| 1 | |
|---|
| 2 | ! $Header$ |
|---|
| 3 | |
|---|
| 4 | SUBROUTINE yamada4(ngrid, dt, g, rconst, plev, temp, zlev, zlay, u, v, teta, & |
|---|
| 5 | cd, q2, km, kn, kq, ustar, iflag_pbl) |
|---|
| 6 | USE dimphy |
|---|
| 7 | IMPLICIT NONE |
|---|
| 8 | include "iniprint.h" |
|---|
| 9 | ! ....................................................................... |
|---|
| 10 | ! ym#include "dimensions.h" |
|---|
| 11 | ! ym#include "dimphy.h" |
|---|
| 12 | ! ....................................................................... |
|---|
| 13 | |
|---|
| 14 | ! dt : pas de temps |
|---|
| 15 | ! g : g |
|---|
| 16 | ! zlev : altitude a chaque niveau (interface inferieure de la couche |
|---|
| 17 | ! de meme indice) |
|---|
| 18 | ! zlay : altitude au centre de chaque couche |
|---|
| 19 | ! u,v : vitesse au centre de chaque couche |
|---|
| 20 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 21 | ! teta : temperature potentielle au centre de chaque couche |
|---|
| 22 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 23 | ! cd : cdrag |
|---|
| 24 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 25 | ! q2 : $q^2$ au bas de chaque couche |
|---|
| 26 | ! (en entree : la valeur au debut du pas de temps) |
|---|
| 27 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 28 | ! km : diffusivite turbulente de quantite de mouvement (au bas de chaque |
|---|
| 29 | ! couche) |
|---|
| 30 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 31 | ! kn : diffusivite turbulente des scalaires (au bas de chaque couche) |
|---|
| 32 | ! (en sortie : la valeur a la fin du pas de temps) |
|---|
| 33 | |
|---|
| 34 | ! iflag_pbl doit valoir entre 6 et 9 |
|---|
| 35 | ! l=6, on prend systematiquement une longueur d'equilibre |
|---|
| 36 | ! iflag_pbl=6 : MY 2.0 |
|---|
| 37 | ! iflag_pbl=7 : MY 2.0.Fournier |
|---|
| 38 | ! iflag_pbl=8/9 : MY 2.5 |
|---|
| 39 | ! iflag_pbl=8 with special obsolete treatments for convergence |
|---|
| 40 | ! with Cmpi5 NPv3.1 simulations |
|---|
| 41 | ! iflag_pbl=10/11 : New scheme M2 and N2 explicit and dissiptation exact |
|---|
| 42 | ! iflag_pbl=12 = 11 with vertical diffusion off q2 |
|---|
| 43 | |
|---|
| 44 | ! 2013/04/01 (FH hourdin@lmd.jussieu.fr) |
|---|
| 45 | ! Correction for very stable PBLs (iflag_pbl=10 and 11) |
|---|
| 46 | ! iflag_pbl=8 converges numerically with NPv3.1 |
|---|
| 47 | ! iflag_pbl=11 -> the model starts with NP from start files created by ce0l |
|---|
| 48 | ! -> the model can run with longer time-steps. |
|---|
| 49 | ! ....................................................................... |
|---|
| 50 | |
|---|
| 51 | REAL dt, g, rconst |
|---|
| 52 | REAL plev(klon, klev+1), temp(klon, klev) |
|---|
| 53 | REAL ustar(klon) |
|---|
| 54 | REAL kmin, qmin, pblhmin(klon), coriol(klon) |
|---|
| 55 | REAL zlev(klon, klev+1) |
|---|
| 56 | REAL zlay(klon, klev) |
|---|
| 57 | REAL u(klon, klev) |
|---|
| 58 | REAL v(klon, klev) |
|---|
| 59 | REAL teta(klon, klev) |
|---|
| 60 | REAL cd(klon) |
|---|
| 61 | REAL q2(klon, klev+1), qpre |
|---|
| 62 | REAL unsdz(klon, klev) |
|---|
| 63 | REAL unsdzdec(klon, klev+1) |
|---|
| 64 | |
|---|
| 65 | REAL km(klon, klev+1) |
|---|
| 66 | REAL kmpre(klon, klev+1), tmp2 |
|---|
| 67 | REAL mpre(klon, klev+1) |
|---|
| 68 | REAL kn(klon, klev+1) |
