1 | ! $Id: newmicro.F 1525 2011-05-25 10:55:27Z oboucher $ |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | ! |
---|
6 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
7 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
8 | . pch, pcl, pcm, pct, pctlwp, |
---|
9 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
10 | e ok_aie, |
---|
11 | e mass_solu_aero, mass_solu_aero_pi, |
---|
12 | e bl95_b0, bl95_b1, |
---|
13 | s cldtaupi, re, fl, reliq, reice) |
---|
14 | |
---|
15 | USE dimphy |
---|
16 | USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, |
---|
17 | . reffclws,reffclwc,cldnvi,lcc3d, |
---|
18 | . lcc3dcon,lcc3dstra |
---|
19 | USE phys_state_var_mod, only: rnebcon,clwcon |
---|
20 | IMPLICIT none |
---|
21 | c====================================================================== |
---|
22 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
23 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
24 | c====================================================================== |
---|
25 | c Arguments: |
---|
26 | c t-------input-R-temperature |
---|
27 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
28 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
29 | c |
---|
30 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
31 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
32 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
33 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
34 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
35 | c |
---|
36 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
37 | c needed for the diagnostics of the aerosol indirect |
---|
38 | c radiative forcing (see radlwsw) |
---|
39 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
40 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
41 | c the averaging of the output. fl is the fraction of liquid |
---|
42 | c water clouds within a grid cell |
---|
43 | c pcltau--output-R-epaisseur optique des nuages |
---|
44 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
45 | c====================================================================== |
---|
46 | C |
---|
47 | #include "YOMCST.h" |
---|
48 | c |
---|
49 | cym#include "dimensions.h" |
---|
50 | cym#include "dimphy.h" |
---|
51 | #include "nuage.h" |
---|
52 | cIM cf. CR: include pour NOVLP et ZEPSEC |
---|
53 | #include "radepsi.h" |
---|
54 | #include "radopt.h" |
---|
55 | c choix de l'hypothese de recouvrememnt nuageuse |
---|
56 | LOGICAL RANDOM,MAXIMUM_RANDOM,MAXIMUM |
---|
57 | parameter (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) |
---|
58 | LOGICAL, SAVE :: FIRST=.TRUE. |
---|
59 | !$OMP THREADPRIVATE(FIRST) |
---|
60 | c Hypoyhese de recouvrement : MAXIMUM_RANDOM |
---|
61 | INTEGER flag_max |
---|
62 | REAL phase3d(klon, klev),dh(klon, klev),pdel(klon, klev), |
---|
63 | . zrho(klon, klev) |
---|
64 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
---|
65 | REAL thres_tau,thres_neb |
---|
66 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
---|
67 | REAL t_tmp |
---|
68 | REAL gravit |
---|
69 | PARAMETER (gravit=9.80616) !m/s2 |
---|
70 | REAL pqlwpcon(klon, klev), pqlwpstra(klon, klev) |
---|
71 | c |
---|
72 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
73 | REAL t(klon,klev) |
---|
74 | c |
---|
75 | REAL pclc(klon,klev) |
---|
76 | REAL pqlwp(klon,klev) |
---|
77 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
78 | c |
---|
79 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
80 | c |
---|
81 | LOGICAL lo |
---|
82 | c |
---|
83 | !!Abderr modif JL mail du 19.01.2011 18:31 |
---|
84 | ! REAL cetahb, cetamb |
---|
85 | ! PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
86 | ! Remplacer |
---|
87 | !cetahb*paprs(i,1) par prmhc |
---|
88 | !cetamb*paprs(i,1) par prlmc |
---|
89 | REAL prmhc ! Pressure between medium and high level cloud |
---|
90 | REAL prlmc ! Pressure between low and medium level cloud |
---|
