division par zero |
---|
1206 | ! nouveau calcul propose par JYG |
---|
1207 | ! alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
1208 | ! alf=lf0-clmci*(t(i,k)-273.15) |
---|
1209 | ! tg=tp(i,k) |
---|
1210 | ! tc=tp(i,k)-273.15 |
---|
1211 | ! denom=243.5+tc |
---|
1212 | ! do j=1,3 |
---|
1213 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1214 | ! il faudra que esi vienne en argument de la convection |
---|
1215 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1216 | ! tbis=t(i,k)+(tp(i,k)-tg) |
---|
1217 | ! esi=exp(23.33086-(6111.72784/tbis) + & |
---|
1218 | ! 0.15215*log(tbis)) |
---|
1219 | ! qsat_new=eps*esi/(p(i,k)-esi*(1.-eps)) |
---|
1220 | ! snew=cpd*(1.-qnk(i))+cl*qnk(i)+alv*alv*qsat_new/ & |
---|
1221 | ! (rrv*tbis*tbis) |
---|
1222 | ! snew=1./snew |
---|
1223 | ! print*,esi,qsat_new,snew,'esi,qsat,snew' |
---|
1224 | ! tp(i,k)=tg+(alf*qi(i,k)+alv*qg*(1.-(esi/es)))*snew |
---|
1225 | ! print*,k,tp(i,k),qnk(i),'avec glace' |
---|
1226 | ! print*,'tpNAN',tg,alf,qi(i,k),alv,qg,esi,es,snew |
---|
1227 | ! enddo |
---|
1228 | |
---|
1229 | alv = lv0 - clmcpv*(t(i,k)-273.15) |
---|
1230 | alf = lf0 + clmci*(t(i,k)-273.15) |
---|
1231 | als = alf + alv |
---|
1232 | tg = tp(i, k) |
---|
1233 | tp(i, k) = t(i, k) |
---|
1234 | DO j = 1, 3 |
---|
1235 | esi = exp(23.33086-(6111.72784/tp(i,k))+0.15215*log(tp(i,k))) |
---|
1236 | qsat_new = eps*esi/(p(i,k)-esi*(1.-eps)) |
---|
1237 | snew = cpd*(1.-qnk(i)) + cl*qnk(i) + alv*als*qsat_new/ & |
---|
1238 | (rrv*tp(i,k)*tp(i,k)) |
---|
1239 | snew = 1./snew |
---|
1240 | ! c print*,esi,qsat_new,snew,'esi,qsat,snew' |
---|
1241 | tp(i, k) = tp(i, k) + & |
---|
1242 | ((cpd*(1.-qnk(i))+cl*qnk(i))*(tg-tp(i,k)) + & |
---|
1243 | alv*(qg-qsat_new)+alf*qi(i,k))*snew |
---|
1244 | ! print*,k,tp(i,k),qsat_new,qnk(i),qi(i,k), & |
---|
1245 | ! 'k,tp,q,qt,qi avec glace' |
---|
1246 | END DO |
---|
1247 | |
---|
1248 | !CR:reprise du code AJ |
---|
1249 | clw(i, k) = qnk(i) - qsat_new |
---|
1250 | clw(i, k) = max(0.0, clw(i,k)) |
---|
1251 | tvp(i, k) = max(0., tp(i,k)*(1.+qsat_new/eps-qnk(i))) |
---|
1252 | ! print*,tvp(i,k),'tvp' |
---|
1253 | END IF |
---|
1254 | IF (clw(i,k)<1.E-11) THEN |
---|
1255 | tp(i, k) = tv(i, k) |
---|
1256 | tvp(i, k) = tv(i, k) |
---|
1257 | END IF |
---|
1258 | END IF ! (cvflag_ice) |
---|
1259 | |
---|
1260 | END DO |
---|
1261 | END DO |
---|
1262 | |
---|
1263 | ! ===================================================================== |
---|
1264 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
1265 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
1266 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
1267 | ! ===================================================================== |
---|
1268 | |
---|
1269 | IF (flag_epkeorig/=1) THEN |
---|
1270 | DO k = 1, nl ! convect3 |
---|
1271 | DO i = 1, ncum |
---|
1272 | pden = ptcrit - pbcrit |
---|
1273 | ep(i, k) = (plcl(i)-p(i,k)-pbcrit)/pden*epmax |
---|
1274 | ep(i, k) = max(ep(i,k), 0.0) |
---|
1275 | ep(i, k) = min(ep(i,k), epmax) |
---|
1276 | sigp(i, k) = spfac |
---|
1277 | END DO |
---|
1278 | END DO |
---|
1279 | ELSE |
---|
1280 | DO k = 1, nl |
---|
1281 | DO i = 1, ncum |
---|
1282 | IF (k>=(nk(i)+1)) THEN |
---|
1283 | tca = tp(i, k) - t0 |
---|
1284 | IF (tca>=0.0) THEN |
---|
1285 | elacrit = elcrit |
---|
1286 | ELSE |
---|
1287 | elacrit = elcrit*(1.0-tca/tlcrit) |
---|
1288 | END IF |
---|
1289 | elacrit = max(elacrit, 0.0) |
---|
1290 | ep(i, k) = 1.0 - elacrit/max(clw(i,k), 1.0E-8) |
---|
1291 | ep(i, k) = max(ep(i,k), 0.0) |
---|
1292 | ep(i, k) = min(ep(i,k), epmax) |
---|
1293 | sigp(i, k) = spfac |
---|
1294 | END IF |
---|
1295 | END DO |
---|
1296 | END DO |
---|
1297 | END IF |
---|
1298 | ! ===================================================================== |
---|
1299 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
1300 | ! --- VIRTUAL TEMPERATURE |
---|
1301 | ! ===================================================================== |
---|
1302 | |
---|
1303 | ! dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
1304 | ! l'eau condensee (~> reversible CAPE) |
---|
1305 | |
---|
1306 | ! ori do 340 k=minorig+1,nl |
---|
1307 | ! ori do 330 i=1,ncum |
---|
1308 | ! ori if(k.ge.(icb(i)+1))then |
---|
1309 | ! ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
1310 | ! oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
1311 | ! oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
1312 | ! ori endif |
---|
1313 | ! ori 330 continue |
---|
1314 | ! ori 340 continue |
---|
1315 | |
---|
1316 | ! ori do 350 i=1,ncum |
---|
1317 | ! ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
1318 | ! ori 350 continue |
---|
1319 | |
---|
1320 | DO i = 1, ncum ! convect3 |
---|
1321 | tp(i, nlp) = tp(i, nl) ! convect3 |
---|
1322 | END DO ! convect3 |
---|
1323 | |
---|
1324 | ! ===================================================================== |
---|
1325 | ! --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
1326 | ! ===================================================================== |
---|
1327 | |
---|
1328 | ! -- this is for convect3 only: |
---|
1329 | |
---|
1330 | ! first estimate of buoyancy: |
---|
1331 | |
---|
1332 | DO i = 1, ncum |
---|
1333 | DO k = 1, nl |
---|
1334 | buoy(i, k) = tvp(i, k) - tv(i, k) |
---|
1335 | END DO |
---|
1336 | END DO |
---|
1337 | |
---|
1338 | ! set buoyancy=buoybase for all levels below base |
---|
1339 | ! for safety, set buoy(icb)=buoybase |
---|
1340 | |
---|
1341 | DO i = 1, ncum |
---|
1342 | DO k = 1, nl |
---|
1343 | IF ((k>=icb(i)) .AND. (k<=nl) .AND. (p(i,k)>=pbase(i))) THEN |
---|
1344 | buoy(i, k) = buoybase(i) |
---|
1345 | END IF |
---|
1346 | END DO |
---|
1347 | ! buoy(icb(i),k)=buoybase(i) |
---|
1348 | buoy(i, icb(i)) = buoybase(i) |
---|
1349 | END DO |
---|
1350 | |
---|
1351 | ! -- end convect3 |
---|
1352 | |
---|
1353 | ! ===================================================================== |
---|
1354 | ! --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
1355 | ! --- LEVEL OF NEUTRAL BUOYANCY |
---|
1356 | ! ===================================================================== |
---|
1357 | |
---|
1358 | ! -- this is for convect3 only: |
---|
1359 | |
---|
1360 | DO i = 1, ncum |
---|
1361 | inb(i) = nl - 1 |
---|
1362 | iposit(i) = nl |
---|
1363 | END DO |
---|
1364 | |
---|
1365 | |
---|
1366 | ! -- iposit(i) = first level, above icb, with positive buoyancy |
---|
1367 | DO k = 1, nl - 1 |
---|
1368 | DO i = 1, ncum |
---|
1369 | IF (k>=icb(i) .AND. buoy(i,k)>0.) THEN |
---|
1370 | iposit(i) = min(iposit(i), k) |
---|
1371 | END IF |
---|
1372 | END DO |
---|
1373 | END DO |
---|
1374 | |
---|
1375 | DO i = 1, ncum |
---|
1376 | IF (iposit(i)==nl) THEN |
---|
1377 | iposit(i) = icb(i) |
---|
1378 | END IF |
---|
1379 | END DO |
---|
1380 | |
---|
1381 | DO k = 1, nl - 1 |
---|
1382 | DO i = 1, ncum |
---|
1383 | IF ((k>=iposit(i)) .AND. (buoy(i,k)<dtovsh)) THEN |
---|
1384 | inb(i) = min(inb(i), k) |
---|
1385 | END IF |
---|
1386 | END DO |
---|
1387 | END DO |
---|
1388 | |
---|
1389 | ! -- end convect3 |
---|
1390 | |
---|
1391 | ! ori do 510 i=1,ncum |
---|
1392 | ! ori cape(i)=0.0 |
---|
1393 | ! ori capem(i)=0.0 |
---|
1394 | ! ori inb(i)=icb(i)+1 |
---|
1395 | ! ori inb1(i)=inb(i) |
---|
1396 | ! ori 510 continue |
---|
1397 | |
---|
1398 | ! Originial Code |
---|
1399 | |
---|
1400 | ! do 530 k=minorig+1,nl-1 |
---|
1401 | ! do 520 i=1,ncum |
---|
1402 | ! if(k.ge.(icb(i)+1))then |
---|
1403 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1404 | ! byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1405 | ! cape(i)=cape(i)+by |
---|
1406 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
1407 | ! if(cape(i).gt.0.0)then |
---|
1408 | ! inb(i)=k+1 |
---|
1409 | ! capem(i)=cape(i) |
---|
1410 | ! endif |
---|
1411 | ! endif |
---|
1412 | !520 continue |
---|
1413 | !530 continue |
---|
1414 | ! do 540 i=1,ncum |
---|
1415 | ! byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
1416 | ! cape(i)=capem(i)+byp |
---|
1417 | ! defrac=capem(i)-cape(i) |
---|
1418 | ! defrac=max(defrac,0.001) |
---|
1419 | ! frac(i)=-cape(i)/defrac |
---|
1420 | ! frac(i)=min(frac(i),1.0) |
---|
1421 | ! frac(i)=max(frac(i),0.0) |
---|
1422 | !540 continue |
---|
1423 | |
---|
1424 | ! K Emanuel fix |
---|
1425 | |
---|
1426 | ! call zilch(byp,ncum) |
---|
1427 | ! do 530 k=minorig+1,nl-1 |
---|
1428 | ! do 520 i=1,ncum |
---|
1429 | ! if(k.ge.(icb(i)+1))then |
---|
1430 | ! by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1431 | ! cape(i)=cape(i)+by |
---|
1432 | ! if(by.ge.0.0)inb1(i)=k+1 |
---|
1433 | ! if(cape(i).gt.0.0)then |
---|
1434 | ! inb(i)=k+1 |
---|
1435 | ! capem(i)=cape(i) |
---|
1436 | ! byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1437 | ! endif |
---|
1438 | ! endif |
---|
1439 | !520 continue |
---|
1440 | !530 continue |
---|
1441 | ! do 540 i=1,ncum |
---|
1442 | ! inb(i)=max(inb(i),inb1(i)) |
---|
1443 | ! cape(i)=capem(i)+byp(i) |
---|
1444 | ! defrac=capem(i)-cape(i) |
---|
1445 | ! defrac=max(defrac,0.001) |
---|
1446 | ! frac(i)=-cape(i)/defrac |
---|
1447 | ! frac(i)=min(frac(i),1.0) |
---|
1448 | ! frac(i)=max(frac(i),0.0) |
---|
1449 | !540 continue |
---|
1450 | |
---|
1451 | ! J Teixeira fix |
---|
1452 | |
---|
1453 | ! ori call zilch(byp,ncum) |
---|
1454 | ! ori do 515 i=1,ncum |
---|
1455 | ! ori lcape(i)=.true. |
---|
1456 | ! ori 515 continue |
---|
1457 | ! ori do 530 k=minorig+1,nl-1 |
---|
1458 | ! ori do 520 i=1,ncum |
---|
1459 | ! ori if(cape(i).lt.0.0)lcape(i)=.false. |
---|
1460 | ! ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
1461 | ! ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
1462 | ! ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
1463 | ! ori cape(i)=cape(i)+by |
---|
1464 | ! ori if(by.ge.0.0)inb1(i)=k+1 |
---|
1465 | ! ori if(cape(i).gt.0.0)then |
---|
1466 | ! ori inb(i)=k+1 |
---|
1467 | ! ori capem(i)=cape(i) |
---|
1468 | ! ori endif |
---|
1469 | ! ori endif |
---|
1470 | ! ori 520 continue |
---|
1471 | ! ori 530 continue |
---|
1472 | ! ori do 540 i=1,ncum |
---|
1473 | ! ori cape(i)=capem(i)+byp(i) |
---|
1474 | ! ori defrac=capem(i)-cape(i) |
---|
1475 | ! ori defrac=max(defrac,0.001) |
---|
1476 | ! ori frac(i)=-cape(i)/defrac |
---|
1477 | ! ori frac(i)=min(frac(i),1.0) |
---|
1478 | ! ori frac(i)=max(frac(i),0.0) |
---|
1479 | ! ori 540 continue |
---|
1480 | |
---|
1481 | ! ===================================================================== |
---|
1482 | ! --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
1483 | ! ===================================================================== |
---|
1484 | |
---|
1485 | DO k = 1, nd |
---|
1486 | DO i = 1, ncum |
---|
1487 | hp(i, k) = h(i, k) |
---|
1488 | END DO |
---|
1489 | END DO |
---|
1490 | |
---|
1491 | DO k = minorig + 1, nl |
---|
1492 | DO i = 1, ncum |
---|
1493 | IF ((k>=icb(i)) .AND. (k<=inb(i))) THEN |
---|
1494 | |
---|
1495 | IF (cvflag_ice) THEN |
---|
1496 | frac(i, k) = 1. - (t(i,k)-243.15)/(263.15-243.15) |
---|
1497 | frac(i, k) = min(max(frac(i,k),0.0), 1.0) |
---|
1498 | hp(i, k) = hnk(i) + (lv(i,k)+(cpd-cpv)*t(i,k)+frac(i,k)*lf(i,k))* & |
---|
1499 | ep(i, k)*clw(i, k) |
---|
1500 | |
---|
1501 | ELSE |
---|
1502 | hp(i, k) = hnk(i) + (lv(i,k)+(cpd-cpv)*t(i,k))*ep(i, k)*clw(i, k) |
---|
1503 | END IF |
---|
1504 | |
---|
1505 | END IF |
---|
1506 | END DO |
---|
1507 | END DO |
---|
1508 | |
---|
1509 | RETURN |
---|
1510 | END SUBROUTINE cv3_undilute2 |
---|
1511 | |
---|
1512 | SUBROUTINE cv3_closure(nloc, ncum, nd, icb, inb, & |
---|
1513 | pbase, p, ph, tv, buoy, & |
---|
1514 | sig, w0, cape, m, iflag) |
---|
1515 | IMPLICIT NONE |
---|
1516 | |
---|
1517 | ! =================================================================== |
---|
1518 | ! --- CLOSURE OF CONVECT3 |
---|
1519 | ! |
---|
1520 | ! vectorization: S. Bony |
---|
1521 | ! =================================================================== |
---|
1522 | |
---|
1523 | include "cvthermo.h" |
---|
1524 | include "cv3param.h" |
---|
1525 | |
---|
1526 | !input: |
---|
1527 | INTEGER ncum, nd, nloc |
---|
1528 | INTEGER icb(nloc), inb(nloc) |
---|
1529 | REAL pbase(nloc) |
---|
1530 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
1531 | REAL tv(nloc, nd), buoy(nloc, nd) |
---|
1532 | |
---|
1533 | !input/output: |
---|
1534 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
1535 | INTEGER iflag(nloc) |
---|
1536 | |
---|
1537 | !output: |
---|
1538 | REAL cape(nloc) |
---|
1539 | REAL m(nloc, nd) |
---|
1540 | |
---|
1541 | !local variables: |
---|
1542 | INTEGER i, j, k, icbmax |
---|
1543 | REAL deltap, fac, w, amu |
---|
1544 | REAL dtmin(nloc, nd), sigold(nloc, nd) |
---|
1545 | REAL cbmflast(nloc) |
---|
1546 | |
---|
1547 | |
---|
1548 | ! ------------------------------------------------------- |
---|
1549 | ! -- Initialization |
---|
1550 | ! ------------------------------------------------------- |
---|
1551 | |
---|
1552 | DO k = 1, nl |
---|
1553 | DO i = 1, ncum |
---|
1554 | m(i, k) = 0.0 |
---|
1555 | END DO |
---|
1556 | END DO |
---|
1557 | |
---|
1558 | ! ------------------------------------------------------- |
---|
1559 | ! -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
1560 | ! ------------------------------------------------------- |
---|
1561 | |
---|
1562 | ! update sig and w0 above LNB: |
---|
1563 | |
---|
1564 | DO k = 1, nl - 1 |
---|
1565 | DO i = 1, ncum |
---|
1566 | IF ((inb(i)<(nl-1)) .AND. (k>=(inb(i)+1))) THEN |
---|
1567 | sig(i, k) = beta*sig(i, k) + & |
---|
1568 | 2.*alpha*buoy(i, inb(i))*abs(buoy(i,inb(i))) |
---|
1569 | sig(i, k) = amax1(sig(i,k), 0.0) |
---|
