source: LMDZ5/branches/LMDZ5V2.0-dev/libf/phylmd/physiq.F @ 1457

Last change on this file since 1457 was 1457, checked in by musat, 14 years ago

Ooops
phyetat0, phyredem: correction dimension verticale pbl_tke: pbl_tke(:,1:klev+1,:)
physiq: pour pouvoir fixer la longitude solaire avec la nouvelle orbite

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 123.1 KB
Line 
1! $Id: physiq.F 1457 2010-11-22 15:19:25Z musat $
2c#define IO_DEBUG
3
4      SUBROUTINE physiq (nlon,nlev,
5     .            debut,lafin,jD_cur, jH_cur,pdtphys,
6     .            paprs,pplay,pphi,pphis,presnivs,clesphy0,
7     .            u,v,t,qx,
8     .            flxmass_w,
9     .            d_u, d_v, d_t, d_qx, d_ps
10     .            , dudyn
11     .            , PVteta)
12
13      USE ioipsl, only: histbeg, histvert, histdef, histend, histsync,
14     $     histwrite, ju2ymds, ymds2ju, ioget_year_len
15      USE comgeomphy
16      USE phys_cal_mod
17      USE write_field_phy
18      USE dimphy
19      USE infotrac
20      USE mod_grid_phy_lmdz
21      USE mod_phys_lmdz_para
22      USE iophy
23      USE misc_mod, mydebug=>debug
24      USE vampir
25      USE pbl_surface_mod, ONLY : pbl_surface
26      USE change_srf_frac_mod
27      USE surface_data,     ONLY : type_ocean, ok_veget
28      USE phys_local_var_mod ! Variables internes non sauvegardees de la physique
29      USE phys_state_var_mod ! Variables sauvegardees de la physique
30      USE phys_output_var_mod ! Variables pour les ecritures des sorties
31      USE fonte_neige_mod, ONLY  : fonte_neige_get_vars
32      USE phys_output_mod
33      use open_climoz_m, only: open_climoz ! ozone climatology from a file
34      use regr_pr_av_m, only: regr_pr_av
35      use netcdf95, only: nf95_close
36cIM for NMC files
37      use netcdf, only: nf90_fill_real
38      use mod_phys_lmdz_mpi_data, only: is_mpi_root
39      USE aero_mod
40      use ozonecm_m, only: ozonecm ! ozone of J.-F. Royer
41      use conf_phys_m, only: conf_phys
42      use radlwsw_m, only: radlwsw
43      USE control_mod
44
45
46      IMPLICIT none
47c======================================================================
48c
49c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818
50c
51c Objet: Moniteur general de la physique du modele
52cAA      Modifications quant aux traceurs :
53cAA                  -  uniformisation des parametrisations ds phytrac
54cAA                  -  stockage des moyennes des champs necessaires
55cAA                     en mode traceur off-line
56c======================================================================
57c   CLEFS CPP POUR LES IO
58c   =====================
59#define histNMC
60c#define histISCCP
61c======================================================================
62c    modif   ( P. Le Van ,  12/10/98 )
63c
64c  Arguments:
65c
66c nlon----input-I-nombre de points horizontaux
67c nlev----input-I-nombre de couches verticales, doit etre egale a klev
68c debut---input-L-variable logique indiquant le premier passage
69c lafin---input-L-variable logique indiquant le dernier passage
70c jD_cur       -R-jour courant a l'appel de la physique (jour julien)
71c jH_cur       -R-heure courante a l'appel de la physique (jour julien)
72c pdtphys-input-R-pas d'integration pour la physique (seconde)
73c paprs---input-R-pression pour chaque inter-couche (en Pa)
74c pplay---input-R-pression pour le mileu de chaque couche (en Pa)
75c pphi----input-R-geopotentiel de chaque couche (g z) (reference sol)
76c pphis---input-R-geopotentiel du sol
77c presnivs-input_R_pressions approximat. des milieux couches ( en PA)
78c u-------input-R-vitesse dans la direction X (de O a E) en m/s
79c v-------input-R-vitesse Y (de S a N) en m/s
80c t-------input-R-temperature (K)
81c qx------input-R-humidite specifique (kg/kg) et d'autres traceurs
82c d_t_dyn-input-R-tendance dynamique pour "t" (K/s)
83c d_q_dyn-input-R-tendance dynamique pour "q" (kg/kg/s)
84c flxmass_w -input-R- flux de masse verticale
85c d_u-----output-R-tendance physique de "u" (m/s/s)
86c d_v-----output-R-tendance physique de "v" (m/s/s)
87c d_t-----output-R-tendance physique de "t" (K/s)
88c d_qx----output-R-tendance physique de "qx" (kg/kg/s)
89c d_ps----output-R-tendance physique de la pression au sol
90cIM
91c PVteta--output-R-vorticite potentielle a des thetas constantes
92c======================================================================
93#include "dimensions.h"
94      integer jjmp1
95      parameter (jjmp1=jjm+1-1/jjm)
96      integer iip1
97      parameter (iip1=iim+1)
98
99#include "regdim.h"
100#include "indicesol.h"
101#include "dimsoil.h"
102#include "clesphys.h"
103#include "temps.h"
104#include "iniprint.h"
105#include "thermcell.h"
106c======================================================================
107      LOGICAL ok_cvl  ! pour activer le nouveau driver pour convection KE
108      PARAMETER (ok_cvl=.TRUE.)
109      LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface
110      PARAMETER (ok_gust=.FALSE.)
111      integer iflag_radia     ! active ou non le rayonnement (MPL)
112      save iflag_radia
113c$OMP THREADPRIVATE(iflag_radia)
114c======================================================================
115      LOGICAL check ! Verifier la conservation du modele en eau
116      PARAMETER (check=.FALSE.)
117      LOGICAL ok_stratus ! Ajouter artificiellement les stratus
118      PARAMETER (ok_stratus=.FALSE.)
119c======================================================================
120      REAL amn, amx
121      INTEGER igout
122c======================================================================
123c Clef controlant l'activation du cycle diurne:
124ccc      LOGICAL cycle_diurne
125ccc      PARAMETER (cycle_diurne=.FALSE.)
126c======================================================================
127c Modele thermique du sol, a activer pour le cycle diurne:
128ccc      LOGICAL soil_model
129ccc      PARAMETER (soil_model=.FALSE.)
130c======================================================================
131c Dans les versions precedentes, l'eau liquide nuageuse utilisee dans
132c le calcul du rayonnement est celle apres la precipitation des nuages.
133c Si cette cle new_oliq est activee, ce sera une valeur moyenne entre
134c la condensation et la precipitation. Cette cle augmente les impacts
135c radiatifs des nuages.