91 | PARAMETER (prmhc = 440.*100., prlmc = 680.*100.) |
---|
92 | |
---|
93 | C |
---|
94 | INTEGER i, k |
---|
95 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
96 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
97 | cIM: 091003 rajout |
---|
98 | REAL xflwp(klon), xfiwp(klon) |
---|
99 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
100 | c |
---|
101 | REAL radius, rad_chaud |
---|
102 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
103 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
104 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
105 | REAL coef, coef_froi, coef_chau |
---|
106 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
107 | REAL seuil_neb |
---|
108 | PARAMETER (seuil_neb=0.001) |
---|
109 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
110 | PARAMETER (nexpo=6) |
---|
111 | ccc PARAMETER (nexpo=1) |
---|
112 | |
---|
113 | c -- sb: |
---|
114 | logical ok_newmicro |
---|
115 | c parameter (ok_newmicro=.FALSE.) |
---|
116 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
117 | real rel, tc, rei, zfiwp(klon) |
---|
118 | real k_liq, k_ice0, k_ice, DF |
---|
119 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
120 | parameter (DF=1.66) ! diffusivity factor |
---|
121 | c sb -- |
---|
122 | cjq for the aerosol indirect effect |
---|
123 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
124 | cjq |
---|
125 | LOGICAL ok_aie ! Apply AIE or not? |
---|
126 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
127 | |
---|
128 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
129 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
130 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
131 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
132 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
133 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
134 | |
---|
135 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
136 | |
---|
137 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
138 | |
---|
139 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
140 | cjq-end |
---|
141 | cIM cf. CR:parametres supplementaires |
---|
142 | REAL zclear(klon) |
---|
143 | REAL zcloud(klon) |
---|
144 | REAL zcloudh(klon) |
---|
145 | REAL zcloudm(klon) |
---|
146 | REAL zcloudl(klon) |
---|
147 | |
---|
148 | |
---|
149 | c ************************** |
---|
150 | c * * |
---|
151 | c * DEBUT PARTIE OPTIMISEE * |
---|
152 | c * * |
---|
153 | c ************************** |
---|
154 | |
---|
155 | REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) |
---|
156 | REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var |
---|
157 | REAL d_rei_dt |
---|
158 | |
---|
159 | ! Abderrahmane oct 2009 |
---|
160 | Real reliq(klon, klev), reice(klon, klev) |
---|
161 | |
---|
162 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
163 | ! FH : 2011/05/24 |
---|
164 | ! |
---|
165 | ! rei = ( rei_max - rei_min ) * T(°C) / 81.4 + rei_max |
---|
166 | ! to be used for a temperature in celcius T(°C) < 0 |
---|
167 | ! rei=rei_min for T(°C) < -81.4 |
---|
168 | ! |
---|
169 | ! Calcul de la pente de la relation entre rayon effective des cristaux |
---|
170 | ! et la température. |
---|
171 | ! Pour retrouver les résultats numériques de la version d'origine, |
---|
172 | ! on impose 0.71 quand on est proche de 0.71 |
---|
173 | |
---|
174 | d_rei_dt=(rei_max-rei_min)/81.4 |
---|
175 | if (abs(d_rei_dt-0.71)<1.e-4) d_rei_dt=0.71 |
---|
176 | ! print*,'d_rei_dT ',d_rei_dt,rei_min,rei_max |
---|
177 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
178 | c |
---|
179 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
180 | c |
---|
181 | c IM inversion des DO |
---|
182 | xflwp = 0.d0 |
---|
183 | xfiwp = 0.d0 |
---|
184 | xflwc = 0.d0 |
---|
185 | xfiwc = 0.d0 |
---|
186 | |
---|
187 | ! Initialisation |
---|
188 | reliq=0. |
---|
189 | reice=0. |
---|
190 | |
---|
191 | DO k = 1, klev |
---|
192 | DO i = 1, klon |
---|