1570 | w0(i, k) = beta*w0(i, k) |
---|
1571 | END IF |
---|
1572 | END DO |
---|
1573 | END DO |
---|
1574 | |
---|
1575 | ! compute icbmax: |
---|
1576 | |
---|
1577 | icbmax = 2 |
---|
1578 | DO i = 1, ncum |
---|
1579 | icbmax = max(icbmax, icb(i)) |
---|
1580 | END DO |
---|
1581 | |
---|
1582 | ! update sig and w0 below cloud base: |
---|
1583 | |
---|
1584 | DO k = 1, icbmax |
---|
1585 | DO i = 1, ncum |
---|
1586 | IF (k<=icb(i)) THEN |
---|
1587 | sig(i, k) = beta*sig(i, k) - & |
---|
1588 | 2.*alpha*buoy(i, icb(i))*buoy(i, icb(i)) |
---|
1589 | sig(i, k) = max(sig(i,k), 0.0) |
---|
1590 | w0(i, k) = beta*w0(i, k) |
---|
1591 | END IF |
---|
1592 | END DO |
---|
1593 | END DO |
---|
1594 | |
---|
1595 | !! if(inb.lt.(nl-1))then |
---|
1596 | !! do 85 i=inb+1,nl-1 |
---|
1597 | !! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
1598 | !! 1 abs(buoy(inb)) |
---|
1599 | !! sig(i)=max(sig(i),0.0) |
---|
1600 | !! w0(i)=beta*w0(i) |
---|
1601 | !! 85 continue |
---|
1602 | !! end if |
---|
1603 | |
---|
1604 | !! do 87 i=1,icb |
---|
1605 | !! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
1606 | !! sig(i)=max(sig(i),0.0) |
---|
1607 | !! w0(i)=beta*w0(i) |
---|
1608 | !! 87 continue |
---|
1609 | |
---|
1610 | ! ------------------------------------------------------------- |
---|
1611 | ! -- Reset fractional areas of updrafts and w0 at initial time |
---|
1612 | ! -- and after 10 time steps of no convection |
---|
1613 | ! ------------------------------------------------------------- |
---|
1614 | |
---|
1615 | DO k = 1, nl - 1 |
---|
1616 | DO i = 1, ncum |
---|
1617 | IF (sig(i,nd)<1.5 .OR. sig(i,nd)>12.0) THEN |
---|
1618 | sig(i, k) = 0.0 |
---|
1619 | w0(i, k) = 0.0 |
---|
1620 | END IF |
---|
1621 | END DO |
---|
1622 | END DO |
---|
1623 | |
---|
1624 | ! ------------------------------------------------------------- |
---|
1625 | ! -- Calculate convective available potential energy (cape), |
---|
1626 | ! -- vertical velocity (w), fractional area covered by |
---|
1627 | ! -- undilute updraft (sig), and updraft mass flux (m) |
---|
1628 | ! ------------------------------------------------------------- |
---|
1629 | |
---|
1630 | DO i = 1, ncum |
---|
1631 | cape(i) = 0.0 |
---|
1632 | END DO |
---|
1633 | |
---|
1634 | ! compute dtmin (minimum buoyancy between ICB and given level k): |
---|
1635 | |
---|
1636 | DO i = 1, ncum |
---|
1637 | DO k = 1, nl |
---|
1638 | dtmin(i, k) = 100.0 |
---|
1639 | END DO |
---|
1640 | END DO |
---|
1641 | |
---|
1642 | DO i = 1, ncum |
---|
1643 | DO k = 1, nl |
---|
1644 | DO j = minorig, nl |
---|
1645 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i)) .AND. (j>=icb(i)) .AND. (j<=(k-1))) THEN |
---|
1646 | dtmin(i, k) = amin1(dtmin(i,k), buoy(i,j)) |
---|
1647 | END IF |
---|
1648 | END DO |
---|
1649 | END DO |
---|
1650 | END DO |
---|
1651 | |
---|
1652 | ! the interval on which cape is computed starts at pbase : |
---|
1653 | |
---|
1654 | DO k = 1, nl |
---|
1655 | DO i = 1, ncum |
---|
1656 | |
---|
1657 | IF ((k>=(icb(i)+1)) .AND. (k<=inb(i))) THEN |
---|
1658 | |
---|
1659 | deltap = min(pbase(i), ph(i,k-1)) - min(pbase(i), ph(i,k)) |
---|
1660 | cape(i) = cape(i) + rrd*buoy(i, k-1)*deltap/p(i, k-1) |
---|
1661 | cape(i) = amax1(0.0, cape(i)) |
---|
1662 | sigold(i, k) = sig(i, k) |
---|
1663 | |
---|
1664 | ! dtmin(i,k)=100.0 |
---|
1665 | ! do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
1666 | ! dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
1667 | ! 97 continue |
---|
1668 | |
---|
1669 | sig(i, k) = beta*sig(i, k) + alpha*dtmin(i, k)*abs(dtmin(i,k)) |
---|
1670 | sig(i, k) = max(sig(i,k), 0.0) |
---|
1671 | sig(i, k) = amin1(sig(i,k), 0.01) |
---|
1672 | fac = amin1(((dtcrit-dtmin(i,k))/dtcrit), 1.0) |
---|
1673 | w = (1.-beta)*fac*sqrt(cape(i)) + beta*w0(i, k) |
---|
1674 | amu = 0.5*(sig(i,k)+sigold(i,k))*w |
---|
1675 | m(i, k) = amu*0.007*p(i, k)*(ph(i,k)-ph(i,k+1))/tv(i, k) |
---|
1676 | w0(i, k) = w |
---|
1677 | END IF |
---|
1678 | |
---|
1679 | END DO |
---|
1680 | END DO |
---|
1681 | |
---|
1682 | DO i = 1, ncum |
---|
1683 | w0(i, icb(i)) = 0.5*w0(i, icb(i)+1) |
---|
1684 | m(i, icb(i)) = 0.5*m(i, icb(i)+1)*(ph(i,icb(i))-ph(i,icb(i)+1))/(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
---|
1685 | sig(i, icb(i)) = sig(i, icb(i)+1) |
---|
1686 | sig(i, icb(i)-1) = sig(i, icb(i)) |
---|
1687 | END DO |
---|
1688 | |
---|
1689 | ! ccc 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
1690 | ! ccc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
1691 | ! ccc the final mass flux (cbmflast) is greater than the target mass flux |
---|
1692 | ! ccc (cbmf) ??). |
---|
1693 | ! cc |
---|
1694 | ! c do i = 1,ncum |
---|
1695 | ! c cbmflast(i) = 0. |
---|
1696 | ! c enddo |
---|
1697 | ! cc |
---|
1698 | ! c do k= 1,nl |
---|
1699 | ! c do i = 1,ncum |
---|
1700 | ! c IF (k .ge. icb(i) .and. k .le. inb(i)) THEN |
---|
1701 | ! c cbmflast(i) = cbmflast(i)+M(i,k) |
---|
1702 | ! c ENDIF |
---|
1703 | ! c enddo |
---|
1704 | ! c enddo |
---|
1705 | ! cc |
---|
1706 | ! c do i = 1,ncum |
---|
1707 | ! c IF (cbmflast(i) .lt. 1.e-6) THEN |
---|
1708 | ! c iflag(i) = 3 |
---|
1709 | ! c ENDIF |
---|
1710 | ! c enddo |
---|
1711 | ! cc |
---|
1712 | ! c do k= 1,nl |
---|
1713 | ! c do i = 1,ncum |
---|
1714 | ! c IF (iflag(i) .ge. 3) THEN |
---|
1715 | ! c M(i,k) = 0. |
---|
1716 | ! c sig(i,k) = 0. |
---|
1717 | ! c w0(i,k) = 0. |
---|
1718 | ! c ENDIF |
---|
1719 | ! c enddo |
---|
1720 | ! c enddo |
---|
1721 | ! cc |
---|
1722 | !! cape=0.0 |
---|
1723 | !! do 98 i=icb+1,inb |
---|
1724 | !! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
1725 | !! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
1726 | !! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
1727 | !! dlnp=deltap/p(i-1) |
---|
1728 | !! cape=max(0.0,cape) |
---|
1729 | !! sigold=sig(i) |
---|
1730 | |
---|
1731 | !! dtmin=100.0 |
---|
1732 | !! do 97 j=icb,i-1 |
---|
1733 | !! dtmin=amin1(dtmin,buoy(j)) |
---|
1734 | !! 97 continue |
---|
1735 | |
---|
1736 | !! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
1737 | !! sig(i)=max(sig(i),0.0) |
---|
1738 | !! sig(i)=amin1(sig(i),0.01) |
---|
1739 | !! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
1740 | !! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
1741 | !! amu=0.5*(sig(i)+sigold)*w |
---|
1742 | !! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
1743 | !! w0(i)=w |
---|
1744 | !! 98 continue |
---|
1745 | !! w0(icb)=0.5*w0(icb+1) |
---|
1746 | !! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
1747 | !! sig(icb)=sig(icb+1) |
---|
1748 | !! sig(icb-1)=sig(icb) |
---|
1749 | |
---|
1750 | RETURN |
---|
1751 | END SUBROUTINE cv3_closure |
---|
1752 | |
---|
1753 | SUBROUTINE cv3_mixing(nloc, ncum, nd, na, ntra, icb, nk, inb, & |
---|
1754 | ph, t, rr, rs, u, v, tra, h, lv, lf, frac, qnk, & |
---|
1755 | unk, vnk, hp, tv, tvp, ep, clw, m, sig, & |
---|
1756 | ment, qent, uent, vent, nent, sij, elij, ments, qents, traent) |
---|
1757 | IMPLICIT NONE |
---|
1758 | |
---|
1759 | ! --------------------------------------------------------------------- |
---|
1760 | ! a faire: |
---|
1761 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
1762 | ! --------------------------------------------------------------------- |
---|
1763 | |
---|
1764 | include "cvthermo.h" |
---|
1765 | include "cv3param.h" |
---|
1766 | include "cvflag.h" |
---|
1767 | |
---|
1768 | !inputs: |
---|
1769 | INTEGER ncum, nd, na, ntra, nloc |
---|
1770 | INTEGER icb(nloc), inb(nloc), nk(nloc) |
---|
1771 | REAL sig(nloc, nd) |
---|
1772 | REAL qnk(nloc), unk(nloc), vnk(nloc) |
---|
1773 | REAL ph(nloc, nd+1) |
---|
1774 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd) |
---|
1775 | REAL u(nloc, nd), v(nloc, nd) |
---|
1776 | REAL tra(nloc, nd, ntra) ! input of convect3 |
---|
1777 | REAL lv(nloc, na), h(nloc, na), hp(nloc, na) |
---|
1778 | REAL lf(nloc, na), frac(nloc, na) |
---|
1779 | REAL tv(nloc, na), tvp(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
1780 | REAL m(nloc, na) ! input of convect3 |
---|
1781 | |
---|
1782 | !outputs: |
---|
1783 | REAL ment(nloc, na, na), qent(nloc, na, na) |
---|
1784 | REAL uent(nloc, na, na), vent(nloc, na, na) |
---|
1785 | REAL sij(nloc, na, na), elij(nloc, na, na) |
---|
1786 | REAL traent(nloc, nd, nd, ntra) |
---|
1787 | REAL ments(nloc, nd, nd), qents(nloc, nd, nd) |
---|
1788 | REAL sigij(nloc, nd, nd) |
---|
1789 | INTEGER nent(nloc, nd) |
---|
1790 | |
---|
1791 | !local variables: |
---|
1792 | INTEGER i, j, k, il, im, jm |
---|
1793 | INTEGER num1, num2 |
---|
1794 | REAL rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
1795 | REAL alt, smid, sjmin, sjmax, delp, delm |
---|
1796 | REAL asij(nloc), smax(nloc), scrit(nloc) |
---|
1797 | REAL asum(nloc, nd), bsum(nloc, nd), csum(nloc, nd) |
---|
1798 | REAL wgh |
---|
1799 | REAL zm(nloc, na) |
---|
1800 | LOGICAL lwork(nloc) |
---|
1801 | |
---|
1802 | ! ===================================================================== |
---|
1803 | ! --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
1804 | ! ===================================================================== |
---|
1805 | |
---|
1806 | ! ori do 360 i=1,ncum*nlp |
---|
1807 | DO j = 1, nl |
---|
1808 | DO i = 1, ncum |
---|
1809 | nent(i, j) = 0 |
---|
1810 | ! in convect3, m is computed in cv3_closure |
---|
1811 | ! ori m(i,1)=0.0 |
---|
1812 | END DO |
---|
1813 | END DO |
---|
1814 | |
---|
1815 | ! ori do 400 k=1,nlp |
---|
1816 | ! ori do 390 j=1,nlp |
---|
1817 | DO j = 1, nl |
---|
1818 | DO k = 1, nl |
---|
1819 | DO i = 1, ncum |
---|
1820 | qent(i, k, j) = rr(i, j) |
---|
1821 | uent(i, k, j) = u(i, j) |
---|
1822 | vent(i, k, j) = v(i, j) |
---|
1823 | elij(i, k, j) = 0.0 |
---|
1824 | !ym ment(i,k,j)=0.0 |
---|
1825 | !ym sij(i,k,j)=0.0 |
---|
1826 | END DO |
---|
1827 | END DO |
---|
1828 | END DO |
---|
1829 | |
---|
1830 | !ym |
---|
1831 | ment(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
1832 | sij(1:ncum, 1:nd, 1:nd) = 0.0 |
---|
1833 | |
---|
1834 | !AC! do k=1,ntra |
---|
1835 | !AC! do j=1,nd ! instead nlp |
---|
1836 | !AC! do i=1,nd ! instead nlp |
---|
1837 | !AC! do il=1,ncum |
---|
1838 | !AC! traent(il,i,j,k)=tra(il,j,k) |
---|
1839 | !AC! enddo |
---|
1840 | !AC! enddo |
---|
1841 | !AC! enddo |
---|
1842 | !AC! enddo |
---|
1843 | zm(:, :) = 0. |
---|
1844 | |
---|
1845 | ! ===================================================================== |
---|
1846 | ! --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
1847 | ! --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
1848 | ! --- FRACTION (sij) |
---|
1849 | ! ===================================================================== |
---|
1850 | |
---|
1851 | DO i = minorig + 1, nl |
---|
1852 | |
---|
1853 | DO j = minorig, nl |
---|
1854 | DO il = 1, ncum |
---|
1855 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (j>=(icb(il)-1)) .AND. (j<=inb(il))) THEN |
---|
1856 | |
---|
1857 | rti = qnk(il) - ep(il, i)*clw(il, i) |
---|
1858 | bf2 = 1. + lv(il, j)*lv(il, j)*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
1859 | |
---|
1860 | |
---|
1861 | IF (cvflag_ice) THEN |
---|
1862 | ! print*,cvflag_ice,'cvflag_ice dans do 700' |
---|
1863 | IF (t(il,j)<=263.15) THEN |
---|
1864 | bf2 = 1. + (lf(il,j)+lv(il,j))*(lv(il,j)+frac(il,j)* & |
---|
1865 | lf(il,j))*rs(il, j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
1866 | END IF |
---|
1867 | END IF |
---|
1868 | |
---|
1869 | anum = h(il, j) - hp(il, i) + (cpv-cpd)*t(il, j)*(rti-rr(il,j)) |
---|
1870 | denom = h(il, i) - hp(il, i) + (cpd-cpv)*(rr(il,i)-rti)*t(il, j) |
---|
1871 | dei = denom |
---|
1872 | IF (abs(dei)<0.01) dei = 0.01 |
---|
1873 | sij(il, i, j) = anum/dei |
---|
1874 | sij(il, i, i) = 1.0 |
---|
1875 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
---|
1876 | altem = altem/bf2 |
---|
1877 | cwat = clw(il, j)*(1.-ep(il,j)) |
---|
1878 | stemp = sij(il, i, j) |
---|
1879 | IF ((stemp<0.0 .OR. stemp>1.0 .OR. altem>cwat) .AND. j>i) THEN |
---|
1880 | |
---|
1881 | IF (cvflag_ice) THEN |
---|
1882 | anum = anum - (lv(il,j)+frac(il,j)*lf(il,j))*(rti-rs(il,j)-cwat*bf2) |
---|
1883 | denom = denom + (lv(il,j)+frac(il,j)*lf(il,j))*(rr(il,i)-rti) |
---|
1884 | ELSE |
---|
1885 | anum = anum - lv(il, j)*(rti-rs(il,j)-cwat*bf2) |
---|
1886 | denom = denom + lv(il, j)*(rr(il,i)-rti) |
---|
1887 | END IF |
---|
1888 | |
---|
1889 | IF (abs(denom)<0.01) denom = 0.01 |
---|
1890 | sij(il, i, j) = anum/denom |
---|
1891 | altem = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti - rs(il, j) |
---|
1892 | altem = altem - (bf2-1.)*cwat |
---|
1893 | END IF |
---|
1894 | IF (sij(il,i,j)>0.0 .AND. sij(il,i,j)<0.95) THEN |
---|
1895 | qent(il, i, j) = sij(il, i, j)*rr(il, i) + (1.-sij(il,i,j))*rti |
---|
1896 | uent(il, i, j) = sij(il, i, j)*u(il, i) + (1.-sij(il,i,j))*unk(il) |
---|
1897 | vent(il, i, j) = sij(il, i, j)*v(il, i) + (1.-sij(il,i,j))*vnk(il) |
---|
1898 | !!!! do k=1,ntra |
---|
1899 | !!!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1900 | !!!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1901 | !!!! end do |
---|
1902 | elij(il, i, j) = altem |
---|
1903 | elij(il, i, j) = max(0.0, elij(il,i,j)) |
---|
1904 | ment(il, i, j) = m(il, i)/(1.-sij(il,i,j)) |
---|
1905 | nent(il, i) = nent(il, i) + 1 |
---|
1906 | END IF |
---|
1907 | sij(il, i, j) = max(0.0, sij(il,i,j)) |
---|
1908 | sij(il, i, j) = amin1(1.0, sij(il,i,j)) |
---|
1909 | END IF ! new |
---|
1910 | END DO |
---|
1911 | END DO |
---|
1912 | |
---|
1913 | !AC! do k=1,ntra |
---|
1914 | !AC! do j=minorig,nl |
---|
1915 | !AC! do il=1,ncum |
---|
1916 | !AC! if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