136ccc      LOGICAL new_oliq
137ccc      PARAMETER (new_oliq=.FALSE.)
138c======================================================================
139c Clefs controlant deux parametrisations de l'orographie:
140cc      LOGICAL ok_orodr
141ccc      PARAMETER (ok_orodr=.FALSE.)
142ccc      LOGICAL ok_orolf
143ccc      PARAMETER (ok_orolf=.FALSE.)
144c======================================================================
145      LOGICAL ok_journe ! sortir le fichier journalier
146      save ok_journe
147c$OMP THREADPRIVATE(ok_journe)
148c
149      LOGICAL ok_mensuel ! sortir le fichier mensuel
150      save ok_mensuel
151c$OMP THREADPRIVATE(ok_mensuel)
152c
153      LOGICAL ok_instan ! sortir le fichier instantane
154      save ok_instan
155c$OMP THREADPRIVATE(ok_instan)
156c
157      LOGICAL ok_LES ! sortir le fichier LES
158      save ok_LES                           
159c$OMP THREADPRIVATE(ok_LES)                 
160c
161      LOGICAL ok_region ! sortir le fichier regional
162      PARAMETER (ok_region=.FALSE.)
163c======================================================================
164      real weak_inversion(klon),dthmin(klon)
165      real seuil_inversion
166      save seuil_inversion
167c$OMP THREADPRIVATE(seuil_inversion)
168      integer iflag_ratqs
169      save iflag_ratqs
170c$OMP THREADPRIVATE(iflag_ratqs)
171      REAL lambda_th(klon,klev),zz,znum,zden
172      REAL wmax_th(klon)
173      REAL zmax_th(klon)
174      REAL tau_overturning_th(klon)
175
176      integer lmax_th(klon)
177      integer limbas(klon)
178      real ratqscth(klon,klev)
179      real ratqsdiff(klon,klev)
180      real zqsatth(klon,klev)
181
182c======================================================================
183c
184      INTEGER ivap          ! indice de traceurs pour vapeur d'eau
185      PARAMETER (ivap=1)
186      INTEGER iliq          ! indice de traceurs pour eau liquide
187      PARAMETER (iliq=2)
188
189c
190c
191c Variables argument:
192c
193      INTEGER nlon
194      INTEGER nlev
195      REAL, intent(in):: jD_cur, jH_cur
196
197      REAL pdtphys
198      LOGICAL debut, lafin
199      REAL paprs(klon,klev+1)
200      REAL pplay(klon,klev)
201      REAL pphi(klon,klev)
202      REAL pphis(klon)
203      REAL presnivs(klev)
204      REAL znivsig(klev)
205      real pir
206
207      REAL u(klon,klev)
208      REAL v(klon,klev)
209      REAL t(klon,klev),theta(klon,klev)
210      REAL qx(klon,klev,nqtot)
211      REAL flxmass_w(klon,klev)
212      REAL omega(klon,klev) ! vitesse verticale en Pa/s
213      REAL d_u(klon,klev)
214      REAL d_v(klon,klev)
215      REAL d_t(klon,klev)
216      REAL d_qx(klon,klev,nqtot)
217      REAL d_ps(klon)
218      real da(klon,klev),phi(klon,klev,klev),mp(klon,klev)
219!IM definition dynamique o_trac dans phys_output_open
220!      type(ctrl_out) :: o_trac(nqtot)
221c
222cIM Amip2 PV a theta constante
223c
224      INTEGER nbteta
225      PARAMETER(nbteta=3)
226      CHARACTER*3 ctetaSTD(nbteta)
227      DATA ctetaSTD/'350','380','405'/
228      SAVE ctetaSTD
229c$OMP THREADPRIVATE(ctetaSTD)
230      REAL rtetaSTD(nbteta)
231      DATA rtetaSTD/350., 380., 405./
232      SAVE rtetaSTD
233c$OMP THREADPRIVATE(rtetaSTD)     
234c
235      REAL PVteta(klon,nbteta)
236      REAL zx_tmp_3dte(iim,jjmp1,nbteta)
237c
238cMI Amip2 PV a theta constante
239
240cym      INTEGER klevp1, klevm1
241cym      PARAMETER(klevp1=klev+1,klevm1=klev-1)
242cym#include "raddim.h"
243c
244c
245cIM Amip2
246c variables a une pression donnee
247c
248      real rlevSTD(nlevSTD)
249      DATA rlevSTD/100000., 92500., 85000., 70000.,
250     .60000., 50000., 40000., 30000., 25000., 20000.,
251     .15000., 10000., 7000., 5000., 3000., 2000., 1000./
252      SAVE rlevstd
253c$OMP THREADPRIVATE(rlevstd)
254      CHARACTER*4 clevSTD(nlevSTD)
255      DATA clevSTD/'1000','925 ','850 ','700 ','600 ',
256     .'500 ','400 ','300 ','250 ','200 ','150 ','100 ',
257     .'70  ','50  ','30  ','20  ','10  '/
258      SAVE clevSTD
259c$OMP THREADPRIVATE(clevSTD)
260c
261      CHARACTER*4 bb2
262      CHARACTER*2 bb3
263
264      real twriteSTD(klon,nlevSTD,nfiles)
265      real qwriteSTD(klon,nlevSTD,nfiles)
266      real rhwriteSTD(klon,nlevSTD,nfiles)
267      real phiwriteSTD(klon,nlevSTD,nfiles)
268      real uwriteSTD(klon,nlevSTD,nfiles)
269      real vwriteSTD(klon,nlevSTD,nfiles)
270      real wwriteSTD(klon,nlevSTD,nfiles)
271cIM for NMC files
272      REAL geo500(klon)
273      real :: rlevSTD3(nlevSTD3)
274      DATA rlevSTD3/85000., 50000., 25000./
275      SAVE rlevSTD3
276c$OMP THREADPRIVATE(rlevSTD3)
277      real :: rlevSTD8(nlevSTD8)
278      DATA rlevSTD8/100000., 85000., 70000., 50000., 25000., 10000.,
279     $     5000., 1000./
280      SAVE rlevSTD8
281c$OMP THREADPRIVATE(rlevSTD8)
282      real twriteSTD3(klon,nlevSTD3)
283      real qwriteSTD3(klon,nlevSTD3)
284      real rhwriteSTD3(klon,nlevSTD3)
285      real phiwriteSTD3(klon,nlevSTD3)
286      real uwriteSTD3(klon,nlevSTD3)
287      real vwriteSTD3(klon,nlevSTD3)
288      real wwriteSTD3(klon,nlevSTD3)
289c
290      real tnondefSTD8(klon,nlevSTD8)