|---|
| 69 | REAL kq(klon, klev+1) |
|---|
| 70 | REAL ff(klon, klev+1), delta(klon, klev+1) |
|---|
| 71 | REAL aa(klon, klev+1), aa0, aa1 |
|---|
| 72 | INTEGER iflag_pbl, ngrid |
|---|
| 73 | INTEGER nlay, nlev |
|---|
| 74 | |
|---|
| 75 | LOGICAL first |
|---|
| 76 | INTEGER ipas |
|---|
| 77 | SAVE first, ipas |
|---|
| 78 | ! FH/IM data first,ipas/.true.,0/ |
|---|
| 79 | DATA first, ipas/.FALSE., 0/ |
|---|
| 80 | !$OMP THREADPRIVATE( first,ipas) |
|---|
| 81 | |
|---|
| 82 | INTEGER ig, k |
|---|
| 83 | |
|---|
| 84 | |
|---|
| 85 | REAL ri, zrif, zalpha, zsm, zsn |
|---|
| 86 | REAL rif(klon, klev+1), sm(klon, klev+1), alpha(klon, klev) |
|---|
| 87 | |
|---|
| 88 | REAL m2(klon, klev+1), dz(klon, klev+1), zq, n2(klon, klev+1) |
|---|
| 89 | REAL dtetadz(klon, klev+1) |
|---|
| 90 | REAL m2cstat, mcstat, kmcstat |
|---|
| 91 | REAL l(klon, klev+1) |
|---|
| 92 | REAL, ALLOCATABLE, SAVE :: l0(:) |
|---|
| 93 | !$OMP THREADPRIVATE(l0) |
|---|
| 94 | REAL sq(klon), sqz(klon), zz(klon, klev+1) |
|---|
| 95 | INTEGER iter |
|---|
| 96 | |
|---|
| 97 | REAL ric, rifc, b1, kap |
|---|
| 98 | SAVE ric, rifc, b1, kap |
|---|
| 99 | DATA ric, rifc, b1, kap/0.195, 0.191, 16.6, 0.4/ |
|---|
| 100 | !$OMP THREADPRIVATE(ric,rifc,b1,kap) |
|---|
| 101 | REAL frif, falpha, fsm |
|---|
| 102 | REAL fl, zzz, zl0, zq2, zn2 |
|---|
| 103 | |
|---|
| 104 | REAL rino(klon, klev+1), smyam(klon, klev), styam(klon, klev), & |
|---|
| 105 | lyam(klon, klev), knyam(klon, klev), w2yam(klon, klev), t2yam(klon, klev) |
|---|
| 106 | LOGICAL, SAVE :: firstcall = .TRUE. |
|---|
| 107 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 108 | frif(ri) = 0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) |
|---|
| 109 | falpha(ri) = 1.318*(0.2231-ri)/(0.2341-ri) |
|---|
| 110 | fsm(ri) = 1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri)) |
|---|
| 111 | fl(zzz, zl0, zq2, zn2) = max(min(l0(ig)*kap*zlev(ig, & |
|---|
| 112 | k)/(kap*zlev(ig,k)+l0(ig)),0.5*sqrt(q2(ig,k))/sqrt( & |
|---|
| 113 | max(n2(ig,k),1.E-10))), 1.) |
|---|
| 114 | |
|---|
| 115 | |
|---|
| 116 | nlay = klev |
|---|
| 117 | nlev = klev + 1 |
|---|
| 118 | |
|---|
| 119 | IF (firstcall) THEN |
|---|
| 120 | ALLOCATE (l0(klon)) |
|---|
| 121 | firstcall = .FALSE. |
|---|
| 122 | END IF |
|---|
| 123 | |
|---|
| 124 | |
|---|
| 125 | IF (.NOT. (iflag_pbl>=6 .AND. iflag_pbl<=12)) THEN |
|---|
| 126 | STOP 'probleme de coherence dans appel a MY' |
|---|
| 127 | END IF |
|---|
| 128 | |
|---|
| 129 | ipas = ipas + 1 |
|---|
| 130 | |
|---|
| 131 | |
|---|
| 132 | ! ....................................................................... |
|---|
| 133 | ! les increments verticaux |
|---|
| 134 | ! ....................................................................... |
|---|
| 135 | |
|---|
| 136 | ! !!!!! allerte !!!!!c |
|---|
| 137 | ! !!!!! zlev n'est pas declare a nlev !!!!!c |
|---|
| 138 | ! !!!!! ----> |
|---|
| 139 | DO ig = 1, ngrid |
|---|
| 140 | zlev(ig, nlev) = zlay(ig, nlay) + (zlay(ig,nlay)-zlev(ig,nlev-1)) |
|---|
| 141 | END DO |
|---|
| 142 | ! !!!!! <---- |
|---|
| 143 | ! !!!!! allerte !!!!!c |
|---|
| 144 | |
|---|
| 145 | DO k = 1, nlay |
|---|
| 146 | DO ig = 1, ngrid |
|---|
| 147 | unsdz(ig, k) = 1.E+0/(zlev(ig,k+1)-zlev(ig,k)) |
|---|
| 148 | END DO |