1917 | !AC! : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
1918 | !AC! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
1919 | !AC! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
1920 | !AC! endif |
---|
1921 | !AC! enddo |
---|
1922 | !AC! enddo |
---|
1923 | !AC! enddo |
---|
1924 | |
---|
1925 | |
---|
1926 | ! *** if no air can entrain at level i assume that updraft detrains *** |
---|
1927 | ! *** at that level and calculate detrained air flux and properties *** |
---|
1928 | |
---|
1929 | |
---|
1930 | ! @ do 170 i=icb(il),inb(il) |
---|
1931 | |
---|
1932 | DO il = 1, ncum |
---|
1933 | IF ((i>=icb(il)) .AND. (i<=inb(il)) .AND. (nent(il,i)==0)) THEN |
---|
1934 | ! @ if(nent(il,i).eq.0)then |
---|
1935 | ment(il, i, i) = m(il, i) |
---|
1936 | qent(il, i, i) = qnk(il) - ep(il, i)*clw(il, i) |
---|
1937 | uent(il, i, i) = unk(il) |
---|
1938 | vent(il, i, i) = vnk(il) |
---|
1939 | elij(il, i, i) = clw(il, i) |
---|
1940 | ! MAF sij(il,i,i)=1.0 |
---|
1941 | sij(il, i, i) = 0.0 |
---|
1942 | END IF |
---|
1943 | END DO |
---|
1944 | END DO |
---|
1945 | |
---|
1946 | !AC! do j=1,ntra |
---|
1947 | !AC! do i=minorig+1,nl |
---|
1948 | !AC! do il=1,ncum |
---|
1949 | !AC! if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
---|
1950 | !AC! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
1951 | !AC! endif |
---|
1952 | !AC! enddo |
---|
1953 | !AC! enddo |
---|
1954 | !AC! enddo |
---|
1955 | |
---|
1956 | DO j = minorig, nl |
---|
1957 | DO i = minorig, nl |
---|
1958 | DO il = 1, ncum |
---|
1959 | IF ((j>=(icb(il)-1)) .AND. (j<=inb(il)) .AND. (i>=icb(il)) .AND. (i<=inb(il))) THEN |
---|
1960 | sigij(il, i, j) = sij(il, i, j) |
---|
1961 | END IF |
---|
1962 | END DO |
---|
1963 | END DO |
---|
1964 | END DO |
---|
1965 | ! @ enddo |
---|
1966 | |
---|
1967 | ! @170 continue |
---|
1968 | |
---|
1969 | ! ===================================================================== |
---|
1970 | ! --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
1971 | ! --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
1972 | ! ===================================================================== |
---|
1973 | |
---|
1974 | CALL zilch(asum, nloc*nd) |
---|
1975 | CALL zilch(csum, nloc*nd) |
---|
1976 | CALL zilch(csum, nloc*nd) |
---|
1977 | |
---|
1978 | DO il = 1, ncum |
---|
1979 | lwork(il) = .FALSE. |
---|
1980 | END DO |
---|
1981 | |
---|
1982 | DO i = minorig + 1, nl |
---|
1983 | |
---|
1984 | num1 = 0 |
---|
1985 | DO il = 1, ncum |
---|
1986 | IF (i>=icb(il) .AND. i<=inb(il)) num1 = num1 + 1 |
---|
1987 | END DO |
---|
1988 | IF (num1<=0) GO TO 789 |
---|
1989 | |
---|
1990 | |
---|
1991 | DO il = 1, ncum |
---|
1992 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
1993 | lwork(il) = (nent(il,i)/=0) |
---|
1994 | qp = qnk(il) - ep(il, i)*clw(il, i) |
---|
1995 | |
---|
1996 | IF (cvflag_ice) THEN |
---|
1997 | |
---|
1998 | anum = h(il, i) - hp(il, i) - (lv(il,i)+frac(il,i)*lf(il,i))* & |
---|
1999 | (qp-rs(il,i)) + (cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
---|
2000 | denom = h(il, i) - hp(il, i) + (lv(il,i)+frac(il,i)*lf(il,i))* & |
---|
2001 | (rr(il,i)-qp) + (cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
---|
2002 | ELSE |
---|
2003 | |
---|
2004 | anum = h(il, i) - hp(il, i) - lv(il, i)*(qp-rs(il,i)) + & |
---|
2005 | (cpv-cpd)*t(il, i)*(qp-rr(il,i)) |
---|
2006 | denom = h(il, i) - hp(il, i) + lv(il, i)*(rr(il,i)-qp) + & |
---|
2007 | (cpd-cpv)*t(il, i)*(rr(il,i)-qp) |
---|
2008 | END IF |
---|
2009 | |
---|
2010 | IF (abs(denom)<0.01) denom = 0.01 |
---|
2011 | scrit(il) = anum/denom |
---|
2012 | alt = qp - rs(il, i) + scrit(il)*(rr(il,i)-qp) |
---|
2013 | IF (scrit(il)<=0.0 .OR. alt<=0.0) scrit(il) = 1.0 |
---|
2014 | smax(il) = 0.0 |
---|
2015 | asij(il) = 0.0 |
---|
2016 | END IF |
---|
2017 | END DO |
---|
2018 | |
---|
2019 | DO j = nl, minorig, -1 |
---|
2020 | |
---|
2021 | num2 = 0 |
---|
2022 | DO il = 1, ncum |
---|
2023 | IF (i>=icb(il) .AND. i<=inb(il) .AND. & |
---|
2024 | j>=(icb(il)-1) .AND. j<=inb(il) .AND. & |
---|
2025 | lwork(il)) num2 = num2 + 1 |
---|
2026 | END DO |
---|
2027 | IF (num2<=0) GO TO 175 |
---|
2028 | |
---|
2029 | DO il = 1, ncum |
---|
2030 | IF (i>=icb(il) .AND. i<=inb(il) .AND. & |
---|
2031 | j>=(icb(il)-1) .AND. j<=inb(il) .AND. & |
---|
2032 | lwork(il)) THEN |
---|
2033 | |
---|
2034 | IF (sij(il,i,j)>1.0E-16 .AND. sij(il,i,j)<0.95) THEN |
---|
2035 | wgh = 1.0 |
---|
2036 | IF (j>i) THEN |
---|
2037 | sjmax = max(sij(il,i,j+1), smax(il)) |
---|
2038 | sjmax = amin1(sjmax, scrit(il)) |
---|
2039 | smax(il) = max(sij(il,i,j), smax(il)) |
---|
2040 | sjmin = max(sij(il,i,j-1), smax(il)) |
---|
2041 | sjmin = amin1(sjmin, scrit(il)) |
---|
2042 | IF (sij(il,i,j)<(smax(il)-1.0E-16)) wgh = 0.0 |
---|
2043 | smid = amin1(sij(il,i,j), scrit(il)) |
---|
2044 | ELSE |
---|
2045 | sjmax = max(sij(il,i,j+1), scrit(il)) |
---|
2046 | smid = max(sij(il,i,j), scrit(il)) |
---|
2047 | sjmin = 0.0 |
---|
2048 | IF (j>1) sjmin = sij(il, i, j-1) |
---|
2049 | sjmin = max(sjmin, scrit(il)) |
---|
2050 | END IF |
---|
2051 | delp = abs(sjmax-smid) |
---|
2052 | delm = abs(sjmin-smid) |
---|
2053 | asij(il) = asij(il) + wgh*(delp+delm) |
---|
2054 | ment(il, i, j) = ment(il, i, j)*(delp+delm)*wgh |
---|
2055 | END IF |
---|
2056 | END IF |
---|
2057 | END DO |
---|
2058 | |
---|
2059 | 175 END DO |
---|
2060 | |
---|
2061 | DO il = 1, ncum |
---|
2062 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
2063 | asij(il) = max(1.0E-16, asij(il)) |
---|
2064 | asij(il) = 1.0/asij(il) |
---|
2065 | asum(il, i) = 0.0 |
---|
2066 | bsum(il, i) = 0.0 |
---|
2067 | csum(il, i) = 0.0 |
---|
2068 | END IF |
---|
2069 | END DO |
---|
2070 | |
---|
2071 | DO j = minorig, nl |
---|
2072 | DO il = 1, ncum |
---|
2073 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
2074 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
---|
2075 | ment(il, i, j) = ment(il, i, j)*asij(il) |
---|
2076 | END IF |
---|
2077 | END DO |
---|
2078 | END DO |
---|
2079 | |
---|
2080 | DO j = minorig, nl |
---|
2081 | DO il = 1, ncum |
---|
2082 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
2083 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
---|
2084 | asum(il, i) = asum(il, i) + ment(il, i, j) |
---|
2085 | ment(il, i, j) = ment(il, i, j)*sig(il, j) |
---|
2086 | bsum(il, i) = bsum(il, i) + ment(il, i, j) |
---|
2087 | END IF |
---|
2088 | END DO |
---|
2089 | END DO |
---|
2090 | |
---|
2091 | DO il = 1, ncum |
---|
2092 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il)) THEN |
---|
2093 | bsum(il, i) = max(bsum(il,i), 1.0E-16) |
---|
2094 | bsum(il, i) = 1.0/bsum(il, i) |
---|
2095 | END IF |
---|
2096 | END DO |
---|
2097 | |
---|
2098 | DO j = minorig, nl |
---|
2099 | DO il = 1, ncum |
---|
2100 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
2101 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
---|
2102 | ment(il, i, j) = ment(il, i, j)*asum(il, i)*bsum(il, i) |
---|
2103 | END IF |
---|
2104 | END DO |
---|
2105 | END DO |
---|
2106 | |
---|
2107 | DO j = minorig, nl |
---|
2108 | DO il = 1, ncum |
---|
2109 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
2110 | j>=(icb(il)-1) .AND. j<=inb(il)) THEN |
---|
2111 | csum(il, i) = csum(il, i) + ment(il, i, j) |
---|
2112 | END IF |
---|
2113 | END DO |
---|
2114 | END DO |
---|
2115 | |
---|
2116 | DO il = 1, ncum |
---|
2117 | IF (i>=icb(il) .AND. i<=inb(il) .AND. lwork(il) .AND. & |
---|
2118 | csum(il,i)<m(il,i)) THEN |
---|
2119 | nent(il, i) = 0 |
---|
2120 | ment(il, i, i) = m(il, i) |
---|
2121 | qent(il, i, i) = qnk(il) - ep(il, i)*clw(il, i) |
---|
2122 | uent(il, i, i) = unk(il) |
---|
2123 | vent(il, i, i) = vnk(il) |
---|
2124 | elij(il, i, i) = clw(il, i) |
---|
2125 | ! MAF sij(il,i,i)=1.0 |
---|
2126 | sij(il, i, i) = 0.0 |
---|
2127 | END IF |
---|
2128 | END DO ! il |
---|
2129 | |
---|
2130 | !AC! do j=1,ntra |
---|
2131 | !AC! do il=1,ncum |
---|
2132 | !AC! if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
2133 | !AC! : .and. csum(il,i).lt.m(il,i) ) then |
---|
2134 | !AC! traent(il,i,i,j)=tra(il,nk(il),j) |
---|
2135 | !AC! endif |
---|
2136 | !AC! enddo |
---|
2137 | !AC! enddo |
---|
2138 | 789 END DO |
---|
2139 | |
---|
2140 | ! MAF: renormalisation de MENT |
---|
2141 | CALL zilch(zm, nloc*na) |
---|
2142 | DO jm = 1, nd |
---|
2143 | DO im = 1, nd |
---|
2144 | DO il = 1, ncum |
---|
2145 | zm(il, im) = zm(il, im) + (1.-sij(il,im,jm))*ment(il, im, jm) |
---|
2146 | END DO |
---|
2147 | END DO |
---|
2148 | END DO |
---|
2149 | |
---|
2150 | DO jm = 1, nd |
---|
2151 | DO im = 1, nd |
---|
2152 | DO il = 1, ncum |
---|
2153 | IF (zm(il,im)/=0.) THEN |
---|
2154 | ment(il, im, jm) = ment(il, im, jm)*m(il, im)/zm(il, im) |
---|
2155 | END IF |
---|
2156 | END DO |
---|
2157 | END DO |
---|
2158 | END DO |
---|
2159 | |
---|
2160 | DO jm = 1, nd |
---|
2161 | DO im = 1, nd |
---|
2162 | DO il = 1, ncum |
---|
2163 | qents(il, im, jm) = qent(il, im, jm) |
---|
2164 | ments(il, im, jm) = ment(il, im, jm) |
---|
2165 | END DO |
---|
2166 | END DO |
---|
2167 | END DO |
---|
2168 | |
---|
2169 | RETURN |
---|
2170 | END SUBROUTINE cv3_mixing |
---|
2171 | |
---|
2172 | SUBROUTINE cv3_unsat(nloc, ncum, nd, na, ntra, icb, inb, iflag, & |
---|
2173 | t, rr, rs, gz, u, v, tra, p, ph, & |
---|
2174 | th, tv, lv, lf, cpn, ep, sigp, clw, & |
---|
2175 | m, ment, elij, delt, plcl, coef_clos, & |
---|
2176 | mp, rp, up, vp, trap, wt, water, evap, fondue, ice, & |
---|
2177 | faci, b, sigd, & |
---|
2178 | wdtrainA, wdtrainM) ! RomP |
---|
2179 | IMPLICIT NONE |
---|
2180 | |
---|
2181 | |
---|
2182 | include "cvthermo.h" |
---|
2183 | include "cv3param.h" |
---|
2184 | include "cvflag.h" |
---|
2185 | |
---|
2186 | !inputs: |
---|
2187 | INTEGER ncum, nd, na, ntra, nloc |
---|
2188 | INTEGER icb(nloc), inb(nloc) |
---|
2189 | REAL delt, plcl(nloc) |
---|
2190 | REAL t(nloc, nd), rr(nloc, nd), rs(nloc, nd), gz(nloc, na) |
---|
2191 | REAL u(nloc, nd), v(nloc, nd) |
---|
2192 | REAL tra(nloc, nd, ntra) |
---|
2193 | REAL p(nloc, nd), ph(nloc, nd+1) |
---|
2194 | REAL ep(nloc, na), sigp(nloc, na), clw(nloc, na) |
---|
2195 | REAL th(nloc, na), tv(nloc, na), lv(nloc, na), cpn(nloc, na) |
---|
2196 | REAL lf(nloc, na) |
---|
2197 | REAL m(nloc, na), ment(nloc, na, na), elij(nloc, na, na) |
---|
2198 | REAL coef_clos(nloc) |
---|
2199 | |
---|
2200 | !input/output |
---|
2201 | INTEGER iflag(nloc) |
---|
2202 | |
---|
2203 | !outputs: |
---|
2204 | REAL mp(nloc, na), rp(nloc, na), up(nloc, na), vp(nloc, na) |
---|
2205 | REAL water(nloc, na), evap(nloc, na), wt(nloc, na) |
---|
2206 | REAL ice(nloc, na), fondue(nloc, na), faci(nloc, na) |
---|
2207 | REAL trap(nloc, na, ntra) |
---|
2208 | REAL b(nloc, na), sigd(nloc) |
---|
2209 | ! 25/08/10 - RomP---- ajout des masses precipitantes ejectees |
---|
2210 | ! de l ascendance adiabatique et des flux melanges Pa et Pm. |
---|
2211 | ! Distinction des wdtrain |
---|
2212 | ! Pa = wdtrainA Pm = wdtrainM |
---|
2213 | REAL wdtrainA(nloc, na), wdtrainM(nloc, na) |
---|
2214 | |
---|
2215 | !local variables |
---|
2216 | INTEGER i, j, k, il, num1, ndp1 |
---|
2217 | REAL tinv, delti, coef |
---|
2218 | REAL awat, afac, afac1, afac2, bfac |
---|
2219 | REAL pr1, pr2, sigt, b6, c6, d6, e6, f6, revap, delth |
---|
2220 | REAL amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
2221 | REAL ampmax, thaw |
---|
2222 | REAL tevap(nloc) |
---|
2223 | REAL lvcp(nloc, na), lfcp(nloc, na) |
---|
2224 | REAL h(nloc, na), hm(nloc, na) |
---|
2225 | REAL frac(nloc, na) |
---|
2226 | REAL fraci(nloc, na), prec(nloc, na) |
---|
2227 | REAL wdtrain(nloc) |
---|
2228 | LOGICAL lwork(nloc), mplus(nloc) |
---|
2229 | |
---|
2230 | |
---|
2231 | ! ------------------------------------------------------ |
---|
2232 | |
---|
2233 | delti = 1./delt |
---|
2234 | tinv = 1./3. |
---|
2235 | |
---|
2236 | mp(:, :) = 0. |
---|
2237 | |
---|
2238 | DO i = 1, nl |
---|
2239 | DO il = 1, ncum |
---|
2240 | mp(il, i) = 0.0 |
---|
2241 | rp(il, i) = rr(il, i) |
---|
2242 | up(il, i) = u(il, i) |
---|
2243 | vp(il, i) = v(il, i) |
---|
2244 | wt(il, i) = 0.001 |
---|
2245 | water(il, i) = 0.0 |
---|
2246 | frac(il, i) = 0.0 |
---|
2247 | faci(il, i) = 0.0 |
---|
2248 | fraci(il, i) = 0.0 |
---|
2249 | ice(il, i) = 0.0 |
---|
2250 | prec(il, i) = 0.0 |
---|
2251 | fondue(il, i) = 0.0 |
---|
2252 | evap(il, i) = 0.0 |
---|
2253 | b(il, i) = 0.0 |
---|
2254 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
---|
2255 | lfcp(il, i) = lf(il, i)/cpn(il, i) |
---|
2256 | END DO |
---|
2257 | END DO |
---|
2258 | !AC! do k=1,ntra |
---|
2259 | !AC! do i=1,nd |
---|
2260 | !AC! do il=1,ncum |
---|
2261 | !AC! trap(il,i,k)=tra(il,i,k) |
---|
2262 | !AC! enddo |
---|
2263 | !AC! enddo |
---|
2264 | !AC! enddo |
---|
2265 | !! RomP >>> |
---|
2266 | DO i = 1, nd |
---|
2267 | DO il = 1, ncum |
---|
2268 | wdtrainA(il, i) = 0.0 |
---|
2269 | wdtrainM(il, i) = 0.0 |
---|
2270 | END DO |
---|
2271 | END DO |
---|
2272 | !! RomP <<< |
---|
2273 | |
---|
2274 | ! *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
2275 | ! *** downdraft calculation *** |
---|
2276 | |
---|
2277 | |
---|
2278 | DO il = 1, ncum |
---|
2279 | !! lwork(il)=.TRUE. |
---|
2280 | !! if(ep(il,inb(il)).lt.0.0001)lwork(il)=.FALSE. |
---|
2281 | lwork(il) = ep(il, inb(il)) >= 0.0001 |
---|
2282 | END DO |
---|
2283 | |
---|
2284 | ! *** Set the fractionnal area sigd of precipitating downdraughts |
---|
2285 | DO il = 1, ncum |
---|
2286 | sigd(il) = sigdz*coef_clos(il) |
---|
2287 | END DO |
---|
2288 | |
---|
2289 | |
---|
2290 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2291 | ! |
