1 | ! |
---|
2 | ! $Id: top_bound_p.F 1910 2013-11-29 08:40:25Z ymeurdesoif $ |
---|
3 | ! |
---|
4 | SUBROUTINE top_bound_p(vcov,ucov,teta,masse,dt) |
---|
5 | USE parallel_lmdz |
---|
6 | IMPLICIT NONE |
---|
7 | c |
---|
8 | #include "dimensions.h" |
---|
9 | #include "paramet.h" |
---|
10 | #include "comconst.h" |
---|
11 | #include "comvert.h" |
---|
12 | #include "comgeom2.h" |
---|
13 | |
---|
14 | |
---|
15 | c .. DISSIPATION LINEAIRE A HAUT NIVEAU, RUN MESO, |
---|
16 | C F. LOTT DEC. 2006 |
---|
17 | c ( 10/12/06 ) |
---|
18 | |
---|
19 | c======================================================================= |
---|
20 | c |
---|
21 | c Auteur: F. LOTT |
---|
22 | c ------- |
---|
23 | c |
---|
24 | c Objet: |
---|
25 | c ------ |
---|
26 | c |
---|
27 | c Dissipation linéaire (ex top_bound de la physique) |
---|
28 | c |
---|
29 | c======================================================================= |
---|
30 | |
---|
31 | ! top_bound sponge layer model: |
---|
32 | ! Quenching is modeled as: A(t)=Am+A0*exp(-lambda*t) |
---|
33 | ! where Am is the zonal average of the field (or zero), and lambda the inverse |
---|
34 | ! of the characteristic quenching/relaxation time scale |
---|
35 | ! Thus, assuming Am to be time-independent, field at time t+dt is given by: |
---|
36 | ! A(t+dt)=A(t)-(A(t)-Am)*(1-exp(-lambda*t)) |
---|
37 | ! Moreover lambda can be a function of model level (see below), and relaxation |
---|
38 | ! can be toward the average zonal field or just zero (see below). |
---|
39 | |
---|
40 | ! NB: top_bound sponge is only called from leapfrog if ok_strato=.true. |
---|
41 | |
---|
42 | ! sponge parameters: (loaded/set in conf_gcm.F ; stored in comconst.h) |
---|
43 | ! iflag_top_bound=0 for no sponge |
---|
44 | ! iflag_top_bound=1 for sponge over 4 topmost layers |
---|
45 | ! iflag_top_bound=2 for sponge from top to ~1% of top layer pressure |
---|
46 | ! mode_top_bound=0: no relaxation |
---|
47 | ! mode_top_bound=1: u and v relax towards 0 |
---|
48 | ! mode_top_bound=2: u and v relax towards their zonal mean |
---|
49 | ! mode_top_bound=3: u,v and pot. temp. relax towards their zonal mean |
---|
50 | ! tau_top_bound : inverse of charactericstic relaxation time scale at |
---|
51 | ! the topmost layer (Hz) |
---|
52 | |
---|
53 | |
---|
54 | #include "comdissipn.h" |
---|
55 | #include "iniprint.h" |
---|
56 | |
---|
57 | c Arguments: |
---|
58 | c ---------- |
---|
59 | |
---|
60 | real,intent(inout) :: ucov(iip1,jjp1,llm) ! covariant zonal wind |
---|
61 | real,intent(inout) :: vcov(iip1,jjm,llm) ! covariant meridional wind |
---|
62 | real,intent(inout) :: teta(iip1,jjp1,llm) ! potential temperature |
---|
63 | real,intent(in) :: masse(iip1,jjp1,llm) ! mass of atmosphere |
---|
64 | real,intent(in) :: dt ! time step (s) of sponge model |
---|
65 | |
---|
66 | c Local: |
---|
67 | c ------ |
---|
68 | REAL massebx(iip1,jjp1,llm),masseby(iip1,jjm,llm),zm |
---|
69 | REAL uzon(jjp1,llm),vzon(jjm,llm),tzon(jjp1,llm) |
---|
70 | |
---|
71 | integer i |