193 | diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
194 | ENDDO |
---|
195 | ENDDO |
---|
196 | |
---|
197 | IF (ok_newmicro) THEN |
---|
198 | |
---|
199 | |
---|
200 | DO k = 1, klev |
---|
201 | DO i = 1, klon |
---|
202 | c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
203 | zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
204 | & (t_glace_max-t_glace_min) |
---|
205 | zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) |
---|
206 | c IM Total Liquid/Ice water content |
---|
207 | xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) |
---|
208 | xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) |
---|
209 | c IM In-Cloud Liquid/Ice water content |
---|
210 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
211 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
212 | ENDDO |
---|
213 | ENDDO |
---|
214 | |
---|
215 | IF (ok_aie) THEN |
---|
216 | DO k = 1, klev |
---|
217 | DO i = 1, klon |
---|
218 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
219 | ! |
---|
220 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
221 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
222 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
223 | ! to be within [20, 1000 cm^3] |
---|
224 | ! |
---|
225 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
226 | ! |
---|
227 | ! |
---|
228 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
229 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
---|
230 | & *1.e6 !-m-3 |
---|
231 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
232 | ENDDO |
---|
233 | ENDDO |
---|
234 | DO k = 1, klev |
---|
235 | DO i = 1, klon |
---|
236 | ! rad_chaud_tab(i,k) = |
---|
237 | ! & MAX(1.1e6 |
---|
238 | ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
239 | ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) |
---|
240 | rad_chaud_tab(i,k) = |
---|
241 | & 1.1 |
---|
242 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
243 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
244 | rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | ELSE |
---|
248 | DO k = 1, MIN(3,klev) |
---|
249 | DO i = 1, klon |
---|
250 | rad_chaud_tab(i,k) = rad_chau2 |
---|
251 | ENDDO |
---|
252 | ENDDO |
---|
253 | DO k = MIN(3,klev)+1, klev |
---|
254 | DO i = 1, klon |
---|
255 | rad_chaud_tab(i,k) = rad_chau1 |
---|
256 | ENDDO |
---|
257 | ENDDO |
---|
258 | |
---|
259 | ENDIF |
---|
260 | |
---|
261 | DO k = 1, klev |
---|
262 | ! IF(.not.ok_aie) THEN |
---|
263 | rad_chaud = rad_chau1 |
---|
264 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
265 | ! ENDIF |
---|
266 | DO i = 1, klon |
---|
267 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
268 | |
---|
269 | c -- effective cloud droplet radius (microns): |
---|
270 | |
---|
271 | c for liquid water clouds: |
---|
272 | ! For output diagnostics |
---|
273 | ! |
---|
274 | ! Cloud droplet effective radius [um] |
---|
275 | ! |
---|
276 | ! we multiply here with f * xl (fraction of liquid water |
---|
277 | ! clouds in the grid cell) to avoid problems in the |
---|
278 | ! averaging of the output. |
---|
279 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
280 | ! effective radius as re/fl |
---|
281 | ! |
---|
282 | |
---|
283 | fl(i,k) = seuil_neb*(1.-zfice2(i,k)) |
---|
284 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
285 | |
---|
286 | rel = 0. |
---|
287 | rei = 0. |
---|
288 | pclc(i,k) = 0.0 |
---|
289 | pcltau(i,k) = 0.0 |
---|
290 | pclemi(i,k) = 0.0 |
---|
291 | cldtaupi(i,k) = 0.0 |
---|
292 | ELSE |
---|
293 | |
---|
294 | c -- liquid/ice cloud water paths: |
---|
295 | |
---|
296 | zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
297 | & *diff_paprs(i,k) |
---|
298 | zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
299 | & *diff_paprs(i,k) |
---|
300 | |
---|
301 | c -- effective cloud droplet radius (microns): |
---|
302 | |
---|
303 | c for liquid water clouds: |
---|
304 | |
---|
305 | IF (ok_aie) THEN |
---|
306 | radius = |