---|
2292 | ! *** begin downdraft loop *** |
---|
2293 | ! |
---|
2294 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2295 | |
---|
2296 | DO i = nl + 1, 1, -1 |
---|
2297 | |
---|
2298 | num1 = 0 |
---|
2299 | DO il = 1, ncum |
---|
2300 | IF (i<=inb(il) .AND. lwork(il)) num1 = num1 + 1 |
---|
2301 | END DO |
---|
2302 | IF (num1<=0) GO TO 400 |
---|
2303 | |
---|
2304 | CALL zilch(wdtrain, ncum) |
---|
2305 | |
---|
2306 | |
---|
2307 | ! *** integrate liquid water equation to find condensed water *** |
---|
2308 | ! *** and condensed water flux *** |
---|
2309 | ! |
---|
2310 | ! |
---|
2311 | ! *** calculate detrained precipitation *** |
---|
2312 | |
---|
2313 | DO il = 1, ncum |
---|
2314 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
2315 | IF (cvflag_grav) THEN |
---|
2316 | wdtrain(il) = grav*ep(il, i)*m(il, i)*clw(il, i) |
---|
2317 | wdtrainA(il, i) = wdtrain(il)/grav ! Pa RomP |
---|
2318 | ELSE |
---|
2319 | wdtrain(il) = 10.0*ep(il, i)*m(il, i)*clw(il, i) |
---|
2320 | wdtrainA(il, i) = wdtrain(il)/10. ! Pa RomP |
---|
2321 | END IF |
---|
2322 | END IF |
---|
2323 | END DO |
---|
2324 | |
---|
2325 | IF (i>1) THEN |
---|
2326 | DO j = 1, i - 1 |
---|
2327 | DO il = 1, ncum |
---|
2328 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
2329 | awat = elij(il, j, i) - (1.-ep(il,i))*clw(il, i) |
---|
2330 | awat = max(awat, 0.0) |
---|
2331 | IF (cvflag_grav) THEN |
---|
2332 | wdtrain(il) = wdtrain(il) + grav*awat*ment(il, j, i) |
---|
2333 | wdtrainM(il, i) = wdtrain(il)/grav - wdtrainA(il, i) ! Pm RomP |
---|
2334 | ELSE |
---|
2335 | wdtrain(il) = wdtrain(il) + 10.0*awat*ment(il, j, i) |
---|
2336 | wdtrainM(il, i) = wdtrain(il)/10. - wdtrainA(il, i) ! Pm RomP |
---|
2337 | END IF |
---|
2338 | END IF |
---|
2339 | END DO |
---|
2340 | END DO |
---|
2341 | END IF |
---|
2342 | |
---|
2343 | |
---|
2344 | ! *** find rain water and evaporation using provisional *** |
---|
2345 | ! *** estimates of rp(i)and rp(i-1) *** |
---|
2346 | |
---|
2347 | |
---|
2348 | DO il = 1, ncum |
---|
2349 | IF (i<=inb(il) .AND. lwork(il)) THEN |
---|
2350 | |
---|
2351 | wt(il, i) = 45.0 |
---|
2352 | |
---|
2353 | IF (cvflag_ice) THEN |
---|
2354 | frac(il, inb(il)) = 1. - (t(il,inb(il))-243.15)/(263.15-243.15) |
---|
2355 | frac(il, inb(il)) = min(max(frac(il,inb(il)),0.), 1.) |
---|
2356 | fraci(il, inb(il)) = frac(il, inb(il)) |
---|
2357 | ELSE |
---|
2358 | CONTINUE |
---|
2359 | END IF |
---|
2360 | |
---|
2361 | IF (i<inb(il)) THEN |
---|
2362 | |
---|
2363 | IF (cvflag_ice) THEN |
---|
2364 | thaw = (t(il,i)-273.15)/(275.15-273.15) |
---|
2365 | thaw = min(max(thaw,0.0), 1.0) |
---|
2366 | frac(il, i) = frac(il, i)*(1.-thaw) |
---|
2367 | ELSE |
---|
2368 | CONTINUE |
---|
2369 | END IF |
---|
2370 | |
---|
2371 | rp(il, i) = rp(il, i+1) + & |
---|
2372 | (cpd*(t(il,i+1)-t(il,i))+gz(il,i+1)-gz(il,i))/lv(il, i) |
---|
2373 | rp(il, i) = 0.5*(rp(il,i)+rr(il,i)) |
---|
2374 | END IF |
---|
2375 | fraci(il, i) = 1. - (t(il,i)-243.15)/(263.15-243.15) |
---|
2376 | fraci(il, i) = min(max(fraci(il,i),0.0), 1.0) |
---|
2377 | rp(il, i) = max(rp(il,i), 0.0) |
---|
2378 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
---|
2379 | rp(il, inb(il)) = rr(il, inb(il)) |
---|
2380 | |
---|
2381 | IF (i==1) THEN |
---|
2382 | afac = p(il, 1)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
---|
2383 | IF (cvflag_ice) THEN |
---|
2384 | afac1 = p(il, i)*(rs(il,1)-rp(il,1))/(1.0E4+2000.0*p(il,1)*rs(il,1)) |
---|
2385 | END IF |
---|
2386 | ELSE |
---|
2387 | rp(il, i-1) = rp(il, i) + (cpd*(t(il,i)-t(il,i-1))+gz(il,i)-gz(il,i-1))/lv(il, i) |
---|
2388 | rp(il, i-1) = 0.5*(rp(il,i-1)+rr(il,i-1)) |
---|
2389 | rp(il, i-1) = amin1(rp(il,i-1), rs(il,i-1)) |
---|
2390 | rp(il, i-1) = max(rp(il,i-1), 0.0) |
---|
2391 | afac1 = p(il, i)*(rs(il,i)-rp(il,i))/(1.0E4+2000.0*p(il,i)*rs(il,i)) |
---|
2392 | afac2 = p(il, i-1)*(rs(il,i-1)-rp(il,i-1))/(1.0E4+2000.0*p(il,i-1)*rs(il,i-1)) |
---|
2393 | afac = 0.5*(afac1+afac2) |
---|
2394 | END IF |
---|
2395 | IF (i==inb(il)) afac = 0.0 |
---|
2396 | afac = max(afac, 0.0) |
---|
2397 | bfac = 1./(sigd(il)*wt(il,i)) |
---|
2398 | |
---|
2399 | !JYG1 |
---|
2400 | ! cc sigt=1.0 |
---|
2401 | ! cc if(i.ge.icb)sigt=sigp(i) |
---|
2402 | ! prise en compte de la variation progressive de sigt dans |
---|
2403 | ! les couches icb et icb-1: |
---|
2404 | ! pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
2405 | ! pour plcl>ph(i), pr1=1 & pr2=0 |
---|
2406 | ! pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
2407 | ! sur le nuage, et pr2 est la proportion sous la base du |
---|
2408 | ! nuage. |
---|
2409 | pr1 = (plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
---|
2410 | pr1 = max(0., min(1.,pr1)) |
---|
2411 | pr2 = (ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
---|
2412 | pr2 = max(0., min(1.,pr2)) |
---|
2413 | sigt = sigp(il, i)*pr1 + pr2 |
---|
2414 | !JYG2 |
---|
2415 | |
---|
2416 | !JYG---- |
---|
2417 | ! b6 = bfac*100.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
2418 | ! c6 = water(il,i+1) + wdtrain(il)*bfac |
---|
2419 | ! c6 = prec(il,i+1) + wdtrain(il)*bfac |
---|
2420 | ! revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
2421 | ! evap(il,i)=sigt*afac*revap |
---|
2422 | ! water(il,i)=revap*revap |
---|
2423 | ! prec(il,i)=revap*revap |
---|
2424 | !! print *,' i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) ', & |
---|
2425 | !! i,b6,c6,revap,evap(il,i),water(il,i),wdtrain(il) |
---|
2426 | !!---end jyg--- |
---|
2427 | |
---|
2428 | ! --------retour à la formulation originale d'Emanuel. |
---|
2429 | IF (cvflag_ice) THEN |
---|
2430 | |
---|
2431 | ! b6=bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
2432 | ! c6=prec(il,i+1)+bfac*wdtrain(il) & |
---|
2433 | ! -50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il,i+1) |
---|
2434 | ! if(c6.gt.0.0)then |
---|
2435 | ! revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
2436 | |
---|
2437 | !JAM Attention: evap=sigt*E |
---|
2438 | ! Modification: evap devient l'évaporation en milieu de couche |
---|
2439 | ! car nécessaire dans cv3_yield |
---|
2440 | ! Du coup, il faut modifier pas mal d'équations... |
---|
2441 | ! et l'expression de afac qui devient afac1 |
---|
2442 | ! revap=sqrt((prec(i+1)+prec(i))/2) |
---|
2443 | |
---|
2444 | b6 = bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac1 |
---|
2445 | c6 = prec(il, i+1) + 0.5*bfac*wdtrain(il) |
---|
2446 | ! print *,'bfac,sigd(il),sigt,afac1 ',bfac,sigd(il),sigt,afac1 |
---|
2447 | ! print *,'prec(il,i+1),wdtrain(il) ',prec(il,i+1),wdtrain(il) |
---|
2448 | ! print *,'b6,c6,b6*b6+4.*c6 ',b6,c6,b6*b6+4.*c6 |
---|
2449 | IF (c6>b6*b6+1.E-20) THEN |
---|
2450 | revap = 2.*c6/(b6+sqrt(b6*b6+4.*c6)) |
---|
2451 | ELSE |
---|
2452 | revap = (-b6+sqrt(b6*b6+4.*c6))/2. |
---|
2453 | END IF |
---|
2454 | prec(il, i) = max(0., 2.*revap*revap-prec(il,i+1)) |
---|
2455 | ! print*,prec(il,i),'neige' |
---|
2456 | |
---|
2457 | !JYG Dans sa formulation originale, Emanuel calcule l'evaporation par: |
---|
2458 | ! c evap(il,i)=sigt*afac*revap |
---|
2459 | ! ce qui n'est pas correct. Dans cv_routines, la formulation a été modifiee. |
---|
2460 | ! Ici,l'evaporation evap est simplement calculee par l'equation de |
---|
2461 | ! conservation. |
---|
2462 | ! prec(il,i)=revap*revap |
---|
2463 | ! else |
---|
2464 | !JYG---- Correction : si c6 <= 0, water(il,i)=0. |
---|
2465 | ! prec(il,i)=0. |
---|
2466 | ! endif |
---|
2467 | |
---|
2468 | !JYG--- Dans tous les cas, evaporation = [tt ce qui entre dans la couche i] |
---|
2469 | ! moins [tt ce qui sort de la couche i] |
---|
2470 | ! print *, 'evap avec ice' |
---|
2471 | evap(il, i) = (wdtrain(il)+sigd(il)*wt(il,i)*(prec(il,i+1)-prec(il,i))) / & |
---|
2472 | (sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
---|
2473 | |
---|
2474 | d6 = bfac*wdtrain(il) - 100.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i) |
---|
2475 | e6 = bfac*wdtrain(il) |
---|
2476 | f6 = -100.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i) |
---|
2477 | |
---|
2478 | thaw = (t(il,i)-273.15)/(275.15-273.15) |
---|
2479 | thaw = min(max(thaw,0.0), 1.0) |
---|
2480 | water(il, i) = water(il, i+1) + (1-fraci(il,i))*d6 |
---|
2481 | water(il, i) = max(water(il,i), 0.) |
---|
2482 | ice(il, i) = ice(il, i+1) + fraci(il, i)*d6 |
---|
2483 | ice(il, i) = max(ice(il,i), 0.) |
---|
2484 | fondue(il, i) = ice(il, i)*thaw |
---|
2485 | water(il, i) = water(il, i) + fondue(il, i) |
---|
2486 | ice(il, i) = ice(il, i) - fondue(il, i) |
---|
2487 | |
---|
2488 | IF (water(il,i)+ice(il,i)<1.E-30) THEN |
---|
2489 | faci(il, i) = 0. |
---|
2490 | ELSE |
---|
2491 | faci(il, i) = ice(il, i)/(water(il,i)+ice(il,i)) |
---|
2492 | END IF |
---|
2493 | |
---|
2494 | ! water(il,i)=water(il,i+1)+(1.-fraci(il,i))*e6+(1.-faci(il,i))*f6 |
---|
2495 | ! water(il,i)=max(water(il,i),0.) |
---|
2496 | ! ice(il,i)=ice(il,i+1)+fraci(il,i)*e6+faci(il,i)*f6 |
---|
2497 | ! ice(il,i)=max(ice(il,i),0.) |
---|
2498 | ! fondue(il,i)=ice(il,i)*thaw |
---|
2499 | ! water(il,i)=water(il,i)+fondue(il,i) |
---|
2500 | ! ice(il,i)=ice(il,i)-fondue(il,i) |
---|
2501 | |
---|
2502 | ! if((water(il,i)+ice(il,i)).lt.1.e-30)then |
---|
2503 | ! faci(il,i)=0. |
---|
2504 | ! else |
---|
2505 | ! faci(il,i)=ice(il,i)/(water(il,i)+ice(il,i)) |
---|
2506 | ! endif |
---|
2507 | |
---|
2508 | ELSE |
---|
2509 | b6 = bfac*50.*sigd(il)*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
2510 | c6 = water(il, i+1) + bfac*wdtrain(il) - & |
---|
2511 | 50.*sigd(il)*bfac*(ph(il,i)-ph(il,i+1))*evap(il, i+1) |
---|
2512 | IF (c6>0.0) THEN |
---|
2513 | revap = 0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
2514 | water(il, i) = revap*revap |
---|
2515 | ELSE |
---|
2516 | water(il, i) = 0. |
---|
2517 | END IF |
---|
2518 | ! print *, 'evap sans ice' |
---|
2519 | evap(il, i) = (wdtrain(il)+sigd(il)*wt(il,i)*(water(il,i+1)-water(il,i)))/ & |
---|
2520 | (sigd(il)*(ph(il,i)-ph(il,i+1))*100.) |
---|
2521 | |
---|
2522 | END IF |
---|
2523 | END IF !(i.le.inb(il) .and. lwork(il)) |
---|
2524 | END DO |
---|
2525 | ! ---------------------------------------------------------------- |
---|
2526 | |
---|
2527 | ! cc |
---|
2528 | ! *** calculate precipitating downdraft mass flux under *** |
---|
2529 | ! *** hydrostatic approximation *** |
---|
2530 | |
---|
2531 | DO il = 1, ncum |
---|
2532 | IF (i<=inb(il) .AND. lwork(il) .AND. i/=1) THEN |
---|
2533 | |
---|
2534 | tevap(il) = max(0.0, evap(il,i)) |
---|
2535 | delth = max(0.001, (th(il,i)-th(il,i-1))) |
---|
2536 | IF (cvflag_ice) THEN |
---|
2537 | IF (cvflag_grav) THEN |
---|
2538 | mp(il, i) = 100.*ginv*(lvcp(il,i)*sigd(il)*tevap(il)* & |
---|
2539 | (p(il,i-1)-p(il,i))/delth + & |
---|
2540 | lfcp(il,i)*sigd(il)*faci(il,i)*tevap(il)* & |
---|
2541 | (p(il,i-1)-p(il,i))/delth + & |
---|
2542 | lfcp(il,i)*sigd(il)*wt(il,i)/100.*fondue(il,i)* & |
---|
2543 | (p(il,i-1)-p(il,i))/delth/(ph(il,i)-ph(il,i+1))) |
---|
2544 | ELSE |
---|
2545 | mp(il, i) = 10.*(lvcp(il,i)*sigd(il)*tevap(il)* & |
---|
2546 | (p(il,i-1)-p(il,i))/delth + & |
---|
2547 | lfcp(il,i)*sigd(il)*faci(il,i)*tevap(il)* & |
---|
2548 | (p(il,i-1)-p(il,i))/delth + & |
---|
2549 | lfcp(il,i)*sigd(il)*wt(il,i)/100.*fondue(il,i)* & |
---|
2550 | (p(il,i-1)-p(il,i))/delth/(ph(il,i)-ph(il,i+1))) |
---|
2551 | |
---|
2552 | END IF |
---|
2553 | ELSE |
---|
2554 | IF (cvflag_grav) THEN |
---|
2555 | mp(il, i) = 100.*ginv*lvcp(il, i)*sigd(il)*tevap(il)* & |
---|
2556 | (p(il,i-1)-p(il,i))/delth |
---|
2557 | ELSE |
---|
2558 | mp(il, i) = 10.*lvcp(il, i)*sigd(il)*tevap(il)* & |
---|
2559 | (p(il,i-1)-p(il,i))/delth |
---|
2560 | END IF |
---|
2561 | |
---|
2562 | END IF |
---|
2563 | |
---|
2564 | END IF !(i.le.inb(il) .and. lwork(il) .and. i.ne.1) |
---|
2565 | END DO |
---|
2566 | ! ---------------------------------------------------------------- |
---|
2567 | |
---|
2568 | ! *** if hydrostatic assumption fails, *** |
---|
2569 | ! *** solve cubic difference equation for downdraft theta *** |
---|
2570 | ! *** and mass flux from two simultaneous differential eqns *** |
---|
2571 | |
---|
2572 | DO il = 1, ncum |
---|
2573 | IF (i<=inb(il) .AND. lwork(il) .AND. i/=1) THEN |
---|
2574 | |
---|
2575 | amfac = sigd(il)*sigd(il)*70.0*ph(il, i)*(p(il,i-1)-p(il,i))* & |
---|
2576 | (th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
---|
2577 | amp2 = abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
---|
2578 | |
---|
2579 | IF (amp2>(0.1*amfac)) THEN |
---|
2580 | xf = 100.0*sigd(il)*sigd(il)*sigd(il)*(ph(il,i)-ph(il,i+1)) |
---|
2581 | tf = b(il, i) - 5.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
---|
2582 | (lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2583 | af = xf*tf + mp(il, i+1)*mp(il, i+1)*tinv |
---|
2584 | |
---|
2585 | IF (cvflag_ice) THEN |
---|
2586 | bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
---|
2587 | 50.*(p(il,i-1)-p(il,i))*xf*(tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
---|
2588 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i)/(ph(il,i)-ph(il,i+1))) |
---|
2589 | ELSE |
---|
2590 | |
---|
2591 | bf = 2.*(tinv*mp(il,i+1))**3 + tinv*mp(il, i+1)*xf*tf + & |
---|
2592 | 50.*(p(il,i-1)-p(il,i))*xf*tevap(il) |
---|
2593 | END IF |
---|
2594 | |
---|
2595 | fac2 = 1.0 |
---|
2596 | IF (bf<0.0) fac2 = -1.0 |
---|
2597 | bf = abs(bf) |
---|
2598 | ur = 0.25*bf*bf - af*af*af*tinv*tinv*tinv |
---|
2599 | IF (ur>=0.0) THEN |
---|
2600 | sru = sqrt(ur) |
---|
2601 | fac = 1.0 |
---|
2602 | IF ((0.5*bf-sru)<0.0) fac = -1.0 |
---|
2603 | mp(il, i) = mp(il, i+1)*tinv + (0.5*bf+sru)**tinv + & |
---|
2604 | fac*(abs(0.5*bf-sru))**tinv |
---|