|---|
| 149 | END DO |
|---|
| 150 | DO ig = 1, ngrid |
|---|
| 151 | unsdzdec(ig, 1) = 1.E+0/(zlay(ig,1)-zlev(ig,1)) |
|---|
| 152 | END DO |
|---|
| 153 | DO k = 2, nlay |
|---|
| 154 | DO ig = 1, ngrid |
|---|
| 155 | unsdzdec(ig, k) = 1.E+0/(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 156 | END DO |
|---|
| 157 | END DO |
|---|
| 158 | DO ig = 1, ngrid |
|---|
| 159 | unsdzdec(ig, nlay+1) = 1.E+0/(zlev(ig,nlay+1)-zlay(ig,nlay)) |
|---|
| 160 | END DO |
|---|
| 161 | |
|---|
| 162 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 163 | ! Computing M^2, N^2, Richardson numbers, stability functions |
|---|
| 164 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 165 | ! initialize arrays: |
|---|
| 166 | m2(:, :) = 0.0 |
|---|
| 167 | sm(:, :) = 0.0 |
|---|
| 168 | rif(:, :) = 0.0 |
|---|
| 169 | |
|---|
| 170 | DO k = 2, klev |
|---|
| 171 | DO ig = 1, ngrid |
|---|
| 172 | dz(ig, k) = zlay(ig, k) - zlay(ig, k-1) |
|---|
| 173 | m2(ig, k) = ((u(ig,k)-u(ig,k-1))**2+(v(ig,k)-v(ig, & |
|---|
| 174 | k-1))**2)/(dz(ig,k)*dz(ig,k)) |
|---|
| 175 | dtetadz(ig, k) = (teta(ig,k)-teta(ig,k-1))/dz(ig, k) |
|---|
| 176 | n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig,k-1)+teta(ig,k)) |
|---|
| 177 | ! n2(ig,k)=0. |
|---|
| 178 | ri = n2(ig, k)/max(m2(ig,k), 1.E-10) |
|---|
| 179 | IF (ri<ric) THEN |
|---|
| 180 | rif(ig, k) = frif(ri) |
|---|
| 181 | ELSE |
|---|
| 182 | rif(ig, k) = rifc |
|---|
| 183 | END IF |
|---|
| 184 | IF (rif(ig,k)<0.16) THEN |
|---|
| 185 | alpha(ig, k) = falpha(rif(ig,k)) |
|---|
| 186 | sm(ig, k) = fsm(rif(ig,k)) |
|---|
| 187 | ELSE |
|---|
| 188 | alpha(ig, k) = 1.12 |
|---|
| 189 | sm(ig, k) = 0.085 |
|---|
| 190 | END IF |
|---|
| 191 | zz(ig, k) = b1*m2(ig, k)*(1.-rif(ig,k))*sm(ig, k) |
|---|
| 192 | END DO |
|---|
| 193 | END DO |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | ! ==================================================================== |
|---|
| 197 | ! Computing the mixing length |
|---|
| 198 | ! ==================================================================== |
|---|
| 199 | |
|---|
| 200 | ! Mise a jour de l0 |
|---|
| 201 | IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN |
|---|
| 202 | |
|---|
| 203 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 204 | ! Iterative computation of l0 |
|---|
| 205 | ! This version is kept for iflag_pbl only for convergence |
|---|
| 206 | ! with NPv3.1 Cmip5 simulations |
|---|
| 207 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 208 | |
|---|
| 209 | DO ig = 1, ngrid |
|---|
| 210 | sq(ig) = 1.E-10 |
|---|
| 211 | sqz(ig) = 1.E-10 |
|---|
| 212 | END DO |
|---|
| 213 | DO k = 2, klev - 1 |
|---|
| 214 | DO ig = 1, ngrid |
|---|
| 215 | zq = sqrt(q2(ig,k)) |
|---|
| 216 | sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 217 | sq(ig) = sq(ig) + zq*(zlay(ig,k)-zlay(ig,k-1)) |
|---|
| 218 | END DO |
|---|
| 219 | END DO |
|---|
| 220 | DO ig = 1, ngrid |
|---|
| 221 | l0(ig) = 0.2*sqz(ig)/sq(ig) |
|---|
| 222 | END DO |
|---|
| 223 | DO k = 2, klev |
|---|
| 224 | DO ig = 1, ngrid |
|---|
| 225 | l(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k)) |
|---|
| 226 | END DO |
|---|
| 227 | END DO |
|---|
| 228 | ! print*,'L0 cas 8 ou 10 ',l0 |
|---|
| 229 | |
|---|
| 230 | ELSE |
|---|
| 231 | |
|---|