---|
307 | & 1.1 |
---|
308 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
309 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
310 | radius = MAX(radius*1e6, 5.) |
---|
311 | |
---|
312 | tc = t(i,k)-273.15 |
---|
313 | rei = d_rei_dt*tc + rei_max |
---|
314 | if (tc.le.-81.4) rei = rei_min |
---|
315 | if (zflwp_var.eq.0.) radius = 1. |
---|
316 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
317 | cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
318 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
319 | |
---|
320 | ENDIF ! ok_aie |
---|
321 | ! For output diagnostics |
---|
322 | ! |
---|
323 | ! Cloud droplet effective radius [um] |
---|
324 | ! |
---|
325 | ! we multiply here with f * xl (fraction of liquid water |
---|
326 | ! clouds in the grid cell) to avoid problems in the |
---|
327 | ! averaging of the output. |
---|
328 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
329 | ! effective radius as re/fl |
---|
330 | ! |
---|
331 | |
---|
332 | fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) |
---|
333 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
334 | |
---|
335 | rel = rad_chaud_tab(i,k) |
---|
336 | c for ice clouds: as a function of the ambiant temperature |
---|
337 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
338 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
339 | c consistent with observations of Heymsfield et al. 1986]: |
---|
340 | c 2011/05/24 : rei_min = 3.5 becomes a free parameter as well as rei_max=61.29 |
---|
341 | tc = t(i,k)-273.15 |
---|
342 | rei = d_rei_dt*tc + rei_max |
---|
343 | if (tc.le.-81.4) rei = rei_min |
---|
344 | c -- cloud optical thickness : |
---|
345 | |
---|
346 | c [for liquid clouds, traditional formula, |
---|
347 | c for ice clouds, Ebert & Curry (1992)] |
---|
348 | |
---|
349 | if (zflwp_var.eq.0.) rel = 1. |
---|
350 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
351 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
352 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
353 | c -- cloud infrared emissivity: |
---|
354 | |
---|
355 | c [the broadband infrared absorption coefficient is parameterized |
---|
356 | c as a function of the effective cld droplet radius] |
---|
357 | |
---|
358 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
359 | k_ice = k_ice0 + 1.0/rei |
---|
360 | |
---|
361 | pclemi(i,k) = 1.0 |
---|
362 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
363 | |
---|
364 | ENDIF |
---|
365 | reliq(i,k)=rel |
---|
366 | reice(i,k)=rei |
---|
367 | ! if (i.eq.1) then |
---|
368 | ! print*,'Dans newmicro rel, rei :',rel, rei |
---|
369 | ! print*,'Dans newmicro reliq, reice :', |
---|
370 | ! $ reliq(i,k),reice(i,k) |
---|
371 | ! endif |
---|
372 | |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | |
---|
376 | DO k = 1, klev |
---|
377 | DO i = 1, klon |
---|
378 | xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) |
---|
379 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | |
---|
383 | ELSE |
---|
384 | DO k = 1, klev |
---|
385 | rad_chaud = rad_chau1 |
---|
386 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
387 | DO i = 1, klon |
---|
388 | |
---|
389 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
390 | |
---|
391 | pclc(i,k) = 0.0 |
---|
392 | pcltau(i,k) = 0.0 |
---|
393 | pclemi(i,k) = 0.0 |
---|
394 | cldtaupi(i,k) = 0.0 |
---|
395 | |
---|
396 | ELSE |
---|
397 | |
---|
398 | zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) |
---|
399 | & /pclc(i,k) |
---|
400 | |
---|
401 | zfice1 = MIN( |
---|
402 | & MAX( 1.0 - (t(i,k)-t_glace_min) / |
---|
403 | & (t_glace_max-t_glace_min),0.0),1.0)**nexpo |
---|
404 | |
---|
405 | radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 |
---|
406 | coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 |
---|
407 | |
---|
408 | pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) |
---|
409 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) |