2605 | ELSE |
---|
2606 | d = atan(2.*sqrt(-ur)/(bf+1.0E-28)) |
---|
2607 | IF (fac2<0.0) d = 3.14159 - d |
---|
2608 | mp(il, i) = mp(il, i+1)*tinv + 2.*sqrt(af*tinv)*cos(d*tinv) |
---|
2609 | END IF |
---|
2610 | mp(il, i) = max(0.0, mp(il,i)) |
---|
2611 | |
---|
2612 | IF (cvflag_ice) THEN |
---|
2613 | IF (cvflag_grav) THEN |
---|
2614 | !JYG : il y a vraisemblablement une erreur dans la ligne 2 suivante: |
---|
2615 | ! il faut diviser par (mp(il,i)*sigd(il)*grav) et non par (mp(il,i)+sigd(il)*0.1). |
---|
2616 | ! Et il faut bien revoir les facteurs 100. |
---|
2617 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))* & |
---|
2618 | (tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
---|
2619 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i) / & |
---|
2620 | (ph(il,i)-ph(il,i+1))) / & |
---|
2621 | (mp(il,i)+sigd(il)*0.1) - & |
---|
2622 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
---|
2623 | (lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2624 | ELSE |
---|
2625 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*& |
---|
2626 | (tevap(il)*(1.+(lf(il,i)/lv(il,i))*faci(il,i)) + & |
---|
2627 | (lf(il,i)/lv(il,i))*wt(il,i)/100.*fondue(il,i) / & |
---|
2628 | (ph(il,i)-ph(il,i+1))) / & |
---|
2629 | (mp(il,i)+sigd(il)*0.1) - & |
---|
2630 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
---|
2631 | (lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2632 | END IF |
---|
2633 | ELSE |
---|
2634 | IF (cvflag_grav) THEN |
---|
2635 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap(il) / & |
---|
2636 | (mp(il,i)+sigd(il)*0.1) - & |
---|
2637 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
---|
2638 | (lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2639 | ELSE |
---|
2640 | b(il, i-1) = b(il, i) + 100.0*(p(il,i-1)-p(il,i))*tevap(il) / & |
---|
2641 | (mp(il,i)+sigd(il)*0.1) - & |
---|
2642 | 10.0*(th(il,i)-th(il,i-1))*t(il, i) / & |
---|
2643 | (lvcp(il,i)*sigd(il)*th(il,i)) |
---|
2644 | END IF |
---|
2645 | END IF |
---|
2646 | b(il, i-1) = max(b(il,i-1), 0.0) |
---|
2647 | |
---|
2648 | END IF !(amp2.gt.(0.1*amfac)) |
---|
2649 | |
---|
2650 | ! *** limit magnitude of mp(i) to meet cfl condition *** |
---|
2651 | |
---|
2652 | ampmax = 2.0*(ph(il,i)-ph(il,i+1))*delti |
---|
2653 | amp2 = 2.0*(ph(il,i-1)-ph(il,i))*delti |
---|
2654 | ampmax = min(ampmax, amp2) |
---|
2655 | mp(il, i) = min(mp(il,i), ampmax) |
---|
2656 | |
---|
2657 | ! *** force mp to decrease linearly to zero *** |
---|
2658 | ! *** between cloud base and the surface *** |
---|
2659 | |
---|
2660 | |
---|
2661 | ! c if(p(il,i).gt.p(il,icb(il)))then |
---|
2662 | ! c mp(il,i)=mp(il,icb(il))*(p(il,1)-p(il,i))/(p(il,1)-p(il,icb(il))) |
---|
2663 | ! c endif |
---|
2664 | IF (ph(il,i)>0.9*plcl(il)) THEN |
---|
2665 | mp(il, i) = mp(il, i)*(ph(il,1)-ph(il,i))/(ph(il,1)-0.9*plcl(il)) |
---|
2666 | END IF |
---|
2667 | |
---|
2668 | END IF ! (i.le.inb(il) .and. lwork(il) .and. i.ne.1) |
---|
2669 | END DO |
---|
2670 | ! ---------------------------------------------------------------- |
---|
2671 | |
---|
2672 | ! *** find mixing ratio of precipitating downdraft *** |
---|
2673 | |
---|
2674 | DO il = 1, ncum |
---|
2675 | IF (i<inb(il) .AND. lwork(il)) THEN |
---|
2676 | mplus(il) = mp(il, i) > mp(il, i+1) |
---|
2677 | END IF ! (i.lt.inb(il) .and. lwork(il)) |
---|
2678 | END DO |
---|
2679 | |
---|
2680 | DO il = 1, ncum |
---|
2681 | IF (i<inb(il) .AND. lwork(il)) THEN |
---|
2682 | |
---|
2683 | rp(il, i) = rr(il, i) |
---|
2684 | |
---|
2685 | IF (mplus(il)) THEN |
---|
2686 | |
---|
2687 | IF (cvflag_grav) THEN |
---|
2688 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + rr(il, i)*(mp(il,i)-mp(il,i+1)) + & |
---|
2689 | 100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
---|
2690 | ELSE |
---|
2691 | rp(il, i) = rp(il, i+1)*mp(il, i+1) + rr(il, i)*(mp(il,i)-mp(il,i+1)) + & |
---|
2692 | 5.*sigd(il)*(ph(il,i)-ph(il,i+1))*(evap(il,i+1)+evap(il,i)) |
---|
2693 | END IF |
---|
2694 | rp(il, i) = rp(il, i)/mp(il, i) |
---|
2695 | up(il, i) = up(il, i+1)*mp(il, i+1) + u(il, i)*(mp(il,i)-mp(il,i+1)) |
---|
2696 | up(il, i) = up(il, i)/mp(il, i) |
---|
2697 | vp(il, i) = vp(il, i+1)*mp(il, i+1) + v(il, i)*(mp(il,i)-mp(il,i+1)) |
---|
2698 | vp(il, i) = vp(il, i)/mp(il, i) |
---|
2699 | |
---|
2700 | ELSE ! if (mplus(il)) |
---|
2701 | |
---|
2702 | IF (mp(il,i+1)>1.0E-16) THEN |
---|
2703 | IF (cvflag_grav) THEN |
---|
2704 | rp(il, i) = rp(il,i+1) + 100.*ginv*0.5*sigd(il)*(ph(il,i)-ph(il,i+1)) * & |
---|
2705 | (evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
2706 | ELSE |
---|
2707 | rp(il, i) = rp(il,i+1) + 5.*sigd(il)*(ph(il,i)-ph(il,i+1)) * & |
---|
2708 | (evap(il,i+1)+evap(il,i))/mp(il, i+1) |
---|
2709 | END IF |
---|
2710 | up(il, i) = up(il, i+1) |
---|
2711 | vp(il, i) = vp(il, i+1) |
---|
2712 | END IF ! (mp(il,i+1).gt.1.0e-16) |
---|
2713 | END IF ! (mplus(il)) else if (.not.mplus(il)) |
---|
2714 | |
---|
2715 | rp(il, i) = amin1(rp(il,i), rs(il,i)) |
---|
2716 | rp(il, i) = max(rp(il,i), 0.0) |
---|
2717 | |
---|
2718 | END IF ! (i.lt.inb(il) .and. lwork(il)) |
---|
2719 | END DO |
---|
2720 | ! ---------------------------------------------------------------- |
---|
2721 | |
---|
2722 | ! *** find tracer concentrations in precipitating downdraft *** |
---|
2723 | |
---|
2724 | !AC! do j=1,ntra |
---|
2725 | !AC! do il = 1,ncum |
---|
2726 | !AC! if (i.lt.inb(il) .and. lwork(il)) then |
---|
2727 | !AC!c |
---|
2728 | !AC! if(mplus(il))then |
---|
2729 | !AC! trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
2730 | !AC! : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
2731 | !AC! trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
2732 | !AC! else ! if (mplus(il)) |
---|
2733 | !AC! if(mp(il,i+1).gt.1.0e-16)then |
---|
2734 | !AC! trap(il,i,j)=trap(il,i+1,j) |
---|
2735 | !AC! endif |
---|
2736 | !AC! endif ! (mplus(il)) else if (.not.mplus(il)) |
---|
2737 | !AC!c |
---|
2738 | !AC! endif ! (i.lt.inb(il) .and. lwork(il)) |
---|
2739 | !AC! enddo |
---|
2740 | !AC! end do |
---|
2741 | |
---|
2742 | 400 END DO |
---|
2743 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2744 | |
---|
2745 | ! *** end of downdraft loop *** |
---|
2746 | |
---|
2747 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
2748 | |
---|
2749 | |
---|
2750 | RETURN |
---|
2751 | END SUBROUTINE cv3_unsat |
---|
2752 | |
---|
2753 | SUBROUTINE cv3_yield(nloc, ncum, nd, na, ntra, ok_conserv_q, & |
---|
2754 | icb, inb, delt, & |
---|
2755 | t, rr, t_wake, rr_wake, s_wake, u, v, tra, & |
---|
2756 | gz, p, ph, h, hp, lv, lf, cpn, th, th_wake, & |
---|
2757 | ep, clw, m, tp, mp, rp, up, vp, trap, & |
---|
2758 | wt, water, ice, evap, fondue, faci, b, sigd, & |
---|
2759 | ment, qent, hent, iflag_mix, uent, vent, & |
---|
2760 | nent, elij, traent, sig, & |
---|
2761 | tv, tvp, wghti, & |
---|
2762 | iflag, precip, Vprecip, ft, fr, fu, fv, ftra, & |
---|
2763 | cbmf, upwd, dnwd, dnwd0, ma, mip, & |
---|
2764 | tls, tps, qcondc, wd, & |
---|
2765 | ftd, fqd) |
---|
2766 | |
---|
2767 | IMPLICIT NONE |
---|
2768 | |
---|
2769 | include "cvthermo.h" |
---|
2770 | include "cv3param.h" |
---|
2771 | include "cvflag.h" |
---|
2772 | include "conema3.h" |
---|
2773 | |
---|
2774 | !inputs: |
---|
2775 | INTEGER iflag_mix |
---|
2776 | INTEGER ncum, nd, na, ntra, nloc |
---|
2777 | LOGICAL ok_conserv_q |
---|
2778 | INTEGER icb(nloc), inb(nloc) |
---|
2779 | REAL delt |
---|
2780 | REAL t(nloc, nd), rr(nloc, nd), u(nloc, nd), v(nloc, nd) |
---|
2781 | REAL t_wake(nloc, nd), rr_wake(nloc, nd) |
---|
2782 | REAL s_wake(nloc) |
---|
2783 | REAL tra(nloc, nd, ntra), sig(nloc, nd) |
---|
2784 | REAL gz(nloc, na), ph(nloc, nd+1), h(nloc, na), hp(nloc, na) |
---|
2785 | REAL th(nloc, na), p(nloc, nd), tp(nloc, na) |
---|
2786 | REAL lv(nloc, na), cpn(nloc, na), ep(nloc, na), clw(nloc, na) |
---|
2787 | REAL lf(nloc, na) |
---|
2788 | REAL m(nloc, na), mp(nloc, na), rp(nloc, na), up(nloc, na) |
---|
2789 | REAL vp(nloc, na), wt(nloc, nd), trap(nloc, nd, ntra) |
---|
2790 | REAL water(nloc, na), evap(nloc, na), b(nloc, na), sigd(nloc) |
---|
2791 | REAL fondue(nloc, na), faci(nloc, na), ice(nloc, na) |
---|
2792 | REAL ment(nloc, na, na), qent(nloc, na, na), uent(nloc, na, na) |
---|
2793 | REAL hent(nloc, na, na) |
---|
2794 | !IM bug real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
2795 | REAL vent(nloc, na, na), elij(nloc, na, na) |
---|
2796 | INTEGER nent(nloc, nd) |
---|
2797 | REAL traent(nloc, na, na, ntra) |
---|
2798 | REAL tv(nloc, nd), tvp(nloc, nd), wghti(nloc, nd) |
---|
2799 | ! |
---|
2800 | !input/output: |
---|
2801 | INTEGER iflag(nloc) |
---|
2802 | ! |
---|
2803 | !outputs: |
---|
2804 | REAL precip(nloc) |
---|
2805 | REAL ft(nloc, nd), fr(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
2806 | REAL ftd(nloc, nd), fqd(nloc, nd) |
---|
2807 | REAL ftra(nloc, nd, ntra) |
---|
2808 | REAL upwd(nloc, nd), dnwd(nloc, nd), ma(nloc, nd) |
---|
2809 | REAL dnwd0(nloc, nd), mip(nloc, nd) |
---|
2810 | REAL Vprecip(nloc, nd+1) |
---|
2811 | REAL tls(nloc, nd), tps(nloc, nd) |
---|
2812 | REAL qcondc(nloc, nd) ! cld |
---|
2813 | REAL wd(nloc) ! gust |
---|
2814 | REAL cbmf(nloc) |
---|
2815 | ! |
---|
2816 | !local variables: |
---|
2817 | INTEGER i, k, il, n, j, num1 |
---|
2818 | REAL rat, delti |
---|
2819 | REAL ax, bx, cx, dx, ex |
---|
2820 | REAL cpinv, rdcp, dpinv |
---|
2821 | REAL awat(nloc) |
---|
2822 | REAL lvcp(nloc, na), lfcp(nloc, na), mke(nloc, na) |
---|
2823 | REAL am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
2824 | !! real up1(nloc), dn1(nloc) |
---|
2825 | REAL up1(nloc, nd, nd), dn1(nloc, nd, nd) |
---|
2826 | REAL asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
2827 | REAL esum(nloc), fsum(nloc), gsum(nloc), hsum(nloc) |
---|
2828 | REAL th_wake(nloc, nd) |
---|
2829 | REAL alpha_qpos(nloc), alpha_qpos1(nloc) |
---|
2830 | REAL qcond(nloc, nd), nqcond(nloc, nd), wa(nloc, nd) ! cld |
---|
2831 | REAL siga(nloc, nd), sax(nloc, nd), mac(nloc, nd) ! cld |
---|
2832 | |
---|
2833 | REAL sumdq !jyg |
---|
2834 | ! |
---|
2835 | ! ------------------------------------------------------------- |
---|
2836 | |
---|
2837 | ! initialization: |
---|
2838 | |
---|
2839 | delti = 1.0/delt |
---|
2840 | ! print*,'cv3_yield initialisation delt', delt |
---|
2841 | ! |
---|
2842 | DO il = 1, ncum |
---|
2843 | precip(il) = 0.0 |
---|
2844 | Vprecip(il, nd+1) = 0.0 |
---|
2845 | wd(il) = 0.0 ! gust |
---|
2846 | END DO |
---|
2847 | |
---|
2848 | DO i = 1, nd |
---|
2849 | DO il = 1, ncum |
---|
2850 | Vprecip(il, i) = 0.0 |
---|
2851 | ft(il, i) = 0.0 |
---|
2852 | fr(il, i) = 0.0 |
---|
2853 | fu(il, i) = 0.0 |
---|
2854 | fv(il, i) = 0.0 |
---|
2855 | upwd(il, i) = 0.0 |
---|
2856 | dnwd(il, i) = 0.0 |
---|
2857 | dnwd0(il, i) = 0.0 |
---|
2858 | mip(il, i) = 0.0 |
---|
2859 | ftd(il, i) = 0.0 |
---|
2860 | fqd(il, i) = 0.0 |
---|
2861 | qcondc(il, i) = 0.0 ! cld |
---|
2862 | qcond(il, i) = 0.0 ! cld |
---|
2863 | nqcond(il, i) = 0.0 ! cld |
---|
2864 | END DO |
---|
2865 | END DO |
---|
2866 | ! print*,'cv3_yield initialisation 2' |
---|
2867 | !AC! do j=1,ntra |
---|
2868 | !AC! do i=1,nd |
---|
2869 | !AC! do il=1,ncum |
---|
2870 | !AC! ftra(il,i,j)=0.0 |
---|
2871 | !AC! enddo |
---|
2872 | !AC! enddo |
---|
2873 | !AC! enddo |
---|
2874 | ! print*,'cv3_yield initialisation 3' |
---|
2875 | DO i = 1, nl |
---|
2876 | DO il = 1, ncum |
---|
2877 | lvcp(il, i) = lv(il, i)/cpn(il, i) |
---|
2878 | lfcp(il, i) = lf(il, i)/cpn(il, i) |
---|
2879 | END DO |
---|
2880 | END DO |
---|
2881 | |
---|
2882 | |
---|
2883 | |
---|
2884 | ! *** calculate surface precipitation in mm/day *** |
---|
2885 | |
---|
2886 | DO il = 1, ncum |
---|
2887 | IF (ep(il,inb(il))>=0.0001 .AND. iflag(il)<=1) THEN |
---|
2888 | IF (cvflag_ice) THEN |
---|
2889 | precip(il) = wt(il, 1)*sigd(il)*(water(il,1)+ice(il,1)) & |
---|
2890 | *86400.*1000./(rowl*grav) |
---|
2891 | ELSE |
---|
2892 | precip(il) = wt(il, 1)*sigd(il)*water(il, 1) & |
---|
2893 | *86400.*1000./(rowl*grav) |
---|
2894 | END IF |
---|
2895 | END IF |
---|
2896 | END DO |
---|
2897 | ! print*,'cv3_yield apres calcul precip' |
---|
2898 | |
---|
2899 | |
---|
2900 | ! === calculate vertical profile of precipitation in kg/m2/s === |
---|
2901 | |
---|
2902 | DO i = 1, nl |
---|
2903 | DO il = 1, ncum |
---|
2904 | IF (ep(il,inb(il))>=0.0001 .AND. i<=inb(il) .AND. iflag(il)<=1) THEN |
---|
2905 | IF (cvflag_ice) THEN |
---|
2906 | Vprecip(il, i) = wt(il, i)*sigd(il)*(water(il,i)+ice(il,i))/grav |
---|
2907 | ELSE |
---|
2908 | Vprecip(il, i) = wt(il, i)*sigd(il)*water(il, i)/grav |
---|
2909 | END IF |
---|
2910 | END IF |
---|
2911 | END DO |
---|
2912 | END DO |
---|
2913 | |
---|
2914 | |
---|
2915 | ! *** Calculate downdraft velocity scale *** |
---|
2916 | ! *** NE PAS UTILISER POUR L'INSTANT *** |
---|
2917 | |
---|
2918 | !! do il=1,ncum |
---|
2919 | !! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) & |
---|
2920 | !! /(sigd(il)*p(il,icb(il))) |
---|
2921 | !! enddo |
---|
2922 | |
---|
2923 | |
---|
2924 | ! *** calculate tendencies of lowest level potential temperature *** |
---|
2925 | ! *** and mixing ratio *** |
---|
2926 | |
---|
2927 | DO il = 1, ncum |
---|
2928 | work(il) = 1.0/(ph(il,1)-ph(il,2)) |
---|
2929 | cbmf(il) = 0.0 |
---|
2930 | END DO |
---|
2931 | |
---|
2932 | DO k = 2, nl |
---|
2933 | DO il = 1, ncum |
---|
2934 | IF (k>=icb(il)) THEN |
---|
2935 | cbmf(il) = cbmf(il) + m(il, k) |
---|
2936 | END IF |
---|
2937 | END DO |
---|
2938 | END DO |
---|
2939 | |
---|
2940 | ! print*,'cv3_yield avant ft' |
---|
2941 | ! am is the part of cbmf taken from the first level |
---|
