source: LMDZ5/branches/LMDZ5_SPLA/libf/phylmd/ener_conserv.F90 @ 5434

Last change on this file since 5434 was 1907, checked in by lguez, 11 years ago

Added a copyright property to every file of the distribution, except
for the fcm files (which have their own copyright). Use svn propget on
a file to see the copyright. For instance:

$ svn propget copyright libf/phylmd/physiq.F90
Name of program: LMDZ
Creation date: 1984
Version: LMDZ5
License: CeCILL version 2
Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
See the license file in the root directory

Also added the files defining the CeCILL version 2 license, in French
and English, at the top of the LMDZ tree.

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 5.3 KB
Line 
1subroutine ener_conserv(klon,klev,pdtphys, &
2 &    puo,pvo,pto,pqo,pun,pvn,ptn,pqn,dtke,masse,exner,d_t_ec)
3
4!=============================================================
5! Energy conservation
6! Based on the TKE equation
7! The M2 and N2 terms at the origin of TKE production are
8! concerted into heating in the d_t_ec term
9! Option 1 is the standard
10!        101 is for M2 term only
11!        101 for N2 term only
12!         -1 is a previours treatment for kinetic energy only
13!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
14!=============================================================
15
16!=============================================================
17! Declarations
18!=============================================================
19
20! From module
21USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs,d_u_con,d_v_con,d_t_con,d_t_diss
22USE phys_output_var_mod, ONLY : bils_ec,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss
23
24IMPLICIT none
25#include "YOMCST.h"
26#include "YOETHF.h"
27#include "clesphys.h"
28#include "compbl.h"
29
30! Arguments
31INTEGER, INTENT(IN) :: klon,klev
32REAL, INTENT(IN) :: pdtphys
33REAL, DIMENSION(klon,klev),INTENT(IN) :: puo,pvo,pto,pqo
34REAL, DIMENSION(klon,klev),INTENT(IN) :: pun,pvn,ptn,pqn
35REAL, DIMENSION(klon,klev),INTENT(IN) :: masse,exner
36REAL, DIMENSION(klon,klev+1),INTENT(IN) :: dtke
37REAL, DIMENSION(klon,klev),INTENT(OUT) :: d_t_ec
38      integer k,i
39
40! Local
41REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt
42REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt
43REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu
44REAL ZRCPD
45
46character*80 abort_message
47character*20 :: modname
48
49
50modname='ener_conser'
51d_t_ec(:,:)=0.
52
53IF (iflag_ener_conserv==-1) THEN
54!+jld ec_conser
55   DO k = 1, klev
56   DO i = 1, klon
57      ZRCPD = RCPD*(1.0+RVTMP2*pqn(i,k))
58      d_t_ec(i,k)=0.5/ZRCPD &
59 &      *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2)
60      ENDDO
61      ENDDO
62!-jld ec_conser
63
64
65
66ELSEIF (iflag_ener_conserv>=1) THEN
67
68   IF (iflag_ener_conserv<=2) THEN
69!     print*,'ener_conserv pbl=',iflag_pbl
70      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv
71         d_t(:,:)=d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
72         d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:)
73         d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:)
74      ELSE
75         d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
76         d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
77         d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
78      ENDIF
79   ELSEIF (iflag_ener_conserv==101) THEN
80      d_t(:,:)=0.
81      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
82      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
83   ELSEIF (iflag_ener_conserv==110) THEN
84      d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)
85      d_u(:,:)=0.
86      d_v(:,:)=0.
87   ELSE
88      abort_message = 'iflag_ener_conserv non prevu'
89      CALL abort_gcm (modname,abort_message,1)
90   ENDIF
91
92!----------------------------------------------------------------------------
93! Two options wether we consider time integration in the energy conservation
94!----------------------------------------------------------------------------
95
96   if (iflag_ener_conserv==2) then
97      zu(:,:)=puo(:,:)
98      zv(:,:)=pvo(:,:)
99   else
100      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN
101         zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:)
102         zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:)
103      ELSE
104         zu(:,:)=puo(:,:)+0.5*d_u(:,:)
105         zv(:,:)=pvo(:,:)+0.5*d_v(:,:)
106      ENDIF
107   endif
108
109   fluxu(:,klev+1)=0.
110   fluxv(:,klev+1)=0.
111   fluxt(:,klev+1)=0.
112
113   do k=klev,1,-1
114      fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k)
115      fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k)
116      fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k)
117   enddo
118
119   dddu(:,1)=2*zu(:,1)*fluxu(:,1)
120   dddv(:,1)=2*zv(:,1)*fluxv(:,1)
121   dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1)
122
123   do k=2,klev
124      dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k)
125      dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k)
126      dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k)
127   enddo
128   dddu(:,klev+1)=0.
129   dddv(:,klev+1)=0.
130   dddt(:,klev+1)=0.
131
132   do k=1,klev
133      d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1) &
134   &  +rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k))
135   enddo
136! d_t_ec=0.
137
138ENDIF
139
140!================================================================
141!  Computation of integrated enthalpie and kinetic energy variation
142!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
143!================================================================
144
145      bils_ec(:)=0.
146      bils_tke(:)=0.
147      bils_diss(:)=0.
148      bils_kinetic(:)=0.
149      bils_enthalp(:)=0.
150      bils_latent(:)=0.
151      DO k=1,klev
152        bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k)
153        bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k)
154        bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k)
155        bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* &
156     &           (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) &
157     &            -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k))
158        bils_enthalp(:)= &
159     &  bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k))
160        bils_latent(:)=bils_latent(:)+masse(:,k)* &
161     &             (pqn(:,k)-pqo(:,k))
162      ENDDO
163      bils_ec(:)=rcpd*bils_ec(:)/pdtphys
164      bils_tke(:)=bils_tke(:)/pdtphys
165      bils_diss(:)=rcpd*bils_diss(:)/pdtphys
166      bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys
167      bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys
168      bils_latent(:)=rlvtt*bils_latent(:)/pdtphys
169RETURN
170
171END
Note: See TracBrowser for help on using the repository browser.