291      real twriteSTD8(klon,nlevSTD8)
292      real qwriteSTD8(klon,nlevSTD8)
293      real rhwriteSTD8(klon,nlevSTD8)
294      real phiwriteSTD8(klon,nlevSTD8)
295      real uwriteSTD8(klon,nlevSTD8)
296      real vwriteSTD8(klon,nlevSTD8)
297      real wwriteSTD8(klon,nlevSTD8)
298c
299c plevSTD3 END
300c
301c nout : niveau de output des variables a une pression donnee
302      logical oknondef(klon,nlevSTD,nout)
303c
304c les produits uvSTD, vqSTD, .., T2STD sont calcules
305c a partir des valeurs instantannees toutes les 6 h
306c qui sont moyennees sur le mois
307c
308#include "radopt.h"
309c
310c
311c prw: precipitable water
312      real prw(klon)
313
314      REAL convliq(klon,klev)  ! eau liquide nuageuse convective
315      REAL convfra(klon,klev)  ! fraction nuageuse convective
316
317      REAL cldl_c(klon),cldm_c(klon),cldh_c(klon) !nuages bas, moyen et haut
318      REAL cldt_c(klon),cldq_c(klon) !nuage total, eau liquide integree
319      REAL cldl_s(klon),cldm_s(klon),cldh_s(klon) !nuages bas, moyen et haut
320      REAL cldt_s(klon),cldq_s(klon) !nuage total, eau liquide integree
321
322      INTEGER linv, kp1
323c flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2)
324c flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg)
325      REAL flwp(klon), fiwp(klon)
326      REAL flwc(klon,klev), fiwc(klon,klev)
327      REAL flwp_c(klon), fiwp_c(klon)
328      REAL flwc_c(klon,klev), fiwc_c(klon,klev)
329      REAL flwp_s(klon), fiwp_s(klon)
330      REAL flwc_s(klon,klev), fiwc_s(klon,klev)
331
332cIM ISCCP simulator v3.4
333c dans clesphys.h top_height, overlap
334cv3.4
335      INTEGER debug, debugcol
336cym      INTEGER npoints
337cym      PARAMETER(npoints=klon)
338c
339      INTEGER sunlit(klon) !sunlit=1 if day; sunlit=0 if night
340      INTEGER nregISCtot
341      PARAMETER(nregISCtot=1)
342c
343c imin_debut, nbpti, jmin_debut, nbptj : parametres pour sorties sur 1 region rectangulaire
344c y compris pour 1 point
345c imin_debut : indice minimum de i; nbpti : nombre de points en direction i (longitude)
346c jmin_debut : indice minimum de j; nbptj : nombre de points en direction j (latitude)
347      INTEGER imin_debut, nbpti
348      INTEGER jmin_debut, nbptj
349cIM parametres ISCCP BEG
350      INTEGER nbapp_isccp
351!     INTEGER nbapp_isccp,isccppas
352!     PARAMETER(isccppas=6) !appel du simulateurs tous les 6pas de temps de la physique
353!                           !i.e. toutes les 3 heures
354      INTEGER n
355      INTEGER ifreq_isccp(napisccp), freqin_pdt(napisccp)
356      DATA ifreq_isccp/3/
357      SAVE ifreq_isccp
358c$OMP THREADPRIVATE(ifreq_isccp)
359      CHARACTER*5 typinout(napisccp)
360      DATA typinout/'i3od'/
361      SAVE typinout
362c$OMP THREADPRIVATE(typinout)
363cIM verif boxptop BEG
364      CHARACTER*1 verticaxe(napisccp)
365      DATA verticaxe/'1'/
366      SAVE verticaxe
367c$OMP THREADPRIVATE(verticaxe)
368cIM verif boxptop END
369      INTEGER nvlev(napisccp)
370c     INTEGER nvlev
371      REAL t1, aa
372      REAL seed_re(klon,napisccp)
373cym !!!! A voir plus tard
374cym      INTEGER iphy(iim,jjmp1)
375cIM parametres ISCCP END
376c
377c ncol = nb. de sous-colonnes pour chaque maille du GCM
378c ncolmx = No. max. de sous-colonnes pour chaque maille du GCM
379c      INTEGER ncol(napisccp), ncolmx, seed(klon,napisccp)
380      INTEGER,SAVE :: ncol(napisccp)
381c$OMP THREADPRIVATE(ncol)
382      INTEGER ncolmx, seed(klon,napisccp)
383      REAL nbsunlit(nregISCtot,klon,napisccp)  !nbsunlit : moyenne de sunlit
384c     PARAMETER(ncolmx=1500)
385      PARAMETER(ncolmx=300)
386c
387cIM verif boxptop BEG
388      REAL vertlev(ncolmx,napisccp)
389cIM verif boxptop END
390c
391      REAL,SAVE :: tautab_omp(0:255),tautab(0:255)
392      INTEGER,SAVE :: invtau_omp(-20:45000),invtau(-20:45000)
393c$OMP THREADPRIVATE(tautab,invtau)
394      REAL emsfc_lw
395      PARAMETER(emsfc_lw=0.99)
396c     REAL    ran0                      ! type for random number fuction
397c
398      REAL cldtot(klon,klev)
399c variables de haut en bas pour le simulateur ISCCP
400      REAL dtau_s(klon,klev) !tau nuages startiformes
401      REAL dtau_c(klon,klev) !tau nuages convectifs
402      REAL dem_s(klon,klev)  !emissivite nuages startiformes
403      REAL dem_c(klon,klev)  !emissivite nuages convectifs
404c
405c variables de haut en bas pour le simulateur ISCCP
406      REAL pfull(klon,klev)
407      REAL phalf(klon,klev+1)
408      REAL qv(klon,klev)
409      REAL cc(klon,klev)
410      REAL conv(klon,klev)
411      REAL dtau_sH2B(klon,klev)
412      REAL dtau_cH2B(klon,klev)
413      REAL at(klon,klev)
414      REAL dem_sH2B(klon,klev)
415      REAL dem_cH2B(klon,klev)
416c
417      INTEGER kmax, lmax, lmax3
418      PARAMETER(kmax=8, lmax=8, lmax3=3)
419      INTEGER kmaxm1, lmaxm1
420      PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1)
421      INTEGER iimx7, jjmx7, jjmp1x7
422      PARAMETER(iimx7=iim*kmaxm1, jjmx7=jjm*lmaxm1,
423     .jjmp1x7=jjmp1*lmaxm1)
424c
425c output from ISCCP simulator
426      REAL fq_isccp(klon,kmaxm1,lmaxm1,napisccp)