2942 | DO il = 1, ncum |
---|
2943 | am(il) = cbmf(il)*wghti(il, 1) |
---|
2944 | END DO |
---|
2945 | |
---|
2946 | DO il = 1, ncum |
---|
2947 | IF (iflag(il)<=1) THEN |
---|
2948 | ! convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
2949 | !JYG Correction pour conserver l'eau |
---|
2950 | ! cc ft(il,1)=-0.5*lvcp(il,1)*sigd(il)*(evap(il,1)+evap(il,2)) !precip |
---|
2951 | IF (cvflag_ice) THEN |
---|
2952 | ft(il, 1) = -lvcp(il, 1)*sigd(il)*evap(il, 1) - & |
---|
2953 | lfcp(il, 1)*sigd(il)*evap(il, 1)*faci(il, 1) - & |
---|
2954 | lfcp(il, 1)*sigd(il)*(fondue(il,1)*wt(il,1)) / & |
---|
2955 | (100.*(ph(il,1)-ph(il,2))) !precip |
---|
2956 | ELSE |
---|
2957 | ft(il, 1) = -lvcp(il, 1)*sigd(il)*evap(il, 1) |
---|
2958 | END IF |
---|
2959 | |
---|
2960 | ft(il, 1) = ft(il, 1) - 0.009*grav*sigd(il)*mp(il, 2)*t_wake(il, 1)*b(il, 1)*work(il) |
---|
2961 | |
---|
2962 | IF (cvflag_ice) THEN |
---|
2963 | ft(il, 1) = ft(il, 1) + 0.01*sigd(il)*wt(il, 1)*(cl-cpd)*water(il, 2) * & |
---|
2964 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) + & |
---|
2965 | 0.01*sigd(il)*wt(il, 1)*(ci-cpd)*ice(il, 2) * & |
---|
2966 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) |
---|
2967 | ELSE |
---|
2968 | ft(il, 1) = ft(il, 1) + 0.01*sigd(il)*wt(il, 1)*(cl-cpd)*water(il, 2) * & |
---|
2969 | (t_wake(il,2)-t_wake(il,1))*work(il)/cpn(il, 1) |
---|
2970 | END IF |
---|
2971 | |
---|
2972 | ftd(il, 1) = ft(il, 1) ! fin precip |
---|
2973 | |
---|
2974 | IF ((0.01*grav*work(il)*am(il))>=delti) iflag(il) = 1 !consist vect |
---|
2975 | ft(il, 1) = ft(il, 1) + 0.01*grav*work(il)*am(il) * & |
---|
2976 | (t(il,2)-t(il,1)+(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
2977 | END IF ! iflag |
---|
2978 | END DO |
---|
2979 | |
---|
2980 | |
---|
2981 | DO j = 2, nl |
---|
2982 | IF (iflag_mix>0) THEN |
---|
2983 | DO il = 1, ncum |
---|
2984 | ! FH WARNING a modifier : |
---|
2985 | cpinv = 0. |
---|
2986 | ! cpinv=1.0/cpn(il,1) |
---|
2987 | IF (j<=inb(il) .AND. iflag(il)<=1) THEN |
---|
2988 | ft(il, 1) = ft(il, 1) + 0.01*grav*work(il)*ment(il, j, 1) * & |
---|
2989 | (hent(il,j,1)-h(il,1)+t(il,1)*(cpv-cpd)*(rr(il,1)-qent(il,j,1)))*cpinv |
---|
2990 | END IF ! j |
---|
2991 | END DO |
---|
2992 | END IF |
---|
2993 | END DO |
---|
2994 | ! fin sature |
---|
2995 | |
---|
2996 | |
---|
2997 | DO il = 1, ncum |
---|
2998 | IF (iflag(il)<=1) THEN |
---|
2999 | !JYG1 Correction pour mieux conserver l'eau (conformite avec CONVECT4.3) |
---|
3000 | fr(il, 1) = 0.01*grav*mp(il, 2)*(rp(il,2)-rr_wake(il,1))*work(il) + & |
---|
3001 | sigd(il)*evap(il, 1) |
---|
3002 | !!! sigd(il)*0.5*(evap(il,1)+evap(il,2)) |
---|
3003 | |
---|
3004 | fqd(il, 1) = fr(il, 1) !precip |
---|
3005 | |
---|
3006 | fr(il, 1) = fr(il, 1) + 0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) !sature |
---|
3007 | |
---|
3008 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) + & |
---|
3009 | am(il)*(u(il,2)-u(il,1))) |
---|
3010 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) + & |
---|
3011 | am(il)*(v(il,2)-v(il,1))) |
---|
3012 | END IF ! iflag |
---|
3013 | END DO ! il |
---|
3014 | |
---|
3015 | |
---|
3016 | !AC! do j=1,ntra |
---|
3017 | !AC! do il=1,ncum |
---|
3018 | !AC! if (iflag(il) .le. 1) then |
---|
3019 | !AC! if (cvflag_grav) then |
---|
3020 | !AC! ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
3021 | !AC! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
3022 | !AC! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
3023 | !AC! else |
---|
3024 | !AC! ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
3025 | !AC! : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
3026 | !AC! : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
3027 | !AC! endif |
---|
3028 | !AC! endif ! iflag |
---|
3029 | !AC! enddo |
---|
3030 | !AC! enddo |
---|
3031 | |
---|
3032 | DO j = 2, nl |
---|
3033 | DO il = 1, ncum |
---|
3034 | IF (j<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3035 | fr(il, 1) = fr(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(qent(il,j,1)-rr(il,1)) |
---|
3036 | fu(il, 1) = fu(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(uent(il,j,1)-u(il,1)) |
---|
3037 | fv(il, 1) = fv(il, 1) + 0.01*grav*work(il)*ment(il, j, 1)*(vent(il,j,1)-v(il,1)) |
---|
3038 | END IF ! j |
---|
3039 | END DO |
---|
3040 | END DO |
---|
3041 | |
---|
3042 | !AC! do k=1,ntra |
---|
3043 | !AC! do j=2,nl |
---|
3044 | !AC! do il=1,ncum |
---|
3045 | !AC! if (j.le.inb(il) .and. iflag(il) .le. 1) then |
---|
3046 | !AC! |
---|
3047 | !AC! if (cvflag_grav) then |
---|
3048 | !AC! ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
3049 | !AC! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
3050 | !AC! else |
---|
3051 | !AC! ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
3052 | !AC! : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
3053 | !AC! endif |
---|
3054 | !AC! |
---|
3055 | !AC! endif |
---|
3056 | !AC! enddo |
---|
3057 | !AC! enddo |
---|
3058 | !AC! enddo |
---|
3059 | ! print*,'cv3_yield apres ft' |
---|
3060 | |
---|
3061 | ! *** calculate tendencies of potential temperature and mixing ratio *** |
---|
3062 | ! *** at levels above the lowest level *** |
---|
3063 | |
---|
3064 | ! *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
3065 | ! *** through each level *** |
---|
3066 | |
---|
3067 | |
---|
3068 | DO i = 2, nl + 1 ! newvecto: mettre nl au lieu nl+1? |
---|
3069 | |
---|
3070 | num1 = 0 |
---|
3071 | DO il = 1, ncum |
---|
3072 | IF (i<=inb(il) .AND. iflag(il)<=1) num1 = num1 + 1 |
---|
3073 | END DO |
---|
3074 | IF (num1<=0) GO TO 500 |
---|
3075 | |
---|
3076 | CALL zilch(amp1, ncum) |
---|
3077 | CALL zilch(ad, ncum) |
---|
3078 | |
---|
3079 | DO k = 1, nl + 1 |
---|
3080 | DO il = 1, ncum |
---|
3081 | IF (i>=icb(il)) THEN |
---|
3082 | IF (k>=i+1 .AND. k<=(inb(il)+1)) THEN |
---|
3083 | amp1(il) = amp1(il) + m(il, k) |
---|
3084 | END IF |
---|
3085 | ELSE |
---|
3086 | ! AMP1 is the part of cbmf taken from layers I and lower |
---|
3087 | IF (k<=i) THEN |
---|
3088 | amp1(il) = amp1(il) + cbmf(il)*wghti(il, k) |
---|
3089 | END IF |
---|
3090 | END IF |
---|
3091 | END DO |
---|
3092 | END DO |
---|
3093 | |
---|
3094 | DO k = 1, i |
---|
3095 | DO j = i + 1, nl + 1 |
---|
3096 | DO il = 1, ncum |
---|
3097 | IF (i<=inb(il) .AND. j<=(inb(il)+1)) THEN |
---|
3098 | amp1(il) = amp1(il) + ment(il, k, j) |
---|
3099 | END IF |
---|
3100 | END DO |
---|
3101 | END DO |
---|
3102 | END DO |
---|
3103 | |
---|
3104 | DO k = 1, i - 1 |
---|
3105 | DO j = i, nl + 1 ! newvecto: nl au lieu nl+1? |
---|
3106 | DO il = 1, ncum |
---|
3107 | IF (i<=inb(il) .AND. j<=inb(il)) THEN |
---|
3108 | ad(il) = ad(il) + ment(il, j, k) |
---|
3109 | END IF |
---|
3110 | END DO |
---|
3111 | END DO |
---|
3112 | END DO |
---|
3113 | |
---|
3114 | DO il = 1, ncum |
---|
3115 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3116 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
3117 | cpinv = 1.0/cpn(il, i) |
---|
3118 | |
---|
3119 | ! convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
3120 | IF ((0.01*grav*dpinv*amp1(il))>=delti) iflag(il) = 1 ! vecto |
---|
3121 | |
---|
3122 | ! precip |
---|
3123 | ! cc ft(il,i)= -0.5*sigd(il)*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
---|
3124 | IF (cvflag_ice) THEN |
---|
3125 | ft(il, i) = -sigd(il)*lvcp(il, i)*evap(il, i) - & |
---|
3126 | sigd(il)*lfcp(il, i)*evap(il, i)*faci(il, i) - & |
---|
3127 | sigd(il)*lfcp(il, i)*fondue(il, i)*wt(il, i)/(100.*(p(il,i-1)-p(il,i))) |
---|
3128 | ELSE |
---|
3129 | ft(il, i) = -sigd(il)*lvcp(il, i)*evap(il, i) |
---|
3130 | END IF |
---|
3131 | |
---|
3132 | rat = cpn(il, i-1)*cpinv |
---|
3133 | |
---|
3134 | ft(il, i) = ft(il, i) - 0.009*grav*sigd(il) * & |
---|
3135 | (mp(il,i+1)*t_wake(il,i)*b(il,i)-mp(il,i)*t_wake(il,i-1)*rat*b(il,i-1))*dpinv |
---|
3136 | IF (cvflag_ice) THEN |
---|
3137 | ft(il, i) = ft(il, i) + 0.01*sigd(il)*wt(il, i)*(cl-cpd)*water(il, i+1) * & |
---|
3138 | (t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv + & |
---|
3139 | 0.01*sigd(il)*wt(il, i)*(ci-cpd)*ice(il, i+1) * & |
---|
3140 | (t_wake(il,i+1)-t_wake(il,i))*dpinv*cpinv |
---|
3141 | ELSE |
---|
3142 | ft(il, i) = ft(il, i) + 0.01*sigd(il)*wt(il, i)*(cl-cpd)*water(il, i+1) * & |
---|
3143 | (t_wake(il,i+1)-t_wake(il,i))*dpinv* & |
---|
3144 | cpinv |
---|
3145 | END IF |
---|
3146 | |
---|
3147 | ftd(il, i) = ft(il, i) |
---|
3148 | ! fin precip |
---|
3149 | |
---|
3150 | ! sature |
---|
3151 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv * & |
---|
3152 | (amp1(il)*(t(il,i+1)-t(il,i) + (gz(il,i+1)-gz(il,i))*cpinv) - & |
---|
3153 | ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
3154 | |
---|
3155 | |
---|
3156 | IF (iflag_mix==0) THEN |
---|
3157 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, i, i)*(hp(il,i)-h(il,i) + & |
---|
3158 | t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
3159 | END IF |
---|
3160 | |
---|
3161 | |
---|
3162 | |
---|
3163 | ! sb: on ne fait pas encore la correction permettant de mieux |
---|
3164 | ! conserver l'eau: |
---|
3165 | !JYG: correction permettant de mieux conserver l'eau: |
---|
3166 | ! cc fr(il,i)=0.5*sigd(il)*(evap(il,i)+evap(il,i+1)) |
---|
3167 | fr(il, i) = sigd(il)*evap(il, i) + 0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr_wake(il,i)) - & |
---|
3168 | mp(il,i)*(rp(il,i)-rr_wake(il,i-1)))*dpinv |
---|
3169 | fqd(il, i) = fr(il, i) ! precip |
---|
3170 | |
---|
3171 | fu(il, i) = 0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il,i)) - & |
---|
3172 | mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
3173 | fv(il, i) = 0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) - & |
---|
3174 | mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
3175 | |
---|
3176 | |
---|
3177 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) - & |
---|
3178 | ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
3179 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) - & |
---|
3180 | ad(il)*(u(il,i)-u(il,i-1))) |
---|
3181 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) - & |
---|
3182 | ad(il)*(v(il,i)-v(il,i-1))) |
---|
3183 | |
---|
3184 | END IF ! i |
---|
3185 | END DO |
---|
3186 | |
---|
3187 | !AC! do k=1,ntra |
---|
3188 | !AC! do il=1,ncum |
---|
3189 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
3190 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
3191 | !AC! cpinv=1.0/cpn(il,i) |
---|
3192 | !AC! if (cvflag_grav) then |
---|
3193 | !AC! ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
3194 | !AC! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
3195 | !AC! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
3196 | !AC! else |
---|
3197 | !AC! ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
3198 | !AC! : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
3199 | !AC! : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
3200 | !AC! endif |
---|
3201 | !AC! endif |
---|
3202 | !AC! enddo |
---|
3203 | !AC! enddo |
---|
3204 | |
---|
3205 | DO k = 1, i - 1 |
---|
3206 | |
---|
3207 | DO il = 1, ncum |
---|
3208 | awat(il) = elij(il, k, i) - (1.-ep(il,i))*clw(il, i) |
---|
3209 | awat(il) = max(awat(il), 0.0) |
---|
3210 | END DO |
---|
3211 | |
---|
3212 | IF (iflag_mix/=0) THEN |
---|
3213 | DO il = 1, ncum |
---|
3214 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3215 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
3216 | cpinv = 1.0/cpn(il, i) |
---|
3217 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
---|
3218 | (hent(il,k,i)-h(il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)+awat(il)-qent(il,k,i)))*cpinv |
---|
3219 | ! |
---|
3220 | ! |
---|
3221 | END IF ! i |
---|
3222 | END DO |
---|
3223 | END IF |
---|
3224 | |
---|
3225 | DO il = 1, ncum |
---|
3226 | IF (i<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3227 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
3228 | cpinv = 1.0/cpn(il, i) |
---|
3229 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
---|
3230 | (qent(il,k,i)-awat(il)-rr(il,i)) |
---|
3231 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k,i)-u(il,i)) |
---|
3232 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k,i)-v(il,i)) |
---|
3233 | |
---|
3234 | ! (saturated updrafts resulting from mixing) ! cld |
---|
3235 | qcond(il, i) = qcond(il, i) + (elij(il,k,i)-awat(il)) ! cld |
---|
3236 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
3237 | END IF ! i |
---|
3238 | END DO |
---|
3239 | END DO |
---|
3240 | |
---|
3241 | !AC! do j=1,ntra |
---|
3242 | !AC! do k=1,i-1 |
---|
3243 | !AC! do il=1,ncum |
---|
3244 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
3245 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
3246 | !AC! cpinv=1.0/cpn(il,i) |
---|
3247 | !AC! if (cvflag_grav) then |
---|
3248 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
3249 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
3250 | !AC! else |
---|
3251 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
3252 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
3253 | !AC! endif |
---|
3254 | !AC! endif |
---|
3255 | !AC! enddo |
---|
3256 | !AC! enddo |
---|
3257 | !AC! enddo |
---|
3258 | |
---|
3259 | DO k = i, nl + 1 |
---|
3260 | |
---|
3261 | IF (iflag_mix/=0) THEN |
---|
3262 | DO il = 1, ncum |
---|
3263 | IF (i<=inb(il) .AND. k<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3264 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
3265 | cpinv = 1.0/cpn(il, i) |
---|
3266 | ft(il, i) = ft(il, i) + 0.01*grav*dpinv*ment(il, k, i) * & |
---|
3267 | (hent(il,k,i)-h(il,i)+t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,k,i)))*cpinv |
---|
3268 | |
---|
3269 | |