---|
410 | |
---|
411 | ENDIF |
---|
412 | |
---|
413 | ENDDO |
---|
414 | ENDDO |
---|
415 | ENDIF |
---|
416 | |
---|
417 | IF (.NOT.ok_aie) THEN |
---|
418 | DO k = 1, klev |
---|
419 | DO i = 1, klon |
---|
420 | cldtaupi(i,k)=pcltau(i,k) |
---|
421 | ENDDO |
---|
422 | ENDDO |
---|
423 | ENDIF |
---|
424 | |
---|
425 | ccc DO k = 1, klev |
---|
426 | ccc DO i = 1, klon |
---|
427 | ccc t(i,k) = t(i,k) |
---|
428 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
429 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
430 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
431 | ccc . /(rg*pclc(i,k)) |
---|
432 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
433 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
434 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
435 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
436 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
437 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
438 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
439 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
440 | ccc ENDDO |
---|
441 | ccc ENDDO |
---|
442 | ccccc print*, 'pas de nuage dans le rayonnement' |
---|
443 | ccccc DO k = 1, klev |
---|
444 | ccccc DO i = 1, klon |
---|
445 | ccccc pclc(i,k) = 0.0 |
---|
446 | ccccc pcltau(i,k) = 0.0 |
---|
447 | ccccc pclemi(i,k) = 0.0 |
---|
448 | ccccc ENDDO |
---|
449 | ccccc ENDDO |
---|
450 | C |
---|
451 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
452 | C |
---|
453 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
454 | c initialisations |
---|
455 | DO i=1,klon |
---|
456 | zclear(i)=1. |
---|
457 | zcloud(i)=0. |
---|
458 | zcloudh(i)=0. |
---|
459 | zcloudm(i)=0. |
---|
460 | zcloudl(i)=0. |
---|
461 | pch(i)=1.0 |
---|
462 | pcm(i) = 1.0 |
---|
463 | pcl(i) = 1.0 |
---|
464 | pctlwp(i) = 0.0 |
---|
465 | ENDDO |
---|
466 | C |
---|
467 | cIM cf CR DO k=1,klev |
---|
468 | DO k = klev, 1, -1 |
---|
469 | DO i = 1, klon |
---|
470 | pctlwp(i) = pctlwp(i) |
---|
471 | & + pqlwp(i,k)*diff_paprs(i,k) |
---|
472 | ENDDO |
---|
473 | ENDDO |
---|
474 | c IM cf. CR |
---|
475 | IF (NOVLP.EQ.1) THEN |
---|
476 | DO k = klev, 1, -1 |
---|
477 | DO i = 1, klon |
---|
478 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
479 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
480 | pct(i)=1.-zclear(i) |
---|
481 | IF (paprs(i,k).LT.prmhc) THEN |
---|
482 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloudh(i))) |
---|
483 | & /(1.-MIN(real(zcloudh(i), kind=8),1.-ZEPSEC)) |
---|
484 | zcloudh(i)=pclc(i,k) |
---|
485 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
486 | & paprs(i,k).LT.prlmc) THEN |
---|
487 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloudm(i))) |
---|
488 | & /(1.-MIN(real(zcloudm(i), kind=8),1.-ZEPSEC)) |
---|
489 | zcloudm(i)=pclc(i,k) |
---|
490 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
491 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloudl(i))) |
---|
492 | & /(1.-MIN(real(zcloudl(i), kind=8),1.-ZEPSEC)) |
---|
493 | zcloudl(i)=pclc(i,k) |
---|
494 | endif |
---|
495 | zcloud(i)=pclc(i,k) |
---|
496 | ENDDO |
---|
497 | ENDDO |
---|
498 | ELSE IF (NOVLP.EQ.2) THEN |
---|
499 | DO k = klev, 1, -1 |
---|
500 | DO i = 1, klon |
---|
501 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
502 | pct(i)=zcloud(i) |
---|
503 | IF (paprs(i,k).LT.prmhc) THEN |
---|
504 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
505 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
506 | & paprs(i,k).LT.prlmc) THEN |
---|
507 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
508 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
509 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
510 | endif |
---|
511 | ENDDO |
---|
512 | ENDDO |
---|
513 | ELSE IF (NOVLP.EQ.3) THEN |
---|
514 | DO k = klev, 1, -1 |
---|
515 | DO i = 1, klon |
---|
516 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