427      REAL fq_is_true(klon,kmaxm1,lmaxm1,napisccp)
428      REAL totalcldarea(klon,napisccp)
429      REAL meanptop(klon,napisccp)
430      REAL meantaucld(klon,napisccp)
431      REAL boxtau(klon,ncolmx,napisccp)
432      REAL boxptop(klon,ncolmx,napisccp)
433      REAL zx_tmp_fi3d_bx(klon,ncolmx)
434      REAL zx_tmp_3d_bx(iim,jjmp1,ncolmx)
435c
436      REAL cld_fi3d(klon,lmax3)
437      REAL cld_3d(iim,jjmp1,lmax3)
438c
439      INTEGER iw, iwmax
440      REAL wmin, pas_w
441c     PARAMETER(wmin=-100.,pas_w=10.,iwmax=30)
442cIM 051005     PARAMETER(wmin=-200.,pas_w=10.,iwmax=40)
443      PARAMETER(wmin=-100.,pas_w=10.,iwmax=20)
444      REAL o500(klon)
445c
446
447c sorties ISCCP
448
449      integer nid_isccp
450      save nid_isccp       
451c$OMP THREADPRIVATE(nid_isccp)
452
453      REAL zx_tau(kmaxm1), zx_pc(lmaxm1), zx_o500(iwmax)
454      DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./
455      SAVE zx_tau
456      DATA zx_pc/180., 310., 440., 560., 680., 800., 1000./
457      SAVE zx_pc
458c$OMP THREADPRIVATE(zx_tau,zx_pc)
459c cldtopres pression au sommet des nuages
460      REAL cldtopres(lmaxm1), cldtopres3(lmax3)
461      DATA cldtopres/180., 310., 440., 560., 680., 800., 1000./
462      DATA cldtopres3/440., 680., 1000./
463      SAVE cldtopres,cldtopres3
464c$OMP THREADPRIVATE(cldtopres,cldtopres3)
465cIM 051005 BEG
466      INTEGER komega, nhoriRD
467
468c taulev: numero du niveau de tau dans les sorties ISCCP
469      CHARACTER *4 taulev(kmaxm1)
470c     DATA taulev/'tau1','tau2','tau3','tau4','tau5','tau6','tau7'/
471      DATA taulev/'tau0','tau1','tau2','tau3','tau4','tau5','tau6'/
472      CHARACTER *3 pclev(lmaxm1)
473      DATA pclev/'pc1','pc2','pc3','pc4','pc5','pc6','pc7'/
474      SAVE taulev,pclev
475c$OMP THREADPRIVATE(taulev,pclev)
476c
477c cnameisccp
478      CHARACTER *29 cnameisccp(lmaxm1,kmaxm1)
479cIM bad 151205     DATA cnameisccp/'pc< 50hPa, tau< 0.3',
480      DATA cnameisccp/'pc= 50-180hPa, tau< 0.3',
481     .                'pc= 180-310hPa, tau< 0.3',
482     .                'pc= 310-440hPa, tau< 0.3',
483     .                'pc= 440-560hPa, tau< 0.3',
484     .                'pc= 560-680hPa, tau< 0.3',
485     .                'pc= 680-800hPa, tau< 0.3',
486     .                'pc= 800-1000hPa, tau< 0.3',
487     .                'pc= 50-180hPa, tau= 0.3-1.3',
488     .                'pc= 180-310hPa, tau= 0.3-1.3',
489     .                'pc= 310-440hPa, tau= 0.3-1.3',
490     .                'pc= 440-560hPa, tau= 0.3-1.3',
491     .                'pc= 560-680hPa, tau= 0.3-1.3',
492     .                'pc= 680-800hPa, tau= 0.3-1.3',
493     .                'pc= 800-1000hPa, tau= 0.3-1.3',
494     .                'pc= 50-180hPa, tau= 1.3-3.6',
495     .                'pc= 180-310hPa, tau= 1.3-3.6',
496     .                'pc= 310-440hPa, tau= 1.3-3.6',
497     .                'pc= 440-560hPa, tau= 1.3-3.6',
498     .                'pc= 560-680hPa, tau= 1.3-3.6',
499     .                'pc= 680-800hPa, tau= 1.3-3.6',
500     .                'pc= 800-1000hPa, tau= 1.3-3.6',
501     .                'pc= 50-180hPa, tau= 3.6-9.4',
502     .                'pc= 180-310hPa, tau= 3.6-9.4',
503     .                'pc= 310-440hPa, tau= 3.6-9.4',
504     .                'pc= 440-560hPa, tau= 3.6-9.4',
505     .                'pc= 560-680hPa, tau= 3.6-9.4',
506     .                'pc= 680-800hPa, tau= 3.6-9.4',
507     .                'pc= 800-1000hPa, tau= 3.6-9.4',
508     .                'pc= 50-180hPa, tau= 9.4-23',
509     .                'pc= 180-310hPa, tau= 9.4-23',
510     .                'pc= 310-440hPa, tau= 9.4-23',
511     .                'pc= 440-560hPa, tau= 9.4-23',
512     .                'pc= 560-680hPa, tau= 9.4-23',
513     .                'pc= 680-800hPa, tau= 9.4-23',
514     .                'pc= 800-1000hPa, tau= 9.4-23',
515     .                'pc= 50-180hPa, tau= 23-60',
516     .                'pc= 180-310hPa, tau= 23-60',
517     .                'pc= 310-440hPa, tau= 23-60',
518     .                'pc= 440-560hPa, tau= 23-60',
519     .                'pc= 560-680hPa, tau= 23-60',
520     .                'pc= 680-800hPa, tau= 23-60',
521     .                'pc= 800-1000hPa, tau= 23-60',
522     .                'pc= 50-180hPa, tau> 60.',
523     .                'pc= 180-310hPa, tau> 60.',
524     .                'pc= 310-440hPa, tau> 60.',
525     .                'pc= 440-560hPa, tau> 60.',
526     .                'pc= 560-680hPa, tau> 60.',
527     .                'pc= 680-800hPa, tau> 60.',
528     .                'pc= 800-1000hPa, tau> 60.'/
529       SAVE cnameisccp
530c$OMP THREADPRIVATE(cnameisccp)
531c
532c     REAL zx_lonx7(iimx7), zx_latx7(jjmp1x7)
533c     INTEGER nhorix7
534cIM: region='3d' <==> sorties en global
535      CHARACTER*3 region
536      PARAMETER(region='3d')
537c
538cIM ISCCP simulator v3.4
539c
540      logical ok_hf
541c
542      integer nid_hf, nid_hf3d
543      save ok_hf, nid_hf, nid_hf3d
544c$OMP THREADPRIVATE(ok_hf, nid_hf, nid_hf3d)
545c  QUESTION : noms de variables ?