---|
3270 | END IF ! i |
---|
3271 | END DO |
---|
3272 | END IF |
---|
3273 | |
---|
3274 | DO il = 1, ncum |
---|
3275 | IF (i<=inb(il) .AND. k<=inb(il) .AND. iflag(il)<=1) THEN |
---|
3276 | dpinv = 1.0/(ph(il,i)-ph(il,i+1)) |
---|
3277 | cpinv = 1.0/cpn(il, i) |
---|
3278 | |
---|
3279 | fr(il, i) = fr(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(qent(il,k,i)-rr(il,i)) |
---|
3280 | fu(il, i) = fu(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(uent(il,k,i)-u(il,i)) |
---|
3281 | fv(il, i) = fv(il, i) + 0.01*grav*dpinv*ment(il, k, i)*(vent(il,k,i)-v(il,i)) |
---|
3282 | END IF ! i and k |
---|
3283 | END DO |
---|
3284 | END DO |
---|
3285 | |
---|
3286 | !AC! do j=1,ntra |
---|
3287 | !AC! do k=i,nl+1 |
---|
3288 | !AC! do il=1,ncum |
---|
3289 | !AC! if (i.le.inb(il) .and. k.le.inb(il) |
---|
3290 | !AC! $ .and. iflag(il) .le. 1) then |
---|
3291 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
3292 | !AC! cpinv=1.0/cpn(il,i) |
---|
3293 | !AC! if (cvflag_grav) then |
---|
3294 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
3295 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
3296 | !AC! else |
---|
3297 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
3298 | !AC! : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
3299 | !AC! endif |
---|
3300 | !AC! endif ! i and k |
---|
3301 | !AC! enddo |
---|
3302 | !AC! enddo |
---|
3303 | !AC! enddo |
---|
3304 | |
---|
3305 | ! sb: interface with the cloud parameterization: ! cld |
---|
3306 | |
---|
3307 | DO k = i + 1, nl |
---|
3308 | DO il = 1, ncum |
---|
3309 | IF (k<=inb(il) .AND. i<=inb(il) .AND. iflag(il)<=1) THEN ! cld |
---|
3310 | ! (saturated downdrafts resulting from mixing) ! cld |
---|
3311 | qcond(il, i) = qcond(il, i) + elij(il, k, i) ! cld |
---|
3312 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
3313 | END IF ! cld |
---|
3314 | END DO ! cld |
---|
3315 | END DO ! cld |
---|
3316 | |
---|
3317 | ! (particular case: no detraining level is found) ! cld |
---|
3318 | DO il = 1, ncum ! cld |
---|
3319 | IF (i<=inb(il) .AND. nent(il,i)==0 .AND. iflag(il)<=1) THEN ! cld |
---|
3320 | qcond(il, i) = qcond(il, i) + (1.-ep(il,i))*clw(il, i) ! cld |
---|
3321 | nqcond(il, i) = nqcond(il, i) + 1. ! cld |
---|
3322 | END IF ! cld |
---|
3323 | END DO ! cld |
---|
3324 | |
---|
3325 | DO il = 1, ncum ! cld |
---|
3326 | IF (i<=inb(il) .AND. nqcond(il,i)/=0 .AND. iflag(il)<=1) THEN ! cld |
---|
3327 | qcond(il, i) = qcond(il, i)/nqcond(il, i) ! cld |
---|
3328 | END IF ! cld |
---|
3329 | END DO |
---|
3330 | |
---|
3331 | !AC! do j=1,ntra |
---|
3332 | !AC! do il=1,ncum |
---|
3333 | !AC! if (i.le.inb(il) .and. iflag(il) .le. 1) then |
---|
3334 | !AC! dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
3335 | !AC! cpinv=1.0/cpn(il,i) |
---|
3336 | !AC! |
---|
3337 | !AC! if (cvflag_grav) then |
---|
3338 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
3339 | !AC! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
3340 | !AC! : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
3341 | !AC! else |
---|
3342 | !AC! ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
3343 | !AC! : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
3344 | !AC! : -mp(il,i)*(trap(il,i,j)-trap(il,i-1,j))) |
---|
3345 | !AC! endif |
---|
3346 | !AC! endif ! i |
---|
3347 | !AC! enddo |
---|
3348 | !AC! enddo |
---|
3349 | |
---|
3350 | |
---|
3351 | 500 END DO |
---|
3352 | |
---|
3353 | !JYG< |
---|
3354 | !Conservation de l'eau |
---|
3355 | ! sumdq = 0. |
---|
3356 | ! DO k = 1, nl |
---|
3357 | ! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
---|
3358 | ! END DO |
---|
3359 | ! PRINT *, 'cv3_yield, apres 500, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
---|
3360 | !JYG> |
---|
3361 | ! *** move the detrainment at level inb down to level inb-1 *** |
---|
3362 | ! *** in such a way as to preserve the vertically *** |
---|
3363 | ! *** integrated enthalpy and water tendencies *** |
---|
3364 | |
---|
3365 | ! Correction bug le 18-03-09 |
---|
3366 | DO il = 1, ncum |
---|
3367 | IF (iflag(il)<=1) THEN |
---|
3368 | ax = 0.01*grav*ment(il, inb(il), inb(il))* & |
---|
3369 | (hp(il,inb(il))-h(il,inb(il))+t(il,inb(il))*(cpv-cpd)*(rr(il,inb(il))-qent(il,inb(il),inb(il))))/ & |
---|
3370 | (cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
3371 | ft(il, inb(il)) = ft(il, inb(il)) - ax |
---|
3372 | ft(il, inb(il)-1) = ft(il, inb(il)-1) + ax*cpn(il, inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
---|
3373 | (cpn(il,inb(il)-1)*(ph(il,inb(il)-1)-ph(il,inb(il)))) |
---|
3374 | |
---|
3375 | bx = 0.01*grav*ment(il, inb(il), inb(il))*(qent(il,inb(il),inb(il))-rr(il,inb(il)))/ & |
---|
3376 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
3377 | fr(il, inb(il)) = fr(il, inb(il)) - bx |
---|
3378 | fr(il, inb(il)-1) = fr(il, inb(il)-1) + bx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
---|
3379 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
3380 | |
---|
3381 | cx = 0.01*grav*ment(il, inb(il), inb(il))*(uent(il,inb(il),inb(il))-u(il,inb(il)))/ & |
---|
3382 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
3383 | fu(il, inb(il)) = fu(il, inb(il)) - cx |
---|
3384 | fu(il, inb(il)-1) = fu(il, inb(il)-1) + cx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
---|
3385 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
3386 | |
---|
3387 | dx = 0.01*grav*ment(il, inb(il), inb(il))*(vent(il,inb(il),inb(il))-v(il,inb(il)))/ & |
---|
3388 | (ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
3389 | fv(il, inb(il)) = fv(il, inb(il)) - dx |
---|
3390 | fv(il, inb(il)-1) = fv(il, inb(il)-1) + dx*(ph(il,inb(il))-ph(il,inb(il)+1))/ & |
---|
3391 | (ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
3392 | END IF !iflag |
---|
3393 | END DO |
---|
3394 | |
---|
3395 | !JYG< |
---|
3396 | !Conservation de l'eau |
---|
3397 | ! sumdq = 0. |
---|
3398 | ! DO k = 1, nl |
---|
3399 | ! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
---|
3400 | ! END DO |
---|
3401 | ! PRINT *, 'cv3_yield, apres 503, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
---|
3402 | !JYG> |
---|
3403 | |
---|
3404 | !AC! do j=1,ntra |
---|
3405 | !AC! do il=1,ncum |
---|
3406 | !AC! IF (iflag(il) .le. 1) THEN |
---|
3407 | !AC! IF (cvflag_grav) then |
---|
3408 | !AC! ex=0.01*grav*ment(il,inb(il),inb(il)) |
---|
3409 | !AC! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
3410 | !AC! : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
---|
3411 | !AC! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
3412 | !AC! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
3413 | !AC! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
3414 | !AC! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
3415 | !AC! else |
---|
3416 | !AC! ex=0.1*ment(il,inb(il),inb(il)) |
---|
3417 | !AC! : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
3418 | !AC! : /(ph(i l,inb(il))-ph(il,inb(il)+1)) |
---|
3419 | !AC! ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
3420 | !AC! ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
3421 | !AC! : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
3422 | !AC! : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
3423 | !AC! ENDIF !cvflag grav |
---|
3424 | !AC! ENDIF !iflag |
---|
3425 | !AC! enddo |
---|
3426 | !AC! enddo |
---|
3427 | |
---|
3428 | |
---|
3429 | ! *** homogenize tendencies below cloud base *** |
---|
3430 | |
---|
3431 | |
---|
3432 | DO il = 1, ncum |
---|
3433 | asum(il) = 0.0 |
---|
3434 | bsum(il) = 0.0 |
---|
3435 | csum(il) = 0.0 |
---|
3436 | dsum(il) = 0.0 |
---|
3437 | esum(il) = 0.0 |
---|
3438 | fsum(il) = 0.0 |
---|
3439 | gsum(il) = 0.0 |
---|
3440 | hsum(il) = 0.0 |
---|
3441 | END DO |
---|
3442 | |
---|
3443 | !do i=1,nl |
---|
3444 | !do il=1,ncum |
---|
3445 | !th_wake(il,i)=t_wake(il,i)*(1000.0/p(il,i))**rdcp |
---|
3446 | !enddo |
---|
3447 | !enddo |
---|
3448 | |
---|
3449 | DO i = 1, nl |
---|
3450 | DO il = 1, ncum |
---|
3451 | IF (i<=(icb(il)-1) .AND. iflag(il)<=1) THEN |
---|
3452 | !jyg Saturated part : use T profile |
---|
3453 | asum(il) = asum(il) + (ft(il,i)-ftd(il,i))*(ph(il,i)-ph(il,i+1)) |
---|
3454 | !jyg<20140311 |
---|
3455 | !Correction pour conserver l eau |
---|
3456 | IF (ok_conserv_q) THEN |
---|
3457 | bsum(il) = bsum(il) + (fr(il,i)-fqd(il,i))*(ph(il,i)-ph(il,i+1)) |
---|
3458 | csum(il) = csum(il) + (ph(il,i)-ph(il,i+1)) |
---|
3459 | |
---|
3460 | ELSE |
---|
3461 | bsum(il)=bsum(il)+(fr(il,i)-fqd(il,i))*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1)))* & |
---|
3462 | (ph(il,i)-ph(il,i+1)) |
---|
3463 | csum(il)=csum(il)+(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1)))* & |
---|
3464 | (ph(il,i)-ph(il,i+1)) |
---|
3465 | ENDIF ! (ok_conserv_q) |
---|
3466 | !jyg> |
---|
3467 | dsum(il) = dsum(il) + t(il, i)*(ph(il,i)-ph(il,i+1))/th(il, i) |
---|
3468 | !jyg Unsaturated part : use T_wake profile |
---|
3469 | esum(il) = esum(il) + ftd(il, i)*(ph(il,i)-ph(il,i+1)) |
---|
3470 | !jyg<20140311 |
---|
3471 | !Correction pour conserver l eau |
---|
3472 | IF (ok_conserv_q) THEN |
---|
3473 | fsum(il) = fsum(il) + fqd(il, i)*(ph(il,i)-ph(il,i+1)) |
---|
3474 | gsum(il) = gsum(il) + (ph(il,i)-ph(il,i+1)) |
---|
3475 | ELSE |
---|
3476 | fsum(il)=fsum(il)+fqd(il,i)*(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1)))* & |
---|
3477 | (ph(il,i)-ph(il,i+1)) |
---|
3478 | gsum(il)=gsum(il)+(lv(il,i)+(cl-cpd)*(t_wake(il,i)-t_wake(il,1)))* & |
---|
3479 | (ph(il,i)-ph(il,i+1)) |
---|
3480 | ENDIF ! (ok_conserv_q) |
---|
3481 | !jyg> |
---|
3482 | hsum(il) = hsum(il) + t_wake(il, i)*(ph(il,i)-ph(il,i+1))/th_wake(il, i) |
---|
3483 | END IF |
---|
3484 | END DO |
---|
3485 | END DO |
---|
3486 | |
---|
3487 | !!!! do 700 i=1,icb(il)-1 |
---|
3488 | DO i = 1, nl |
---|
3489 | DO il = 1, ncum |
---|
3490 | IF (i<=(icb(il)-1) .AND. iflag(il)<=1) THEN |
---|
3491 | ftd(il, i) = esum(il)*t_wake(il, i)/(th_wake(il,i)*hsum(il)) |
---|
3492 | fqd(il, i) = fsum(il)/gsum(il) |
---|
3493 | ft(il, i) = ftd(il, i) + asum(il)*t(il, i)/(th(il,i)*dsum(il)) |
---|
3494 | fr(il, i) = fqd(il, i) + bsum(il)/csum(il) |
---|
3495 | END IF |
---|
3496 | END DO |
---|
3497 | END DO |
---|
3498 | |
---|
3499 | !jyg< |
---|
3500 | !Conservation de l'eau |
---|
3501 | !! sumdq = 0. |
---|
3502 | !! DO k = 1, nl |
---|
3503 | !! sumdq = sumdq + fr(1, k)*100.*(ph(1,k)-ph(1,k+1))/grav |
---|
3504 | !! END DO |
---|
3505 | !! PRINT *, 'cv3_yield, apres hom, sum(dq), precip, somme ', sumdq, Vprecip(1, 1), sumdq + vprecip(1, 1) |
---|
3506 | !jyg> |
---|
3507 | |
---|
3508 | |
---|
3509 | ! *** Check that moisture stays positive. If not, scale tendencies |
---|
3510 | ! in order to ensure moisture positivity |
---|
3511 | DO il = 1, ncum |
---|
3512 | alpha_qpos(il) = 1. |
---|
3513 | IF (iflag(il)<=1) THEN |
---|
3514 | IF (fr(il,1)<=0.) THEN |
---|
3515 | alpha_qpos(il) = max(alpha_qpos(il), (-delt*fr(il,1))/(s_wake(il)*rr_wake(il,1)+(1.-s_wake(il))*rr(il,1))) |
---|
3516 | END IF |
---|
3517 | END IF |
---|
3518 | END DO |
---|
3519 | DO i = 2, nl |
---|
3520 | DO il = 1, ncum |
---|
3521 | IF (iflag(il)<=1) THEN |
---|
3522 | IF (fr(il,i)<=0.) THEN |
---|
3523 | alpha_qpos1(il) = max(1., (-delt*fr(il,i))/(s_wake(il)*rr_wake(il,i)+(1.-s_wake(il))*rr(il,i))) |
---|
3524 | IF (alpha_qpos1(il)>=alpha_qpos(il)) alpha_qpos(il) = alpha_qpos1(il) |
---|
3525 | END IF |
---|
3526 | END IF |
---|
3527 | END DO |
---|
3528 | END DO |
---|
3529 | DO il = 1, ncum |
---|
3530 | IF (iflag(il)<=1 .AND. alpha_qpos(il)>1.001) THEN |
---|
3531 | alpha_qpos(il) = alpha_qpos(il)*1.1 |
---|
3532 | END IF |
---|
3533 | END DO |
---|
3534 | DO il = 1, ncum |
---|
3535 | IF (iflag(il)<=1) THEN |
---|
3536 | sigd(il) = sigd(il)/alpha_qpos(il) |
---|
3537 | precip(il) = precip(il)/alpha_qpos(il) |
---|
3538 | END IF |
---|
3539 | END DO |
---|
3540 | DO i = 1, nl |
---|
3541 | DO il = 1, ncum |
---|
3542 | IF (iflag(il)<=1) THEN |
---|
3543 | fr(il, i) = fr(il, i)/alpha_qpos(il) |
---|
3544 | ft(il, i) = ft(il, i)/alpha_qpos(il) |
---|
3545 | fqd(il, i) = fqd(il, i)/alpha_qpos(il) |
---|
3546 | ftd(il, i) = ftd(il, i)/alpha_qpos(il) |
---|
3547 | fu(il, i) = fu(il, i)/alpha_qpos(il) |
---|
3548 | fv(il, i) = fv(il, i)/alpha_qpos(il) |
---|
3549 | m(il, i) = m(il, i)/alpha_qpos(il) |
---|
3550 | mp(il, i) = mp(il, i)/alpha_qpos(il) |
---|
3551 | Vprecip(il, i) = vprecip(il, i)/alpha_qpos(il) |
---|
3552 | END IF |
---|
3553 | END DO |
---|
3554 | END DO |
---|
3555 | DO i = 1, nl |
---|
3556 | DO j = 1, nl |
---|
3557 | DO il = 1, ncum |
---|
3558 | IF (iflag(il)<=1) THEN |
---|
3559 | ment(il, i, j) = ment(il, i, j)/alpha_qpos(il) |
---|
3560 | END IF |
---|
3561 | END DO |
---|
3562 | END DO |
---|
3563 | END DO |
---|
3564 | |
---|
3565 | !AC! DO j = 1,ntra |
---|
3566 | !AC! DO i = 1,nl |
---|
3567 | !AC! DO il = 1,ncum |
---|
3568 | !AC! IF (iflag(il) .le. 1) THEN |
---|
3569 | !AC! ftra(il,i,j) = ftra(il,i,j)/alpha_qpos(il) |
---|
3570 | !AC! ENDIF |
---|
3571 | !AC! ENDDO |
---|
3572 | !AC! ENDDO |
---|
3573 | !AC! ENDDO |
---|
3574 | |
---|
3575 | |
---|
3576 | ! *** reset counter and return *** |
---|
3577 | |
---|
3578 | DO il = 1, ncum |
---|
3579 | sig(il, nd) = 2.0 |
---|
3580 | END DO |
---|
3581 | |
---|
3582 | |
---|
3583 | DO i = 1, nd |
---|
3584 | DO il = 1, ncum |
---|
3585 | upwd(il, i) = 0.0 |
---|
3586 | dnwd(il, i) = 0.0 |
---|
3587 | END DO |
---|
3588 | END DO |
---|
3589 | |
---|
3590 | DO i = 1, nl |
---|
3591 | DO il = 1, ncum |
---|
3592 | dnwd0(il, i) = -mp(il, i) |
---|
3593 | END DO |
---|
3594 | END DO |
---|
3595 | DO i = nl + 1, nd |
---|
3596 | DO il = 1, ncum |
---|
3597 | dnwd0(il, i) = 0. |
---|
3598 | END DO |