| 232 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 233 | ! In all other case, the assymptotic mixing length l0 is imposed (100m) |
|---|
| 234 | ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 235 | |
|---|
| 236 | l0(:) = 150. |
|---|
| 237 | DO k = 2, klev |
|---|
| 238 | DO ig = 1, ngrid |
|---|
| 239 | l(ig, k) = fl(zlev(ig,k), l0(ig), q2(ig,k), n2(ig,k)) |
|---|
| 240 | END DO |
|---|
| 241 | END DO |
|---|
| 242 | ! print*,'L0 cas autres ',l0 |
|---|
| 243 | |
|---|
| 244 | END IF |
|---|
| 245 | |
|---|
| 246 | |
|---|
| 247 | ! ==================================================================== |
|---|
| 248 | ! Yamada 2.0 |
|---|
| 249 | ! ==================================================================== |
|---|
| 250 | IF (iflag_pbl==6) THEN |
|---|
| 251 | |
|---|
| 252 | DO k = 2, klev |
|---|
| 253 | q2(:, k) = l(:, k)**2*zz(:, k) |
|---|
| 254 | END DO |
|---|
| 255 | |
|---|
| 256 | |
|---|
| 257 | ELSE IF (iflag_pbl==7) THEN |
|---|
| 258 | ! ==================================================================== |
|---|
| 259 | ! Yamada 2.Fournier |
|---|
| 260 | ! ==================================================================== |
|---|
| 261 | |
|---|
| 262 | ! Calcul de l, km, au pas precedent |
|---|
| 263 | DO k = 2, klev |
|---|
| 264 | DO ig = 1, ngrid |
|---|
| 265 | ! print*,'SMML=',sm(ig,k),l(ig,k) |
|---|
| 266 | delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k)) |
|---|
| 267 | kmpre(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k) |
|---|
| 268 | mpre(ig, k) = sqrt(m2(ig,k)) |
|---|
| 269 | ! print*,'0L=',k,l(ig,k),delta(ig,k),km(ig,k) |
|---|
| 270 | END DO |
|---|
| 271 | END DO |
|---|
| 272 | |
|---|
| 273 | DO k = 2, klev - 1 |
|---|
| 274 | DO ig = 1, ngrid |
|---|
| 275 | m2cstat = max(alpha(ig,k)*n2(ig,k)+delta(ig,k)/b1, 1.E-12) |
|---|
| 276 | mcstat = sqrt(m2cstat) |
|---|
| 277 | |
|---|
| 278 | ! print*,'M2 L=',k,mpre(ig,k),mcstat |
|---|
| 279 | |
|---|
| 280 | ! -----{puis on ecrit la valeur de q qui annule l'equation de m |
|---|
| 281 | ! supposee en q3} |
|---|
| 282 | |
|---|
| 283 | IF (k==2) THEN |
|---|
| 284 | kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ & |
|---|
| 285 | unsdz(ig,k-1)*cd(ig)*(sqrt(u(ig,3)**2+v(ig,3)**2)-mcstat/unsdzdec & |
|---|
| 286 | (ig,k)-mpre(ig,k+1)/unsdzdec(ig,k+1))**2)/(unsdz(ig,k)+unsdz(ig,k & |
|---|
| 287 | -1)) |
|---|
| 288 | ELSE |
|---|
| 289 | kmcstat = 1.E+0/mcstat*(unsdz(ig,k)*kmpre(ig,k+1)*mpre(ig,k+1)+ & |
|---|
| 290 | unsdz(ig,k-1)*kmpre(ig,k-1)*mpre(ig,k-1))/ & |
|---|
| 291 | (unsdz(ig,k)+unsdz(ig,k-1)) |
|---|
| 292 | END IF |
|---|
| 293 | ! print*,'T2 L=',k,tmp2 |
|---|
| 294 | tmp2 = kmcstat/(sm(ig,k)/q2(ig,k))/l(ig, k) |
|---|
| 295 | q2(ig, k) = max(tmp2, 1.E-12)**(2./3.) |
|---|
| 296 | ! print*,'Q2 L=',k,q2(ig,k) |
|---|
| 297 | |
|---|
| 298 | END DO |
|---|
| 299 | END DO |
|---|
| 300 | |
|---|
| 301 | ELSE IF (iflag_pbl==8 .OR. iflag_pbl==9) THEN |
|---|
| 302 | ! ==================================================================== |
|---|
| 303 | ! Yamada 2.5 a la Didi |
|---|
| 304 | ! ==================================================================== |
|---|
| 305 | |
|---|
| 306 | |
|---|
| 307 | ! Calcul de l, km, au pas precedent |
|---|
| 308 | DO k = 2, klev |
|---|
| 309 | DO ig = 1, ngrid |