546
547      INTEGER        longcles
548      PARAMETER    ( longcles = 20 )
549      REAL clesphy0( longcles      )
550c
551c Variables propres a la physique
552      INTEGER itap
553      SAVE itap                   ! compteur pour la physique
554c$OMP THREADPRIVATE(itap)
555c
556      real slp(klon) ! sea level pressure
557c
558      REAL fevap(klon,nbsrf)
559      REAL fluxlat(klon,nbsrf)
560c
561      REAL qsol(klon)
562      REAL,save ::  solarlong0
563c$OMP THREADPRIVATE(solarlong0)
564
565c
566c  Parametres de l'Orographie a l'Echelle Sous-Maille (OESM):
567c
568cIM 141004     REAL zulow(klon),zvlow(klon),zustr(klon), zvstr(klon)
569      REAL zulow(klon),zvlow(klon)
570c
571      INTEGER igwd,idx(klon),itest(klon)
572c
573      REAL agesno(klon,nbsrf)
574c
575c      REAL,allocatable,save :: run_off_lic_0(:)
576cc$OMP THREADPRIVATE(run_off_lic_0)
577cym      SAVE run_off_lic_0
578cKE43
579c Variables liees a la convection de K. Emanuel (sb):
580c
581      REAL bas, top             ! cloud base and top levels
582      SAVE bas
583      SAVE top
584c$OMP THREADPRIVATE(bas, top)
585
586      REAL wdn(klon), tdn(klon), qdn(klon)
587c
588c=================================================================================================
589cCR04.12.07: on ajoute les nouvelles variables du nouveau schema de convection avec poches froides
590c Variables liées à la poche froide (jyg)
591
592      REAL mip(klon,klev)  ! mass flux shed by the adiab ascent at each level
593      REAL Vprecip(klon,klev+1)   ! precipitation vertical profile
594c
595      REAL wape_prescr, fip_prescr
596      INTEGER it_wape_prescr
597      SAVE wape_prescr, fip_prescr, it_wape_prescr
598c$OMP THREADPRIVATE(wape_prescr, fip_prescr, it_wape_prescr)
599c
600c variables supplementaires de concvl
601      REAL Tconv(klon,klev)
602      REAL ment(klon,klev,klev),sij(klon,klev,klev)
603      REAL dd_t(klon,klev),dd_q(klon,klev)
604
605      real, save :: alp_bl_prescr=0.
606      real, save :: ale_bl_prescr=0.
607
608      real, save :: ale_max=100.
609      real, save :: alp_max=2.
610
611c$OMP THREADPRIVATE(alp_bl_prescr,ale_bl_prescr)
612c$OMP THREADPRIVATE(ale_max,alp_max)
613
614      real ale_wake(klon)
615      real alp_wake(klon)
616cRC
617c Variables liées à la poche froide (jyg et rr)
618c Version diagnostique pour l'instant : pas de rétroaction sur la convection
619
620      REAL t_wake(klon,klev),q_wake(klon,klev) ! wake pour la convection
621
622      REAL wake_dth(klon,klev)        ! wake : temp pot difference
623
624      REAL wake_d_deltat_gw(klon,klev)! wake : delta T tendency due to Gravity Wave (/s)
625      REAL wake_omgbdth(klon,klev)    ! Wake : flux of Delta_Theta transported by LS omega
626      REAL wake_dp_omgb(klon,klev)    ! Wake : vertical gradient of large scale omega
627      REAL wake_dtKE(klon,klev)       ! Wake : differential heating (wake - unpertubed) CONV
628      REAL wake_dqKE(klon,klev)       ! Wake : differential moistening (wake - unpertubed) CONV
629      REAL wake_dtPBL(klon,klev)      ! Wake : differential heating (wake - unpertubed) PBL
630      REAL wake_dqPBL(klon,klev)      ! Wake : differential moistening (wake - unpertubed) PBL
631      REAL wake_omg(klon,klev)        ! Wake : velocity difference (wake - unpertubed)
632      REAL wake_ddeltat(klon,klev),wake_ddeltaq(klon,klev)
633      REAL wake_dp_deltomg(klon,klev) ! Wake : gradient vertical de wake_omg
634      REAL wake_spread(klon,klev)     ! spreading term in wake_delt
635c
636cpourquoi y'a pas de save??
637      REAL wake_h(klon)               ! Wake : hauteur de la poche froide
638c
639      INTEGER wake_k(klon)            ! Wake sommet
640c
641      REAL t_undi(klon,klev)               ! temperature moyenne dans la zone non perturbee
642      REAL q_undi(klon,klev)               ! humidite moyenne dans la zone non perturbee
643c
644cjyg
645ccc      REAL wake_pe(klon)              ! Wake potential energy - WAPE
646
647      REAL wake_gfl(klon)             ! Gust Front Length
648      REAL wake_dens(klon)
649c
650c
651      REAL dt_dwn(klon,klev)
652      REAL dq_dwn(klon,klev)
653      REAL wdt_PBL(klon,klev)
654      REAL udt_PBL(klon,klev)
655      REAL wdq_PBL(klon,klev)
656      REAL udq_PBL(klon,klev)
657      REAL M_dwn(klon,klev)
658      REAL M_up(klon,klev)
659      REAL dt_a(klon,klev)
660      REAL dq_a(klon,klev)
661      REAL, SAVE :: alp_offset
662c$OMP THREADPRIVATE(alp_offset)
663
664c
665cRR:fin declarations poches froides
666c=======================================================================================================
667
668      REAL zw2(klon,klev+1)
669      REAL fraca(klon,klev+1)       
670      REAL ztv(klon,klev)
671      REAL zpspsk(klon,klev)
672      REAL ztla(klon,klev)
673      REAL zthl(klon,klev)
674
675c Variables locales pour la couche limite (al1):
676c
677cAl1      REAL pblh(klon)           ! Hauteur de couche limite
678cAl1      SAVE pblh
679c34EK
680c
681c Variables locales:
682c
683      REAL cdragh(klon) ! drag coefficient pour T and Q
684      REAL cdragm(klon) ! drag coefficient pour vent
685cAA
686cAA  Pour phytrac
687cAA
688      REAL coefh(klon,klev)     ! coef d'echange pour phytrac, valable pour 2<=k<=klev
689      REAL u1(klon)             ! vents dans la premiere couche U
690      REAL v1(klon)             ! vents dans la premiere couche V
691
692      REAL zxffonte(klon), zxfqcalving(klon),zxfqfonte(klon)
693
694c@$$      LOGICAL offline           ! Controle du stockage ds "physique"
695c@$$      PARAMETER (offline=.false.)