---|
3599 | END DO |
---|
3600 | |
---|
3601 | |
---|
3602 | DO i = 1, nl |
---|
3603 | DO il = 1, ncum |
---|
3604 | IF (i>=icb(il) .AND. i<=inb(il)) THEN |
---|
3605 | upwd(il, i) = 0.0 |
---|
3606 | dnwd(il, i) = 0.0 |
---|
3607 | END IF |
---|
3608 | END DO |
---|
3609 | END DO |
---|
3610 | |
---|
3611 | DO i = 1, nl |
---|
3612 | DO k = 1, nl |
---|
3613 | DO il = 1, ncum |
---|
3614 | up1(il, k, i) = 0.0 |
---|
3615 | dn1(il, k, i) = 0.0 |
---|
3616 | END DO |
---|
3617 | END DO |
---|
3618 | END DO |
---|
3619 | |
---|
3620 | DO i = 1, nl |
---|
3621 | DO k = i, nl |
---|
3622 | DO n = 1, i - 1 |
---|
3623 | DO il = 1, ncum |
---|
3624 | IF (i>=icb(il) .AND. i<=inb(il) .AND. k<=inb(il)) THEN |
---|
3625 | up1(il, k, i) = up1(il, k, i) + ment(il, n, k) |
---|
3626 | dn1(il, k, i) = dn1(il, k, i) - ment(il, k, n) |
---|
3627 | END IF |
---|
3628 | END DO |
---|
3629 | END DO |
---|
3630 | END DO |
---|
3631 | END DO |
---|
3632 | |
---|
3633 | DO i = 1, nl |
---|
3634 | DO k = 1, nl |
---|
3635 | DO il = 1, ncum |
---|
3636 | IF (i>=icb(il)) THEN |
---|
3637 | IF (k>=i .AND. k<=(inb(il))) THEN |
---|
3638 | upwd(il, i) = upwd(il, i) + m(il, k) |
---|
3639 | END IF |
---|
3640 | ELSE |
---|
3641 | IF (k<i) THEN |
---|
3642 | upwd(il, i) = upwd(il, i) + cbmf(il)*wghti(il, k) |
---|
3643 | END IF |
---|
3644 | END IF |
---|
3645 | ! c print *,'cbmf',il,i,k,cbmf(il),wghti(il,k) |
---|
3646 | END DO |
---|
3647 | END DO |
---|
3648 | END DO |
---|
3649 | |
---|
3650 | DO i = 2, nl |
---|
3651 | DO k = i, nl |
---|
3652 | DO il = 1, ncum |
---|
3653 | ! test if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
3654 | IF (i<=inb(il) .AND. k<=inb(il)) THEN |
---|
3655 | upwd(il, i) = upwd(il, i) + up1(il, k, i) |
---|
3656 | dnwd(il, i) = dnwd(il, i) + dn1(il, k, i) |
---|
3657 | END IF |
---|
3658 | ! c print *,'upwd',il,i,k,inb(il),upwd(il,i),m(il,k),up1(il,k,i) |
---|
3659 | END DO |
---|
3660 | END DO |
---|
3661 | END DO |
---|
3662 | |
---|
3663 | |
---|
3664 | !!!! DO il=1,ncum |
---|
3665 | !!!! do i=icb(il),inb(il) |
---|
3666 | !!!! |
---|
3667 | !!!! upwd(il,i)=0.0 |
---|
3668 | !!!! dnwd(il,i)=0.0 |
---|
3669 | !!!! do k=i,inb(il) |
---|
3670 | !!!! up1=0.0 |
---|
3671 | !!!! dn1=0.0 |
---|
3672 | !!!! do n=1,i-1 |
---|
3673 | !!!! up1=up1+ment(il,n,k) |
---|
3674 | !!!! dn1=dn1-ment(il,k,n) |
---|
3675 | !!!! enddo |
---|
3676 | !!!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
3677 | !!!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
3678 | !!!! enddo |
---|
3679 | !!!! enddo |
---|
3680 | !!!! |
---|
3681 | !!!! ENDDO |
---|
3682 | |
---|
3683 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3684 | ! determination de la variation de flux ascendant entre |
---|
3685 | ! deux niveau non dilue mip |
---|
3686 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3687 | |
---|
3688 | DO i = 1, nl |
---|
3689 | DO il = 1, ncum |
---|
3690 | mip(il, i) = m(il, i) |
---|
3691 | END DO |
---|
3692 | END DO |
---|
3693 | |
---|
3694 | DO i = nl + 1, nd |
---|
3695 | DO il = 1, ncum |
---|
3696 | mip(il, i) = 0. |
---|
3697 | END DO |
---|
3698 | END DO |
---|
3699 | |
---|
3700 | DO i = 1, nd |
---|
3701 | DO il = 1, ncum |
---|
3702 | ma(il, i) = 0 |
---|
3703 | END DO |
---|
3704 | END DO |
---|
3705 | |
---|
3706 | DO i = 1, nl |
---|
3707 | DO j = i, nl |
---|
3708 | DO il = 1, ncum |
---|
3709 | ma(il, i) = ma(il, i) + m(il, j) |
---|
3710 | END DO |
---|
3711 | END DO |
---|
3712 | END DO |
---|
3713 | |
---|
3714 | DO i = nl + 1, nd |
---|
3715 | DO il = 1, ncum |
---|
3716 | ma(il, i) = 0. |
---|
3717 | END DO |
---|
3718 | END DO |
---|
3719 | |
---|
3720 | DO i = 1, nl |
---|
3721 | DO il = 1, ncum |
---|
3722 | IF (i<=(icb(il)-1)) THEN |
---|
3723 | ma(il, i) = 0 |
---|
3724 | END IF |
---|
3725 | END DO |
---|
3726 | END DO |
---|
3727 | |
---|
3728 | ! cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3729 | ! icb represente de niveau ou se trouve la |
---|
3730 | ! base du nuage , et inb le top du nuage |
---|
3731 | ! ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
3732 | |
---|
3733 | DO i = 1, nd |
---|
3734 | DO il = 1, ncum |
---|
3735 | mke(il, i) = upwd(il, i) + dnwd(il, i) |
---|
3736 | END DO |
---|
3737 | END DO |
---|
3738 | |
---|
3739 | DO i = 1, nd |
---|
3740 | DO il = 1, ncum |
---|
3741 | rdcp = (rrd*(1.-rr(il,i))-rr(il,i)*rrv)/(cpd*(1.-rr(il,i))+rr(il,i)*cpv) |
---|
3742 | tls(il, i) = t(il, i)*(1000.0/p(il,i))**rdcp |
---|
3743 | tps(il, i) = tp(il, i) |
---|
3744 | END DO |
---|
3745 | END DO |
---|
3746 | |
---|
3747 | |
---|
3748 | ! *** diagnose the in-cloud mixing ratio *** ! cld |
---|
3749 | ! *** of condensed water *** ! cld |
---|
3750 | !! cld |
---|
3751 | |
---|
3752 | DO i = 1, nd ! cld |
---|
3753 | DO il = 1, ncum ! cld |
---|
3754 | mac(il, i) = 0.0 ! cld |
---|
3755 | wa(il, i) = 0.0 ! cld |
---|
3756 | siga(il, i) = 0.0 ! cld |
---|
3757 | sax(il, i) = 0.0 ! cld |
---|
3758 | END DO ! cld |
---|
3759 | END DO ! cld |
---|
3760 | |
---|
3761 | DO i = minorig, nl ! cld |
---|
3762 | DO k = i + 1, nl + 1 ! cld |
---|
3763 | DO il = 1, ncum ! cld |
---|
3764 | IF (i<=inb(il) .AND. k<=(inb(il)+1) .AND. iflag(il)<=1) THEN ! cld |
---|
3765 | mac(il, i) = mac(il, i) + m(il, k) ! cld |
---|
3766 | END IF ! cld |
---|
3767 | END DO ! cld |
---|
3768 | END DO ! cld |
---|
3769 | END DO ! cld |
---|
3770 | |
---|
3771 | DO i = 1, nl ! cld |
---|
3772 | DO j = 1, i ! cld |
---|
3773 | DO il = 1, ncum ! cld |
---|
3774 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
---|
3775 | .AND. j>=icb(il) .AND. iflag(il)<=1) THEN ! cld |
---|
3776 | sax(il, i) = sax(il, i) + rrd*(tvp(il,j)-tv(il,j)) & ! cld |
---|
3777 | *(ph(il,j)-ph(il,j+1))/p(il, j) ! cld |
---|
3778 | END IF ! cld |
---|
3779 | END DO ! cld |
---|
3780 | END DO ! cld |
---|
3781 | END DO ! cld |
---|
3782 | |
---|
3783 | DO i = 1, nl ! cld |
---|
3784 | DO il = 1, ncum ! cld |
---|
3785 | IF (i>=icb(il) .AND. i<=(inb(il)-1) & ! cld |
---|
3786 | .AND. sax(il,i)>0.0 .AND. iflag(il)<=1) THEN ! cld |
---|
3787 | wa(il, i) = sqrt(2.*sax(il,i)) ! cld |
---|
3788 | END IF ! cld |
---|
3789 | END DO ! cld |
---|
3790 | END DO ! cld |
---|
3791 | |
---|
3792 | DO i = 1, nl ! cld |
---|
3793 | DO il = 1, ncum ! cld |
---|
3794 | IF (wa(il,i)>0.0 .AND. iflag(il)<=1) & ! cld |
---|
3795 | siga(il, i) = mac(il, i)/wa(il, i) & ! cld |
---|
3796 | *rrd*tvp(il, i)/p(il, i)/100./delta ! cld |
---|
3797 | siga(il, i) = min(siga(il,i), 1.0) ! cld |
---|
3798 | ! IM cf. FH |
---|
3799 | IF (iflag_clw==0) THEN ! cld |
---|
3800 | qcondc(il, i) = siga(il, i)*clw(il, i)*(1.-ep(il,i)) & ! cld |
---|
3801 | +(1.-siga(il,i))*qcond(il, i) ! cld |
---|
3802 | ELSE IF (iflag_clw==1) THEN ! cld |
---|
3803 | qcondc(il, i) = qcond(il, i) ! cld |
---|
3804 | END IF ! cld |
---|
3805 | |
---|
3806 | END DO ! cld |
---|
3807 | END DO |
---|
3808 | ! print*,'cv3_yield fin' |
---|
3809 | |
---|
3810 | RETURN |
---|
3811 | END SUBROUTINE cv3_yield |
---|
3812 | |
---|
3813 | !AC! et !RomP >>> |
---|
3814 | SUBROUTINE cv3_tracer(nloc, len, ncum, nd, na, & |
---|
3815 | ment, sigij, da, phi, phi2, d1a, dam, & |
---|
3816 | ep, Vprecip, elij, clw, epmlmMm, eplaMm, & |
---|
3817 | icb, inb) |
---|
3818 | IMPLICIT NONE |
---|
3819 | |
---|
3820 | include "cv3param.h" |
---|
3821 | |
---|
3822 | !inputs: |
---|
3823 | INTEGER ncum, nd, na, nloc, len |
---|
3824 | REAL ment(nloc, na, na), sigij(nloc, na, na) |
---|
3825 | REAL clw(nloc, nd), elij(nloc, na, na) |
---|
3826 | REAL ep(nloc, na) |
---|
3827 | INTEGER icb(nloc), inb(nloc) |
---|
3828 | REAL Vprecip(nloc, nd+1) |
---|
3829 | !ouputs: |
---|
3830 | REAL da(nloc, na), phi(nloc, na, na) |
---|
3831 | REAL phi2(nloc, na, na) |
---|
3832 | REAL d1a(nloc, na), dam(nloc, na) |
---|
3833 | REAL epmlmMm(nloc, na, na), eplaMm(nloc, na) |
---|
3834 | ! variables pour tracer dans precip de l'AA et des mel |
---|
3835 | !local variables: |
---|
3836 | INTEGER i, j, k |
---|
3837 | REAL epm(nloc, na, na) |
---|
3838 | |
---|
3839 | ! variables d'Emanuel : du second indice au troisieme |
---|
3840 | ! ---> tab(i,k,j) -> de l origine k a l arrivee j |
---|
3841 | ! ment, sigij, elij |
---|
3842 | ! variables personnelles : du troisieme au second indice |
---|
3843 | ! ---> tab(i,j,k) -> de k a j |
---|
3844 | ! phi, phi2 |
---|
3845 | |
---|
3846 | ! initialisations |
---|
3847 | |
---|
3848 | da(:, :) = 0. |
---|
3849 | d1a(:, :) = 0. |
---|
3850 | dam(:, :) = 0. |
---|
3851 | epm(:, :, :) = 0. |
---|
3852 | eplaMm(:, :) = 0. |
---|
3853 | epmlmMm(:, :, :) = 0. |
---|
3854 | phi(:, :, :) = 0. |
---|
3855 | phi2(:, :, :) = 0. |
---|
3856 | |
---|
3857 | ! fraction deau condensee dans les melanges convertie en precip : epm |
---|
3858 | ! et eau condensée précipitée dans masse d'air saturé : l_m*dM_m/dzdz.dzdz |
---|
3859 | DO j = 1, na |
---|
3860 | DO k = 1, na |
---|
3861 | DO i = 1, ncum |
---|
3862 | IF (k>=icb(i) .AND. k<=inb(i) .AND. & |
---|
3863 | !!jyg j.ge.k.and.j.le.inb(i)) then |
---|
3864 | !!jyg epm(i,j,k)=1.-(1.-ep(i,j))*clw(i,j)/elij(i,k,j) |
---|
3865 | j>k .AND. j<=inb(i)) THEN |
---|
3866 | epm(i, j, k) = 1. - (1.-ep(i,j))*clw(i, j)/max(elij(i,k,j), 1.E-16) |
---|
3867 | !! |
---|
3868 | epm(i, j, k) = max(epm(i,j,k), 0.0) |
---|
3869 | END IF |
---|
3870 | END DO |
---|
3871 | END DO |
---|
3872 | END DO |
---|
3873 | |
---|
3874 | |
---|
3875 | DO j = 1, na |
---|
3876 | DO k = 1, na |
---|
3877 | DO i = 1, ncum |
---|
3878 | IF (k>=icb(i) .AND. k<=inb(i)) THEN |
---|
3879 | eplaMm(i, j) = eplamm(i, j) + & |
---|
3880 | ep(i, j)*clw(i, j)*ment(i, j, k)*(1.-sigij(i,j,k)) |
---|
3881 | END IF |
---|
3882 | END DO |
---|
3883 | END DO |
---|
3884 | END DO |
---|
3885 | |
---|
3886 | DO j = 1, na |
---|
3887 | DO k = 1, j - 1 |
---|
3888 | DO i = 1, ncum |
---|
3889 | IF (k>=icb(i) .AND. k<=inb(i) .AND. j<=inb(i)) THEN |
---|
3890 | epmlmMm(i, j, k) = epm(i, j, k)*elij(i, k, j)*ment(i, k, j) |
---|
3891 | END IF |
---|
3892 | END DO |
---|
3893 | END DO |
---|
3894 | END DO |
---|
3895 | |
---|
3896 | ! matrices pour calculer la tendance des concentrations dans cvltr.F90 |
---|
3897 | DO j = 1, na |
---|
3898 | DO k = 1, na |
---|
3899 | DO i = 1, ncum |
---|
3900 | da(i, j) = da(i, j) + (1.-sigij(i,k,j))*ment(i, k, j) |
---|
3901 | phi(i, j, k) = sigij(i, k, j)*ment(i, k, j) |
---|
3902 | d1a(i, j) = d1a(i, j) + ment(i, k, j)*ep(i, k)*(1.-sigij(i,k,j)) |
---|
3903 | IF (k<=j) THEN |
---|
3904 | dam(i, j) = dam(i, j) + ment(i, k, j)*epm(i, k, j)*(1.-ep(i,k))*(1.-sigij(i,k,j)) |
---|
3905 | phi2(i, j, k) = phi(i, j, k)*epm(i, j, k) |
---|
3906 | END IF |
---|
3907 | END DO |
---|
3908 | END DO |
---|
3909 | END DO |
---|
3910 | |
---|
3911 | RETURN |
---|
3912 | END SUBROUTINE cv3_tracer |
---|
3913 | !AC! et !RomP <<< |
---|
3914 | |
---|
3915 | SUBROUTINE cv3_uncompress(nloc, len, ncum, nd, ntra, idcum, & |
---|
3916 | iflag, & |
---|
3917 | precip, sig, w0, & |
---|
3918 | ft, fq, fu, fv, ftra, & |
---|
3919 | Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, & |
---|
3920 | iflag1, & |
---|
3921 | precip1, sig1, w01, & |
---|
3922 | ft1, fq1, fu1, fv1, ftra1, & |
---|
3923 | Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1) |
---|
3924 | IMPLICIT NONE |
---|
3925 | |
---|
3926 | include "cv3param.h" |
---|
3927 | |
---|
3928 | !inputs: |
---|
3929 | INTEGER len, ncum, nd, ntra, nloc |
---|
3930 | INTEGER idcum(nloc) |
---|
3931 | INTEGER iflag(nloc) |
---|
3932 | REAL precip(nloc) |
---|
3933 | REAL sig(nloc, nd), w0(nloc, nd) |
---|
3934 | REAL ft(nloc, nd), fq(nloc, nd), fu(nloc, nd), fv(nloc, nd) |
---|
3935 | REAL ftra(nloc, nd, ntra) |
---|
3936 | REAL ma(nloc, nd) |
---|
3937 | REAL upwd(nloc, nd), dnwd(nloc, nd), dnwd0(nloc, nd) |
---|
3938 | REAL qcondc(nloc, nd) |
---|
3939 | REAL wd(nloc), cape(nloc) |
---|
3940 | |
---|
3941 | !outputs: |
---|
3942 | INTEGER iflag1(len) |
---|
3943 | REAL precip1(len) |
---|
3944 | REAL sig1(len, nd), w01(len, nd) |
---|
3945 | REAL ft1(len, nd), fq1(len, nd), fu1(len, nd), fv1(len, nd) |
---|
3946 | REAL ftra1(len, nd, ntra) |
---|
3947 | REAL ma1(len, nd) |
---|
3948 | REAL upwd1(len, nd), dnwd1(len, nd), dnwd01(len, nd) |
---|
3949 | REAL qcondc1(nloc, nd) |
---|
3950 | REAL wd1(nloc), cape1(nloc) |
---|
3951 | |
---|
3952 | !local variables: |
---|
3953 | INTEGER i, k, j |
---|
3954 | |
---|
3955 | DO i = 1, ncum |
---|
3956 | precip1(idcum(i)) = precip(i) |
---|
3957 | iflag1(idcum(i)) = iflag(i) |
---|
3958 | wd1(idcum(i)) = wd(i) |
---|
3959 | cape1(idcum(i)) = cape(i) |
---|
3960 | END DO |
---|
3961 | |
---|
3962 | DO k = 1, nl |
---|
3963 | DO i = 1, ncum |
---|
3964 | sig1(idcum(i), k) = sig(i, k) |
---|
3965 | w01(idcum(i), k) = w0(i, k) |
---|
3966 | ft1(idcum(i), k) = ft(i, k) |
---|
3967 | fq1(idcum(i), k) = fq(i, k) |
---|
3968 | fu1(idcum(i), k) = fu(i, k) |
---|
3969 | fv1(idcum(i), k) = fv(i, k) |
---|
3970 | ma1(idcum(i), k) = ma(i, k) |
---|
3971 | upwd1(idcum(i), k) = upwd(i, k) |
---|
3972 | dnwd1(idcum(i), k) = dnwd(i, k) |
---|
3973 | dnwd01(idcum(i), k) = dnwd0(i, k) |
---|
3974 | qcondc1(idcum(i), k) = qcondc(i, k) |
---|
3975 | END DO |
---|
3976 | END DO |
---|
3977 | |
---|
3978 | DO i = 1, ncum |
---|
3979 | sig1(idcum(i), nd) = sig(i, nd) |
---|
3980 | END DO |
---|
3981 | |
---|
3982 | |
---|
3983 | !AC! do 2100 j=1,ntra |
---|
3984 | !AC!c oct3 do 2110 k=1,nl |
---|
3985 | !AC! do 2110 k=1,nd ! oct3 |
---|
3986 | !AC! do 2120 i=1,ncum |
---|
3987 | !AC! ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
3988 | !AC! 2120 continue |
---|
3989 | !AC! 2110 continue |
---|
3990 | !AC! 2100 continue |
---|
3991 | ! |
---|
3992 | RETURN |
---|
3993 | END SUBROUTINE cv3_uncompress |
---|