517 | pct(i)=1-zclear(i) |
---|
518 | IF (paprs(i,k).LT.prmhc) THEN |
---|
519 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
520 | ELSE IF (paprs(i,k).GE.prmhc .AND. |
---|
521 | & paprs(i,k).LT.prlmc) THEN |
---|
522 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
523 | ELSE IF (paprs(i,k).GE.prlmc) THEN |
---|
524 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
525 | endif |
---|
526 | ENDDO |
---|
527 | ENDDO |
---|
528 | ENDIF |
---|
529 | |
---|
530 | C |
---|
531 | DO i = 1, klon |
---|
532 | c IM cf. CR pct(i)=1.-pct(i) |
---|
533 | pch(i)=1.-pch(i) |
---|
534 | pcm(i)=1.-pcm(i) |
---|
535 | pcl(i)=1.-pcl(i) |
---|
536 | ENDDO |
---|
537 | |
---|
538 | c ======================================================== |
---|
539 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
---|
540 | c ======================================================== |
---|
541 | !! change by Nicolas Yan (LSCE) |
---|
542 | !! Cloud Droplet Number Concentration (CDNC) : 3D variable |
---|
543 | !! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
---|
544 | !! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
---|
545 | !! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
---|
546 | !! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
---|
547 | IF (ok_newmicro) THEN |
---|
548 | IF (ok_aie) THEN |
---|
549 | DO k = 1, klev |
---|
550 | DO i = 1, klon |
---|
551 | phase3d(i,k)=1-zfice2(i,k) |
---|
552 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
553 | lcc3d(i,k)=seuil_neb*phase3d(i,k) |
---|
554 | ELSE |
---|
555 | lcc3d(i,k)=pclc(i,k)*phase3d(i,k) |
---|
556 | ENDIF |
---|
557 | scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 |
---|
558 | ENDDO |
---|
559 | ENDDO |
---|
560 | |
---|
561 | DO i=1,klon |
---|
562 | lcc(i)=0. |
---|
563 | reffclwtop(i)=0. |
---|
564 | cldncl(i)=0. |
---|
565 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. |
---|
566 | IF(MAXIMUM) tcc(i) = 0. |
---|
567 | ENDDO |
---|
568 | |
---|
569 | |
---|
570 | DO i=1,klon |
---|
571 | DO k=klev-1,1,-1 !From TOA down |
---|
572 | |
---|
573 | |
---|
574 | ! Test, if the cloud optical depth exceeds the necessary |
---|
575 | ! threshold: |
---|
576 | |
---|
577 | IF (pcltau(i,k).GT.thres_tau .AND. pclc(i,k).GT.thres_neb) |
---|
578 | . THEN |
---|
579 | ! To calculate the right Temperature at cloud top, |
---|
580 | ! interpolate it between layers: |
---|
581 | t_tmp = t(i,k) + |
---|
582 | . (paprs(i,k+1)-pplay(i,k))/(pplay(i,k+1)-pplay(i,k)) |
---|
583 | . * ( t(i,k+1) - t(i,k) ) |
---|
584 | |
---|
585 | IF(MAXIMUM) THEN |
---|
586 | IF(FIRST) THEN |
---|
587 | write(*,*)'Hypothese de recouvrement: MAXIMUM' |
---|
588 | FIRST=.FALSE. |
---|
589 | ENDIF |
---|
590 | flag_max= -1. |
---|
591 | ftmp(i) = MAX(tcc(i),pclc(i,k)) |
---|
592 | ENDIF |
---|
593 | |
---|
594 | IF(RANDOM) THEN |
---|
595 | IF(FIRST) THEN |
---|
596 | write(*,*)'Hypothese de recouvrement: RANDOM' |
---|
597 | FIRST=.FALSE. |
---|
598 | ENDIF |
---|
599 | flag_max= 1. |
---|
600 | ftmp(i) = tcc(i) * (1-pclc(i,k)) |
---|
601 | ENDIF |
---|
602 | |
---|
603 | IF(MAXIMUM_RANDOM) THEN |
---|
604 | IF(FIRST) THEN |
---|
605 | write(*,*)'Hypothese de recouvrement: MAXIMUM_ |
---|
606 | . RANDOM' |
---|
607 | FIRST=.FALSE. |
---|
608 | ENDIF |
---|
609 | flag_max= 1. |
---|
610 | ftmp(i) = tcc(i) * |
---|
611 | . (1. - MAX(pclc(i,k),pclc(i,k+1))) / |
---|
612 | . (1. - MIN(pclc(i,k+1),1.-thres_neb)) |
---|
613 | ENDIF |
---|
614 | c Effective radius of cloud droplet at top of cloud (m) |
---|
615 | reffclwtop(i) = reffclwtop(i) + rad_chaud_tab(i,k) * |
---|
616 | . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max |
---|
617 | c CDNC at top of cloud (m-3) |
---|
618 | cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * |
---|
619 | . (tcc(i) - ftmp(i))*flag_max |
---|
620 | c Liquid Cloud Content at top of cloud |
---|
621 | lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* |
---|
622 | . flag_max |