|---|
| 310 | ! print*,'SMML=',sm(ig,k),l(ig,k) |
|---|
| 311 | delta(ig, k) = q2(ig, k)/(l(ig,k)**2*sm(ig,k)) |
|---|
| 312 | IF (delta(ig,k)<1.E-20) THEN |
|---|
| 313 | ! print*,'ATTENTION L=',k,' Delta=',delta(ig,k) |
|---|
| 314 | delta(ig, k) = 1.E-20 |
|---|
| 315 | END IF |
|---|
| 316 | km(ig, k) = l(ig, k)*sqrt(q2(ig,k))*sm(ig, k) |
|---|
| 317 | aa0 = (m2(ig,k)-alpha(ig,k)*n2(ig,k)-delta(ig,k)/b1) |
|---|
| 318 | aa1 = (m2(ig,k)*(1.-rif(ig,k))-delta(ig,k)/b1) |
|---|
| 319 | ! abder print*,'AA L=',k,aa0,aa1,aa1/max(m2(ig,k),1.e-20) |
|---|
| 320 | aa(ig, k) = aa1*dt/(delta(ig,k)*l(ig,k)) |
|---|
| 321 | ! print*,'0L=',k,l(ig,k),delta(ig,k),km(ig,k) |
|---|
| 322 | qpre = sqrt(q2(ig,k)) |
|---|
| 323 | ! if (iflag_pbl.eq.8 ) then |
|---|
| 324 | IF (aa(ig,k)>0.) THEN |
|---|
| 325 | q2(ig, k) = (qpre+aa(ig,k)*qpre*qpre)**2 |
|---|
| 326 | ELSE |
|---|
| 327 | q2(ig, k) = (qpre/(1.-aa(ig,k)*qpre))**2 |
|---|
| 328 | END IF |
|---|
| 329 | ! else ! iflag_pbl=9 |
|---|
| 330 | ! if (aa(ig,k)*qpre.gt.0.9) then |
|---|
| 331 | ! q2(ig,k)=(qpre*10.)**2 |
|---|
| 332 | ! else |
|---|
| 333 | ! q2(ig,k)=(qpre/(1.-aa(ig,k)*qpre))**2 |
|---|
| 334 | ! endif |
|---|
| 335 | ! endif |
|---|
| 336 | q2(ig, k) = min(max(q2(ig,k),1.E-10), 1.E4) |
|---|
| 337 | ! print*,'Q2 L=',k,q2(ig,k),qpre*qpre |
|---|
| 338 | END DO |
|---|
| 339 | END DO |
|---|
| 340 | |
|---|
| 341 | ELSE IF (iflag_pbl>=10) THEN |
|---|
| 342 | |
|---|
| 343 | ! print*,'Schema mixte D' |
|---|
| 344 | ! print*,'Longueur ',l(:,:) |
|---|
| 345 | DO k = 2, klev - 1 |
|---|
| 346 | l(:, k) = max(l(:,k), 1.) |
|---|
| 347 | km(:, k) = l(:, k)*sqrt(q2(:,k))*sm(:, k) |
|---|
| 348 | q2(:, k) = q2(:, k) + dt*km(:, k)*m2(:, k)*(1.-rif(:,k)) |
|---|
| 349 | q2(:, k) = min(max(q2(:,k),1.E-10), 1.E4) |
|---|
| 350 | q2(:, k) = 1./(1./sqrt(q2(:,k))+dt/(2*l(:,k)*b1)) |
|---|
| 351 | q2(:, k) = q2(:, k)*q2(:, k) |
|---|
| 352 | END DO |
|---|
| 353 | |
|---|
| 354 | |
|---|
| 355 | ELSE |
|---|
| 356 | STOP 'Cas nom prevu dans yamada4' |
|---|
| 357 | |
|---|
| 358 | END IF ! Fin du cas 8 |
|---|
| 359 | |
|---|
| 360 | ! print*,'OK8' |
|---|
| 361 | |
|---|
| 362 | ! ==================================================================== |
|---|
| 363 | ! Calcul des coefficients de m�ange |
|---|
| 364 | ! ==================================================================== |
|---|
| 365 | DO k = 2, klev |
|---|
| 366 | ! print*,'k=',k |
|---|
| 367 | DO ig = 1, ngrid |
|---|
| 368 | ! abde print*,'KML=',l(ig,k),q2(ig,k),sm(ig,k) |
|---|
| 369 | zq = sqrt(q2(ig,k)) |
|---|
| 370 | km(ig, k) = l(ig, k)*zq*sm(ig, k) |
|---|
| 371 | kn(ig, k) = km(ig, k)*alpha(ig, k) |
|---|
| 372 | kq(ig, k) = l(ig, k)*zq*0.2 |
|---|
| 373 | ! print*,'KML=',km(ig,k),kn(ig,k) |
|---|
| 374 | END DO |
|---|
| 375 | END DO |
|---|
| 376 | ! initialize near-surface and top-layer mixing coefficients |
|---|
| 377 | kq(1:ngrid, 1) = kq(1:ngrid, 2) ! constant (ie no gradient) near the surface |
|---|
| 378 | kq(1:ngrid, klev+1) = 0 ! zero at the top |
|---|
| 379 | |
|---|
| 380 | ! Transport diffusif vertical de la TKE. |
|---|
| 381 | IF (iflag_pbl>=12) THEN |
|---|
| 382 | ! print*,'YAMADA VDIF' |
|---|
| 383 | q2(:, 1) = q2(:, 2) |
|---|
| 384 | CALL vdif_q2(dt, g, rconst, ngrid, plev, temp, kq, q2) |