696c@$$      INTEGER physid
697      REAL frac_impa(klon,klev) ! fractions d'aerosols lessivees (impaction)
698      REAL frac_nucl(klon,klev) ! idem (nucleation)
699      INTEGER       :: iii
700      REAL          :: calday
701
702cIM cf FH pour Tiedtke 080604
703      REAL rain_tiedtke(klon),snow_tiedtke(klon)
704c
705cIM 050204 END
706      REAL evap(klon), devap(klon) ! evaporation et sa derivee
707      REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee
708
709      REAL bils(klon) ! bilan de chaleur au sol
710      REAL wfbilo(klon,nbsrf) ! bilan d'eau, pour chaque
711C                             ! type de sous-surface et pondere par la fraction
712      REAL wfbils(klon,nbsrf) ! bilan de chaleur au sol, pour chaque
713C                             ! type de sous-surface et pondere par la fraction
714      REAL slab_wfbils(klon)  ! bilan de chaleur au sol pour le cas de slab, sur les points d'ocean
715
716      REAL fder(klon)         
717      REAL ve(klon) ! integr. verticale du transport meri. de l'energie
718      REAL vq(klon) ! integr. verticale du transport meri. de l'eau
719      REAL ue(klon) ! integr. verticale du transport zonal de l'energie
720      REAL uq(klon) ! integr. verticale du transport zonal de l'eau
721c
722      REAL frugs(klon,nbsrf)
723      REAL zxrugs(klon) ! longueur de rugosite
724c
725c Conditions aux limites
726c
727!
728      REAL :: day_since_equinox
729! Date de l'equinoxe de printemps
730      INTEGER, parameter :: mth_eq=3, day_eq=21
731      REAL :: jD_eq
732
733      LOGICAL, parameter :: new_orbit = .true.
734
735c
736      INTEGER lmt_pas
737      SAVE lmt_pas                ! frequence de mise a jour
738c$OMP THREADPRIVATE(lmt_pas)
739      real zmasse(klon, llm)
740C     (column-density of mass of air in a cell, in kg m-2)
741      real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
742
743cIM sorties
744      REAL un_jour
745      PARAMETER(un_jour=86400.)
746c======================================================================
747c
748c Declaration des procedures appelees
749c
750      EXTERNAL angle     ! calculer angle zenithal du soleil
751      EXTERNAL alboc     ! calculer l'albedo sur ocean
752      EXTERNAL ajsec     ! ajustement sec
753      EXTERNAL conlmd    ! convection (schema LMD)
754cKE43
755      EXTERNAL conema3  ! convect4.3
756      EXTERNAL fisrtilp  ! schema de condensation a grande echelle (pluie)
757cAA
758      EXTERNAL fisrtilp_tr ! schema de condensation a grande echelle (pluie)
759c                          ! stockage des coefficients necessaires au
760c                          ! lessivage OFF-LINE et ON-LINE
761      EXTERNAL hgardfou  ! verifier les temperatures
762      EXTERNAL nuage     ! calculer les proprietes radiatives
763CC      EXTERNAL o3cm      ! initialiser l'ozone
764      EXTERNAL orbite    ! calculer l'orbite terrestre
765      EXTERNAL phyetat0  ! lire l'etat initial de la physique
766      EXTERNAL phyredem  ! ecrire l'etat de redemarrage de la physique
767      EXTERNAL suphel    ! initialiser certaines constantes
768      EXTERNAL transp    ! transport total de l'eau et de l'energie
769      EXTERNAL ecribina  ! ecrire le fichier binaire global
770      EXTERNAL ecribins  ! ecrire le fichier binaire global
771      EXTERNAL ecrirega  ! ecrire le fichier binaire regional
772      EXTERNAL ecriregs  ! ecrire le fichier binaire regional
773cIM
774      EXTERNAL haut2bas  !variables de haut en bas
775      INTEGER lnblnk1
776      EXTERNAL lnblnk1   !enleve les blancs a la fin d'une variable de type
777                         !caracter
778      EXTERNAL ini_undefSTD  !initialise a 0 une variable a 1 niveau de pression
779      EXTERNAL undefSTD      !somme les valeurs definies d'1 var a 1 niveau de pression
780c     EXTERNAL moy_undefSTD  !moyenne d'1 var a 1 niveau de pression
781c     EXTERNAL moyglo_aire   !moyenne globale d'1 var ponderee par l'aire de la maille (moyglo_pondaire)
782c                            !par la masse/airetot (moyglo_pondaima) et la vraie masse (moyglo_pondmass)
783c
784c Variables locales
785c
786      REAL rhcl(klon,klev)    ! humiditi relative ciel clair
787      REAL dialiq(klon,klev)  ! eau liquide nuageuse
788      REAL diafra(klon,klev)  ! fraction nuageuse
789      REAL cldliq(klon,klev)  ! eau liquide nuageuse
790      REAL cldfra(klon,klev)  ! fraction nuageuse
791      REAL cldtau(klon,klev)  ! epaisseur optique
792      REAL cldemi(klon,klev)  ! emissivite infrarouge
793c
794CXXX PB
795      REAL fluxq(klon,klev, nbsrf)   ! flux turbulent d'humidite
796      REAL fluxt(klon,klev, nbsrf)   ! flux turbulent de chaleur
797      REAL fluxu(klon,klev, nbsrf)   ! flux turbulent de vitesse u
798      REAL fluxv(klon,klev, nbsrf)   ! flux turbulent de vitesse v
799c
800      REAL zxfluxt(klon, klev)
801      REAL zxfluxq(klon, klev)
802      REAL zxfluxu(klon, klev)
803      REAL zxfluxv(klon, klev)
804CXXX
805c
806      REAL fsollw(klon, nbsrf)   ! bilan flux IR pour chaque sous surface
807      REAL fsolsw(klon, nbsrf)   ! flux solaire absorb. pour chaque sous surface
808c Le rayonnement n'est pas calcule tous les pas, il faut donc
809c                      sauvegarder les sorties du rayonnement
810cym      SAVE  heat,cool,albpla,topsw,toplw,solsw,sollw,sollwdown
811cym      SAVE  sollwdownclr, toplwdown, toplwdownclr
812cym      SAVE  topsw0,toplw0,solsw0,sollw0, heat0, cool0
813c
814      INTEGER itaprad
815      SAVE itaprad
816c$OMP THREADPRIVATE(itaprad)
817c
818      REAL conv_q(klon,klev) ! convergence de l'humidite (kg/kg/s)
819      REAL conv_t(klon,klev) ! convergence de la temperature(K/s)
820c
821      REAL cldl(klon),cldm(klon),cldh(klon) !nuages bas, moyen et haut
822      REAL cldt(klon),cldq(klon) !nuage total, eau liquide integree
823c
824      REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon)
825      REAL zxsnow_dummy(klon)
826c
827      REAL dist, rmu0(klon), fract(klon)
828      REAL zdtime, zlongi
829c
830      CHARACTER*2 str2
831      CHARACTER*2 iqn
832c
833      REAL qcheck
834      REAL z_avant(klon), z_apres(klon), z_factor(klon)
835      LOGICAL zx_ajustq
836c
837      REAL za, zb
838      REAL zx_t, zx_qs, zdelta, zcor, zfra, zlvdcp, zlsdcp
839      real zqsat(klon,klev)
840      INTEGER i, k, iq, ig, j, nsrf, ll, l, iiq, iff
841      REAL t_coup
842      PARAMETER (t_coup=234.0)
843c
844      REAL zphi(klon,klev)
845cym A voir plus tard !!