---|
623 | c Total Cloud Content at top of cloud |
---|
624 | tcc(i)=ftmp(i) |
---|
625 | |
---|
626 | ENDIF ! is there a visible, not-too-small cloud? |
---|
627 | ENDDO ! loop over k |
---|
628 | |
---|
629 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) |
---|
630 | ENDDO ! loop over i |
---|
631 | |
---|
632 | !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) |
---|
633 | DO i = 1, klon |
---|
634 | DO k = 1, klev |
---|
635 | pqlwpcon(i,k)=rnebcon(i,k)*clwcon(i,k) ! fraction eau liquide convective |
---|
636 | pqlwpstra(i,k)=pclc(i,k)*phase3d(i,k)-pqlwpcon(i,k) ! fraction eau liquide stratiforme |
---|
637 | IF (pqlwpstra(i,k) .LE. 0.0) pqlwpstra(i,k)=0.0 |
---|
638 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
---|
639 | reffclwc(i,k)=1.1 |
---|
640 | & *((pqlwpcon(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
641 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
642 | reffclwc(i,k) = MAX(reffclwc(i,k) * 1e6, 5.) |
---|
643 | |
---|
644 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
---|
645 | IF ((pclc(i,k)-rnebcon(i,k)) .LE. seuil_neb) THEN ! tout sous la forme convective |
---|
646 | reffclws(i,k)=0.0 |
---|
647 | lcc3dstra(i,k)= 0.0 |
---|
648 | ELSE |
---|
649 | reffclws(i,k) = (pclc(i,k)*phase3d(i,k)* |
---|
650 | & rad_chaud_tab(i,k)- |
---|
651 | & pqlwpcon(i,k)*reffclwc(i,k)) |
---|
652 | IF(reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
653 | lcc3dstra(i,k)=pqlwpstra(i,k) |
---|
654 | ENDIF |
---|
655 | !Convertion from um to m |
---|
656 | IF(rnebcon(i,k). LE. seuil_neb) THEN |
---|
657 | reffclwc(i,k) = reffclwc(i,k)*seuil_neb*clwcon(i,k) |
---|
658 | & *1.0E-06 |
---|
659 | lcc3dcon(i,k)= seuil_neb*clwcon(i,k) |
---|
660 | ELSE |
---|
661 | reffclwc(i,k) = reffclwc(i,k)*pqlwpcon(i,k) |
---|
662 | & *1.0E-06 |
---|
663 | lcc3dcon(i,k) = pqlwpcon(i,k) |
---|
664 | ENDIF |
---|
665 | |
---|
666 | reffclws(i,k) = reffclws(i,k)*1.0E-06 |
---|
667 | |
---|
668 | ENDDO !klev |
---|
669 | ENDDO !klon |
---|
670 | |
---|
671 | !! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
---|
672 | DO k = 1, klev |
---|
673 | DO i = 1, klon |
---|
674 | pdel(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
675 | zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 |
---|
676 | dh(i,k)=pdel(i,k)/(gravit*zrho(i,k)) ! hauteur de chaque boite (m) |
---|
677 | ENDDO |
---|
678 | ENDDO |
---|
679 | c |
---|
680 | DO i = 1, klon |
---|
681 | cldnvi(i)=0. |
---|
682 | lcc_integrat(i)=0. |
---|
683 | height(i)=0. |
---|
684 | DO k = 1, klev |
---|
685 | cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) |
---|
686 | lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) |
---|
687 | height(i)=height(i)+dh(i,k) |
---|
688 | ENDDO ! klev |
---|
689 | lcc_integrat(i)=lcc_integrat(i)/height(i) |
---|
690 | IF (lcc_integrat(i) .LE. 1.0E-03) THEN |
---|
691 | cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb |
---|
692 | ELSE |
---|
693 | cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) |
---|
694 | ENDIF |
---|
695 | ENDDO ! klon |
---|
696 | |
---|
697 | DO i = 1, klon |
---|
698 | DO k = 1, klev |
---|
699 | IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 |
---|
700 | IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
---|
701 | IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 |
---|
702 | IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 |
---|
703 | IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 |
---|
704 | IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 |
---|
705 | ENDDO |
---|
706 | IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 |
---|
707 | IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 |
---|
708 | IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 |
---|
709 | IF (lcc(i) .LE. 0.0) lcc(i)=0.0 |
---|
710 | ENDDO |
---|
711 | |
---|
712 | ENDIF !ok_aie |
---|
713 | ENDIF !ok newmicro |
---|
714 | c |
---|
715 | C |
---|
716 | RETURN |
---|
717 | END |
---|