|---|
| 385 | END IF |
|---|
| 386 | |
|---|
| 387 | ! Traitement des cas noctrunes avec l'introduction d'une longueur |
|---|
| 388 | ! minilale. |
|---|
| 389 | |
|---|
| 390 | ! ==================================================================== |
|---|
| 391 | ! Traitement particulier pour les cas tres stables. |
|---|
| 392 | ! D'apres Holtslag Boville. |
|---|
| 393 | |
|---|
| 394 | IF (prt_level>1) THEN |
|---|
| 395 | PRINT *, 'YAMADA4 0' |
|---|
| 396 | END IF !(prt_level>1) THEN |
|---|
| 397 | DO ig = 1, ngrid |
|---|
| 398 | coriol(ig) = 1.E-4 |
|---|
| 399 | pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546E-5) |
|---|
| 400 | END DO |
|---|
| 401 | |
|---|
| 402 | ! print*,'pblhmin ',pblhmin |
|---|
| 403 | ! Test a remettre 21 11 02 |
|---|
| 404 | ! test abd 13 05 02 if(0.eq.1) then |
|---|
| 405 | IF (1==1) THEN |
|---|
| 406 | IF (iflag_pbl==8 .OR. iflag_pbl==10) THEN |
|---|
| 407 | |
|---|
| 408 | DO k = 2, klev |
|---|
| 409 | DO ig = 1, ngrid |
|---|
| 410 | IF (teta(ig,2)>teta(ig,1)) THEN |
|---|
| 411 | qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 |
|---|
| 412 | kmin = kap*zlev(ig, k)*qmin |
|---|
| 413 | ELSE |
|---|
| 414 | kmin = -1. ! kmin n'est utilise que pour les SL stables. |
|---|
| 415 | END IF |
|---|
| 416 | IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN |
|---|
| 417 | ! print*,'Seuil min Km K=',k,kmin,km(ig,k),kn(ig,k) |
|---|
| 418 | ! s ,sqrt(q2(ig,k)),pblhmin(ig),qmin/sm(ig,k) |
|---|
| 419 | kn(ig, k) = kmin |
|---|
| 420 | km(ig, k) = kmin |
|---|
| 421 | kq(ig, k) = kmin |
|---|
| 422 | ! la longueur de melange est suposee etre l= kap z |
|---|
| 423 | ! K=l q Sm d'ou q2=(K/l Sm)**2 |
|---|
| 424 | q2(ig, k) = (qmin/sm(ig,k))**2 |
|---|
| 425 | END IF |
|---|
| 426 | END DO |
|---|
| 427 | END DO |
|---|
| 428 | |
|---|
| 429 | ELSE |
|---|
| 430 | |
|---|
| 431 | DO k = 2, klev |
|---|
| 432 | DO ig = 1, ngrid |
|---|
| 433 | IF (teta(ig,2)>teta(ig,1)) THEN |
|---|
| 434 | qmin = ustar(ig)*(max(1.-zlev(ig,k)/pblhmin(ig),0.))**2 |
|---|
| 435 | kmin = kap*zlev(ig, k)*qmin |
|---|
| 436 | ELSE |
|---|
| 437 | kmin = -1. ! kmin n'est utilise que pour les SL stables. |
|---|
| 438 | END IF |
|---|
| 439 | IF (kn(ig,k)<kmin .OR. km(ig,k)<kmin) THEN |
|---|
| 440 | ! print*,'Seuil min Km K=',k,kmin,km(ig,k),kn(ig,k) |
|---|
| 441 | ! s ,sqrt(q2(ig,k)),pblhmin(ig),qmin/sm(ig,k) |
|---|
| 442 | kn(ig, k) = kmin |
|---|
| 443 | km(ig, k) = kmin |
|---|
| 444 | kq(ig, k) = kmin |
|---|
| 445 | ! la longueur de melange est suposee etre l= kap z |
|---|
| 446 | ! K=l q Sm d'ou q2=(K/l Sm)**2 |
|---|
| 447 | sm(ig, k) = 1. |
|---|
| 448 | alpha(ig, k) = 1. |
|---|
| 449 | q2(ig, k) = min((qmin/sm(ig,k))**2, 10.) |
|---|
| 450 | zq = sqrt(q2(ig,k)) |
|---|
| 451 | km(ig, k) = l(ig, k)*zq*sm(ig, k) |
|---|
| 452 | kn(ig, k) = km(ig, k)*alpha(ig, k) |
|---|
| 453 | kq(ig, k) = l(ig, k)*zq*0.2 |
|---|
| 454 | END IF |
|---|
| 455 | END DO |
|---|
| 456 | END DO |
|---|
| 457 | END IF |
|---|
| 458 | |
|---|
| 459 | END IF |
|---|
| 460 | |
|---|
| 461 | IF (prt_level>1) THEN |
|---|
| 462 | PRINT *, 'YAMADA4 1' |
|---|
| 463 | END IF !(prt_level>1) THEN |
|---|
| 464 | ! Diagnostique pour stokage |
|---|
| 465 | |
|---|
| 466 | IF (1==0) THEN |
|---|
| 467 | rino = rif |
|---|