---|
72 | REAL,SAVE :: rdamp(llm) ! quenching coefficient |
---|
73 | real,save :: lambda(llm) ! inverse or quenching time scale (Hz) |
---|
74 | LOGICAL,SAVE :: first=.true. |
---|
75 | INTEGER j,l,jjb,jje |
---|
76 | |
---|
77 | |
---|
78 | if (iflag_top_bound == 0) return |
---|
79 | |
---|
80 | if (first) then |
---|
81 | c$OMP BARRIER |
---|
82 | c$OMP MASTER |
---|
83 | if (iflag_top_bound == 1) then |
---|
84 | ! sponge quenching over the topmost 4 atmospheric layers |
---|
85 | lambda(:)=0. |
---|
86 | lambda(llm)=tau_top_bound |
---|
87 | lambda(llm-1)=tau_top_bound/2. |
---|
88 | lambda(llm-2)=tau_top_bound/4. |
---|
89 | lambda(llm-3)=tau_top_bound/8. |
---|
90 | else if (iflag_top_bound == 2) then |
---|
91 | ! sponge quenching over topmost layers down to pressures which are |
---|
92 | ! higher than 100 times the topmost layer pressure |
---|
93 | lambda(:)=tau_top_bound |
---|
94 | s *max(presnivs(llm)/presnivs(:)-0.01,0.) |
---|
95 | endif |
---|
96 | |
---|
97 | ! quenching coefficient rdamp(:) |
---|
98 | ! rdamp(:)=dt*lambda(:) ! Explicit Euler approx. |
---|
99 | rdamp(:)=1.-exp(-lambda(:)*dt) |
---|
100 | |
---|
101 | write(lunout,*)'TOP_BOUND mode',mode_top_bound |
---|
102 | write(lunout,*)'Sponge layer coefficients' |
---|
103 | write(lunout,*)'p (Pa) z(km) tau(s) 1./tau (Hz)' |
---|
104 | do l=1,llm |
---|
105 | if (rdamp(l).ne.0.) then |
---|
106 | write(lunout,'(6(1pe12.4,1x))') |
---|
107 | & presnivs(l),log(preff/presnivs(l))*scaleheight, |
---|
108 | & 1./lambda(l),lambda(l) |
---|
109 | endif |
---|
110 | enddo |
---|
111 | first=.false. |
---|
112 | c$OMP END MASTER |
---|
113 | c$OMP BARRIER |
---|
114 | endif ! of if (first) |
---|
115 | |
---|
116 | |
---|
117 | CALL massbar_p(masse,massebx,masseby) |
---|
118 | |
---|
119 | ! compute zonal average of vcov (or set it to zero) |
---|
120 | if (mode_top_bound.ge.2) then |
---|
121 | jjb=jj_begin |
---|
122 | jje=jj_end |
---|
123 | IF (pole_sud) jje=jj_end-1 |
---|
124 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
125 | do l=1,llm |
---|
126 | do j=jjb,jje |
---|
127 | zm=0. |
---|
128 | vzon(j,l)=0 |
---|
129 | do i=1,iim |
---|
130 | ! NB: we can work using vcov zonal mean rather than v since the |
---|
131 | ! cv coefficient (which relates the two) only varies with latitudes |
---|
132 | vzon(j,l)=vzon(j,l)+vcov(i,j,l)*masseby(i,j,l) |
---|
133 | zm=zm+masseby(i,j,l) |
---|
134 | enddo |
---|
135 | vzon(j,l)=vzon(j,l)/zm |
---|
136 | enddo |
---|
137 | enddo |
---|
138 | c$OMP END DO NOWAIT |
---|
139 | else |
---|
140 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
141 | do l=1,llm |
---|
142 | vzon(:,l)=0. |
---|
143 | enddo |
---|
144 | c$OMP END DO NOWAIT |
---|
145 | endif ! of if (mode_top_bound.ge.2) |
---|
146 | |
---|
147 | ! compute zonal average of u (or set it to zero) |
---|
148 | if (mode_top_bound.ge.2) then |
---|
149 | jjb=jj_begin |
---|
150 | jje=jj_end |
---|
151 | IF (pole_nord) jjb=jj_begin+1 |
---|
152 | IF (pole_sud) jje=jj_end-1 |
---|