846cym      REAL zx_relief(iim,jjmp1)
847cym      REAL zx_aire(iim,jjmp1)
848c
849c Grandeurs de sorties
850      REAL s_pblh(klon), s_lcl(klon), s_capCL(klon)
851      REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon)
852      REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon)
853      REAL s_trmb3(klon)
854cKE43
855c Variables locales pour la convection de K. Emanuel (sb):
856c
857      REAL upwd(klon,klev)      ! saturated updraft mass flux
858      REAL dnwd(klon,klev)      ! saturated downdraft mass flux
859      REAL dnwd0(klon,klev)     ! unsaturated downdraft mass flux
860      REAL tvp(klon,klev)       ! virtual temp of lifted parcel
861      CHARACTER*40 capemaxcels  !max(CAPE)
862
863      REAL rflag(klon)          ! flag fonctionnement de convect
864      INTEGER iflagctrl(klon)          ! flag fonctionnement de convect
865
866c -- convect43:
867      INTEGER ntra              ! nb traceurs pour convect4.3
868      REAL pori_con(klon)    ! pressure at the origin level of lifted parcel
869      REAL plcl_con(klon),dtma_con(klon),dtlcl_con(klon)
870      REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev)
871      REAL dplcldt(klon), dplcldr(klon)
872c?     .     condm_con(klon,klev),conda_con(klon,klev),
873c?     .     mr_con(klon,klev),ep_con(klon,klev)
874c?     .    ,sadiab(klon,klev),wadiab(klon,klev)
875c --
876c34EK
877c
878c Variables du changement
879c
880c con: convection
881c lsc: condensation a grande echelle (Large-Scale-Condensation)
882c ajs: ajustement sec
883c eva: evaporation de l'eau liquide nuageuse
884c vdf: couche limite (Vertical DiFfusion)
885      REAL rneb(klon,klev)
886
887! tendance nulles
888      REAL du0(klon,klev),dv0(klon,klev),dq0(klon,klev),dql0(klon,klev)
889
890c
891*********************************************************
892*     declarations
893     
894*********************************************************
895cIM 081204 END
896c
897      REAL pmfu(klon,klev), pmfd(klon,klev)
898      REAL pen_u(klon,klev), pen_d(klon,klev)
899      REAL pde_u(klon,klev), pde_d(klon,klev)
900      INTEGER kcbot(klon), kctop(klon), kdtop(klon)
901      REAL pmflxr(klon,klev+1), pmflxs(klon,klev+1)
902      REAL prfl(klon,klev+1), psfl(klon,klev+1)
903c
904      REAL rain_lsc(klon)
905      REAL snow_lsc(klon)
906c
907      REAL ratqss(klon,klev),ratqsc(klon,klev)
908      real ratqsbas,ratqshaut,tau_ratqs
909      save ratqsbas,ratqshaut,tau_ratqs
910c$OMP THREADPRIVATE(ratqsbas,ratqshaut,tau_ratqs)
911      real zpt_conv(klon,klev)
912
913c Parametres lies au nouveau schema de nuages (SB, PDF)
914      real fact_cldcon
915      real facttemps
916      logical ok_newmicro
917      save ok_newmicro
918      real ref_liq(klon,klev), ref_ice(klon,klev)
919c$OMP THREADPRIVATE(ok_newmicro)
920      save fact_cldcon,facttemps
921c$OMP THREADPRIVATE(fact_cldcon,facttemps)
922      real facteur
923
924      integer iflag_cldcon
925      save iflag_cldcon
926c$OMP THREADPRIVATE(iflag_cldcon)
927      logical ptconv(klon,klev)
928cIM cf. AM 081204 BEG
929      logical ptconvth(klon,klev)
930cIM cf. AM 081204 END
931c
932c Variables liees a l'ecriture de la bande histoire physique
933c
934c======================================================================
935c
936cIM cf. AM 081204 BEG
937c   declarations pour sortir sur une sous-region
938      integer imin_ins,imax_ins,jmin_ins,jmax_ins
939      save imin_ins,imax_ins,jmin_ins,jmax_ins
940c$OMP THREADPRIVATE(imin_ins,imax_ins,jmin_ins,jmax_ins)
941c      real lonmin_ins,lonmax_ins,latmin_ins
942c     s  ,latmax_ins
943c     data lonmin_ins,lonmax_ins,latmin_ins
944c    s  ,latmax_ins/
945c valeurs initiales     s   -5.,20.,41.,55./   
946c    s   100.,130.,-20.,20./
947c    s   -180.,180.,-90.,90./
948c======================================================================
949cIM cf. AM 081204 END
950
951c
952      integer itau_w   ! pas de temps ecriture = itap + itau_phy
953c
954c
955c Variables locales pour effectuer les appels en serie
956c
957      REAL zx_rh(klon,klev)
958cIM RH a 2m (la surface)
959      REAL rh2m(klon), qsat2m(klon)
960      REAL tpot(klon), tpote(klon)
961      REAL Lheat
962
963      INTEGER        length
964      PARAMETER    ( length = 100 )
965      REAL tabcntr0( length       )
966c
967      INTEGER ndex2d(iim*jjmp1),ndex3d(iim*jjmp1*klev)
968cIM
969      INTEGER ndex2d1(iwmax)
970c
971cIM AMIP2 BEG
972      REAL moyglo, mountor
973cIM 141004 BEG
974      REAL zustrdr(klon), zvstrdr(klon)
975      REAL zustrli(klon), zvstrli(klon)
976      REAL zustrph(klon), zvstrph(klon)
977      REAL zustrhi(klon), zvstrhi(klon)
978      REAL aam, torsfc
979cIM 141004 END
980cIM 190504 BEG
981      INTEGER ij, imp1jmp1
982      PARAMETER(imp1jmp1=(iim+1)*jjmp1)
983cym A voir plus tard
984      REAL zx_tmp(imp1jmp1), airedyn(iim+1,jjmp1)
985      REAL padyn(iim+1,jjmp1,klev+1)
986      REAL dudyn(iim+1,jjmp1,klev)
987      REAL rlatdyn(iim+1,jjmp1)
988cIM 190504 END
989      LOGICAL ok_msk
990      REAL msk(klon)
991cIM
992      REAL airetot, pi
993cym A voir plus tard
994cym      REAL zm_wo(jjmp1, klev)
995cIM AMIP2 END
996c
997      REAL zx_tmp_fi2d(klon)      ! variable temporaire grille physique
998      REAL zx_tmp_fi3d(klon,klev) ! variable temporaire pour champs 3D
999c#ifdef histNMC
1000cym   A voir plus tard !!!!