| 468 | smyam(1:ngrid, 1) = 0. |
|---|
| 469 | styam(1:ngrid, 1) = 0. |
|---|
| 470 | lyam(1:ngrid, 1) = 0. |
|---|
| 471 | knyam(1:ngrid, 1) = 0. |
|---|
| 472 | w2yam(1:ngrid, 1) = 0. |
|---|
| 473 | t2yam(1:ngrid, 1) = 0. |
|---|
| 474 | |
|---|
| 475 | smyam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev) |
|---|
| 476 | styam(1:ngrid, 2:klev) = sm(1:ngrid, 2:klev)*alpha(1:ngrid, 2:klev) |
|---|
| 477 | lyam(1:ngrid, 2:klev) = l(1:ngrid, 2:klev) |
|---|
| 478 | knyam(1:ngrid, 2:klev) = kn(1:ngrid, 2:klev) |
|---|
| 479 | |
|---|
| 480 | ! Estimations de w'2 et T'2 d'apres Abdela et McFarlane |
|---|
| 481 | |
|---|
| 482 | w2yam(1:ngrid, 2:klev) = q2(1:ngrid, 2:klev)*0.24 + & |
|---|
| 483 | lyam(1:ngrid, 2:klev)*5.17*kn(1:ngrid, 2:klev)*n2(1:ngrid, 2:klev)/ & |
|---|
| 484 | sqrt(q2(1:ngrid,2:klev)) |
|---|
| 485 | |
|---|
| 486 | t2yam(1:ngrid, 2:klev) = 9.1*kn(1:ngrid, 2:klev)* & |
|---|
| 487 | dtetadz(1:ngrid, 2:klev)**2/sqrt(q2(1:ngrid,2:klev))* & |
|---|
| 488 | lyam(1:ngrid, 2:klev) |
|---|
| 489 | END IF |
|---|
| 490 | |
|---|
| 491 | ! print*,'OKFIN' |
|---|
| 492 | first = .FALSE. |
|---|
| 493 | RETURN |
|---|
| 494 | END SUBROUTINE yamada4 |
|---|
| 495 | SUBROUTINE vdif_q2(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2) |
|---|
| 496 | USE dimphy |
|---|
| 497 | IMPLICIT NONE |
|---|
| 498 | ! ....................................................................... |
|---|
| 499 | include "dimensions.h" |
|---|
| 500 | ! ccc#include "dimphy.h" |
|---|
| 501 | ! ....................................................................... |
|---|
| 502 | |
|---|
| 503 | ! dt : pas de temps |
|---|
| 504 | |
|---|
| 505 | REAL plev(klon, klev+1) |
|---|
| 506 | REAL temp(klon, klev) |
|---|
| 507 | REAL timestep |
|---|
| 508 | REAL gravity, rconst |
|---|
| 509 | REAL kstar(klon, klev+1), zz |
|---|
| 510 | REAL kmy(klon, klev+1) |
|---|
| 511 | REAL q2(klon, klev+1) |
|---|
| 512 | REAL deltap(klon, klev+1) |
|---|
| 513 | REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1) |
|---|
| 514 | INTEGER ngrid |
|---|
| 515 | |
|---|
| 516 | INTEGER i, k |
|---|
| 517 | |
|---|
| 518 | ! print*,'RD=',rconst |
|---|
| 519 | DO k = 1, klev |
|---|
| 520 | DO i = 1, ngrid |
|---|
| 521 | ! test |
|---|
| 522 | ! print*,'i,k',i,k |
|---|
| 523 | ! print*,'temp(i,k)=',temp(i,k) |
|---|
| 524 | ! print*,'(plev(i,k)-plev(i,k+1))=',plev(i,k),plev(i,k+1) |
|---|
| 525 | zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k)) |
|---|
| 526 | kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ & |
|---|
| 527 | (plev(i,k)-plev(i,k+1))*timestep |
|---|
| 528 | END DO |
|---|
| 529 | END DO |
|---|
| 530 | |
|---|
| 531 | DO k = 2, klev |
|---|
| 532 | DO i = 1, ngrid |
|---|
| 533 | deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1)) |
|---|
| 534 | END DO |
|---|
| 535 | END DO |
|---|
| 536 | DO i = 1, ngrid |
|---|
| 537 | deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2)) |
|---|
| 538 | deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1)) |
|---|
| 539 | denom(i, klev+1) = deltap(i, klev+1) + kstar(i, klev) |
|---|
| 540 | alpha(i, klev+1) = deltap(i, klev+1)*q2(i, klev+1)/denom(i, klev+1) |
|---|
| 541 | beta(i, klev+1) = kstar(i, klev)/denom(i, klev+1) |
|---|
| 542 | END DO |
|---|
| 543 | |
|---|