153 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
154 | do l=1,llm |
---|
155 | do j=jjb,jje |
---|
156 | uzon(j,l)=0. |
---|
157 | zm=0. |
---|
158 | do i=1,iim |
---|
159 | uzon(j,l)=uzon(j,l)+massebx(i,j,l)*ucov(i,j,l)/cu(i,j) |
---|
160 | zm=zm+massebx(i,j,l) |
---|
161 | enddo |
---|
162 | uzon(j,l)=uzon(j,l)/zm |
---|
163 | enddo |
---|
164 | enddo |
---|
165 | c$OMP END DO NOWAIT |
---|
166 | else |
---|
167 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
168 | do l=1,llm |
---|
169 | uzon(:,l)=0. |
---|
170 | enddo |
---|
171 | c$OMP END DO NOWAIT |
---|
172 | endif ! of if (mode_top_bound.ge.2) |
---|
173 | |
---|
174 | ! compute zonal average of potential temperature, if necessary |
---|
175 | if (mode_top_bound.ge.3) then |
---|
176 | jjb=jj_begin |
---|
177 | jje=jj_end |
---|
178 | IF (pole_nord) jjb=jj_begin+1 |
---|
179 | IF (pole_sud) jje=jj_end-1 |
---|
180 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
181 | do l=1,llm |
---|
182 | do j=jjb,jje |
---|
183 | zm=0. |
---|
184 | tzon(j,l)=0. |
---|
185 | do i=1,iim |
---|
186 | tzon(j,l)=tzon(j,l)+teta(i,j,l)*masse(i,j,l) |
---|
187 | zm=zm+masse(i,j,l) |
---|
188 | enddo |
---|
189 | tzon(j,l)=tzon(j,l)/zm |
---|
190 | enddo |
---|
191 | enddo |
---|
192 | c$OMP END DO NOWAIT |
---|
193 | endif ! of if (mode_top_bound.ge.3) |
---|
194 | |
---|
195 | if (mode_top_bound.ge.1) then |
---|
196 | ! Apply sponge quenching on vcov: |
---|
197 | jjb=jj_begin |
---|
198 | jje=jj_end |
---|
199 | IF (pole_sud) jje=jj_end-1 |
---|
200 | |
---|
201 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
202 | do l=1,llm |
---|
203 | do j=jjb,jje |
---|
204 | do i=1,iip1 |
---|
205 | vcov(i,j,l)=vcov(i,j,l) |
---|
206 | & -rdamp(l)*(vcov(i,j,l)-vzon(j,l)) |
---|
207 | enddo |
---|
208 | enddo |
---|
209 | enddo |
---|
210 | c$OMP END DO NOWAIT |
---|
211 | |
---|
212 | ! Apply sponge quenching on ucov: |
---|
213 | jjb=jj_begin |
---|
214 | jje=jj_end |
---|
215 | IF (pole_nord) jjb=jj_begin+1 |
---|
216 | IF (pole_sud) jje=jj_end-1 |
---|
217 | |
---|
218 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
219 | do l=1,llm |
---|
220 | do j=jjb,jje |
---|
221 | do i=1,iip1 |
---|
222 | ucov(i,j,l)=ucov(i,j,l) |
---|
223 | & -rdamp(l)*(ucov(i,j,l)-cu(i,j)*uzon(j,l)) |
---|
224 | enddo |
---|
225 | enddo |
---|
226 | enddo |
---|
227 | c$OMP END DO NOWAIT |
---|
228 | endif ! of if (mode_top_bound.ge.1) |
---|
229 | |
---|
230 | if (mode_top_bound.ge.3) then |
---|
231 | ! Apply sponge quenching on teta: |
---|
232 | jjb=jj_begin |
---|
233 | jje=jj_end |
---|
234 | IF (pole_nord) jjb=jj_begin+1 |
---|
235 | IF (pole_sud) jje=jj_end-1 |
---|
236 | |
---|
237 | c$OMP DO SCHEDULE(STATIC,OMP_CHUNK) |
---|
238 | do l=1,llm |
---|
239 | do j=jjb,jje |
---|
240 | do i=1,iip1 |
---|
241 | teta(i,j,l)=teta(i,j,l) |
---|
242 | & -rdamp(l)*(teta(i,j,l)-tzon(j,l)) |
---|
243 | enddo |
---|
244 | enddo |
---|
245 | enddo |
---|
246 | c$OMP END DO NOWAIT |
---|
247 | endif ! of if (mode_top_bond.ge.3) |
---|
248 | |
---|
249 | END |
---|