| 544 | DO k = klev, 2, -1 |
|---|
| 545 | DO i = 1, ngrid |
|---|
| 546 | denom(i, k) = deltap(i, k) + (1.-beta(i,k+1))*kstar(i, k) + & |
|---|
| 547 | kstar(i, k-1) |
|---|
| 548 | ! correction d'un bug 10 01 2001 |
|---|
| 549 | alpha(i, k) = (q2(i,k)*deltap(i,k)+kstar(i,k)*alpha(i,k+1))/denom(i, k) |
|---|
| 550 | beta(i, k) = kstar(i, k-1)/denom(i, k) |
|---|
| 551 | END DO |
|---|
| 552 | END DO |
|---|
| 553 | |
|---|
| 554 | ! Si on recalcule q2(1) |
|---|
| 555 | IF (1==0) THEN |
|---|
| 556 | DO i = 1, ngrid |
|---|
| 557 | denom(i, 1) = deltap(i, 1) + (1-beta(i,2))*kstar(i, 1) |
|---|
| 558 | q2(i, 1) = (q2(i,1)*deltap(i,1)+kstar(i,1)*alpha(i,2))/denom(i, 1) |
|---|
| 559 | END DO |
|---|
| 560 | END IF |
|---|
| 561 | ! sinon, on peut sauter cette boucle... |
|---|
| 562 | |
|---|
| 563 | DO k = 2, klev + 1 |
|---|
| 564 | DO i = 1, ngrid |
|---|
| 565 | q2(i, k) = alpha(i, k) + beta(i, k)*q2(i, k-1) |
|---|
| 566 | END DO |
|---|
| 567 | END DO |
|---|
| 568 | |
|---|
| 569 | RETURN |
|---|
| 570 | END SUBROUTINE vdif_q2 |
|---|
| 571 | SUBROUTINE vdif_q2e(timestep, gravity, rconst, ngrid, plev, temp, kmy, q2) |
|---|
| 572 | USE dimphy |
|---|
| 573 | IMPLICIT NONE |
|---|
| 574 | ! ....................................................................... |
|---|
| 575 | include "dimensions.h" |
|---|
| 576 | ! ccc#include "dimphy.h" |
|---|
| 577 | ! ....................................................................... |
|---|
| 578 | |
|---|
| 579 | ! dt : pas de temps |
|---|
| 580 | |
|---|
| 581 | REAL plev(klon, klev+1) |
|---|
| 582 | REAL temp(klon, klev) |
|---|
| 583 | REAL timestep |
|---|
| 584 | REAL gravity, rconst |
|---|
| 585 | REAL kstar(klon, klev+1), zz |
|---|
| 586 | REAL kmy(klon, klev+1) |
|---|
| 587 | REAL q2(klon, klev+1) |
|---|
| 588 | REAL deltap(klon, klev+1) |
|---|
| 589 | REAL denom(klon, klev+1), alpha(klon, klev+1), beta(klon, klev+1) |
|---|
| 590 | INTEGER ngrid |
|---|
| 591 | |
|---|
| 592 | INTEGER i, k |
|---|
| 593 | |
|---|
| 594 | DO k = 1, klev |
|---|
| 595 | DO i = 1, ngrid |
|---|
| 596 | zz = (plev(i,k)+plev(i,k+1))*gravity/(rconst*temp(i,k)) |
|---|
| 597 | kstar(i, k) = 0.125*(kmy(i,k+1)+kmy(i,k))*zz*zz/ & |
|---|
| 598 | (plev(i,k)-plev(i,k+1))*timestep |
|---|
| 599 | END DO |
|---|
| 600 | END DO |
|---|
| 601 | |
|---|
| 602 | DO k = 2, klev |
|---|
| 603 | DO i = 1, ngrid |
|---|
| 604 | deltap(i, k) = 0.5*(plev(i,k-1)-plev(i,k+1)) |
|---|
| 605 | END DO |
|---|
| 606 | END DO |
|---|
| 607 | DO i = 1, ngrid |
|---|
| 608 | deltap(i, 1) = 0.5*(plev(i,1)-plev(i,2)) |
|---|
| 609 | deltap(i, klev+1) = 0.5*(plev(i,klev)-plev(i,klev+1)) |
|---|
| 610 | END DO |
|---|
| 611 | |
|---|
| 612 | DO k = klev, 2, -1 |
|---|
| 613 | DO i = 1, ngrid |
|---|
| 614 | q2(i, k) = q2(i, k) + (kstar(i,k)*(q2(i,k+1)-q2(i, & |
|---|
| 615 | k))-kstar(i,k-1)*(q2(i,k)-q2(i,k-1)))/deltap(i, k) |
|---|
| 616 | END DO |
|---|
| 617 | END DO |
|---|
| 618 | |
|---|
| 619 | DO i = 1, ngrid |
|---|
| 620 | q2(i, 1) = q2(i, 1) + (kstar(i,1)*(q2(i,2)-q2(i,1)))/deltap(i, 1) |
|---|
| 621 | q2(i, klev+1) = q2(i, klev+1) + (-kstar(i,klev)*(q2(i,klev+1)-q2(i, & |
|---|
| 622 | klev)))/deltap(i, klev+1) |
|---|
| 623 | END DO |
|---|
| 624 | |
|---|
| 625 | RETURN |
|---|
| 626 | END SUBROUTINE vdif_q2e |
|---|