1001cym      REAL zx_tmp_NC(iim,jjmp1,nlevSTD)
1002      REAL zx_tmp_fiNC(klon,nlevSTD)
1003c#endif
1004      REAL(KIND=8) zx_tmp2_fi3d(klon,klev) ! variable temporaire pour champs 3D
1005      REAL zx_tmp_2d(iim,jjmp1), zx_tmp_3d(iim,jjmp1,klev)
1006      REAL zx_lon(iim,jjmp1), zx_lat(iim,jjmp1)
1007cIM for NMC files
1008      REAL missing_val
1009      REAL, SAVE :: freq_moyNMC(nout)
1010c$OMP THREADPRIVATE(freq_moyNMC)
1011c
1012      INTEGER nid_day, nid_mth, nid_ins, nid_mthnmc, nid_daynmc
1013      INTEGER nid_hfnmc, nid_day_seri, nid_ctesGCM
1014      SAVE nid_day, nid_mth, nid_ins, nid_mthnmc, nid_daynmc
1015      SAVE nid_hfnmc, nid_day_seri, nid_ctesGCM
1016c$OMP THREADPRIVATE(nid_day, nid_mth, nid_ins)
1017c$OMP THREADPRIVATE(nid_mthnmc, nid_daynmc, nid_hfnmc)
1018c$OMP THREADPRIVATE(nid_day_seri,nid_ctesGCM)
1019c
1020cIM 280405 BEG
1021      INTEGER nid_bilKPins, nid_bilKPave
1022      SAVE nid_bilKPins, nid_bilKPave
1023c$OMP THREADPRIVATE(nid_bilKPins, nid_bilKPave)
1024c
1025      REAL ve_lay(klon,klev) ! transport meri. de l'energie a chaque niveau vert.
1026      REAL vq_lay(klon,klev) ! transport meri. de l'eau a chaque niveau vert.
1027      REAL ue_lay(klon,klev) ! transport zonal de l'energie a chaque niveau vert.
1028      REAL uq_lay(klon,klev) ! transport zonal de l'eau a chaque niveau vert.
1029c
1030cIM 280405 END
1031c
1032      INTEGER nhori, nvert, nvert1, nvert3
1033      REAL zsto, zsto1, zsto2
1034      REAL zstophy, zstorad, zstohf, zstoday, zstomth, zout
1035      REAL zcals(napisccp), zcalh(napisccp), zoutj(napisccp)
1036      REAL zout_isccp(napisccp)
1037      SAVE zcals, zcalh, zoutj, zout_isccp
1038c$OMP THREADPRIVATE(zcals, zcalh, zoutj, zout_isccp)
1039
1040      real zjulian
1041      save zjulian
1042c$OMP THREADPRIVATE(zjulian)
1043
1044      character*20 modname
1045      character*80 abort_message
1046      logical ok_sync
1047      real date0
1048      integer idayref
1049
1050C essai writephys
1051      integer fid_day, fid_mth, fid_ins
1052      parameter (fid_ins = 1, fid_day = 2, fid_mth = 3)
1053      integer prof2d_on, prof3d_on, prof2d_av, prof3d_av
1054      parameter (prof2d_on = 1, prof3d_on = 2,
1055     .           prof2d_av = 3, prof3d_av = 4)
1056      character*30 nom_fichier
1057      character*10 varname
1058      character*40 vartitle
1059      character*20 varunits
1060C     Variables liees au bilan d'energie et d'enthalpi
1061      REAL ztsol(klon)
1062      REAL      h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot
1063     $        , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot
1064      SAVE      h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot
1065     $        , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot
1066c$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot,
1067c$OMP+              h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot)
1068      REAL      d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec
1069      REAL      d_h_vcol_phy
1070      REAL      fs_bound, fq_bound
1071      SAVE      d_h_vcol_phy
1072c$OMP THREADPRIVATE(d_h_vcol_phy)
1073      REAL      zero_v(klon)
1074      CHARACTER*15 ztit
1075      INTEGER   ip_ebil  ! PRINT level for energy conserv. diag.
1076      SAVE      ip_ebil
1077      DATA      ip_ebil/0/
1078c$OMP THREADPRIVATE(ip_ebil)
1079      INTEGER   if_ebil ! level for energy conserv. dignostics
1080      SAVE      if_ebil
1081c$OMP THREADPRIVATE(if_ebil)
1082c+jld ec_conser
1083      REAL ZRCPD
1084c-jld ec_conser
1085      REAL t2m(klon,nbsrf)  ! temperature a 2m
1086      REAL q2m(klon,nbsrf)  ! humidite a 2m
1087
1088cIM: t2m, q2m, u10m, v10m et t2mincels, t2maxcels
1089      REAL zt2m(klon), zq2m(klon)             !temp., hum. 2m moyenne s/ 1 maille
1090      REAL zu10m(klon), zv10m(klon)           !vents a 10m moyennes s/1 maille
1091      CHARACTER*40 t2mincels, t2maxcels       !t2m min., t2m max
1092      CHARACTER*40 tinst, tave, typeval
1093      REAL cldtaupi(klon,klev)  ! Cloud optical thickness for pre-industrial (pi) aerosols
1094
1095      REAL re(klon, klev)       ! Cloud droplet effective radius
1096      REAL fl(klon, klev)  ! denominator of re
1097
1098      REAL re_top(klon), fl_top(klon) ! CDR at top of liquid water clouds
1099
1100      ! Aerosol optical properties
1101      CHARACTER*4, DIMENSION(naero_grp) :: rfname
1102      REAL, DIMENSION(klon)          :: aerindex     ! POLDER aerosol index
1103      REAL, DIMENSION(klon,klev)     :: mass_solu_aero    ! total mass concentration for all soluble aerosols[ug/m3]
1104      REAL, DIMENSION(klon,klev)     :: mass_solu_aero_pi ! - " - (pre-industrial value)
1105      INTEGER :: naero ! aerosol species
1106
1107      ! Parameters
1108      LOGICAL ok_ade, ok_aie    ! Apply aerosol (in)direct effects or not
1109      REAL bl95_b0, bl95_b1   ! Parameter in Boucher and Lohmann (1995)
1110      SAVE ok_ade, ok_aie, bl95_b0, bl95_b1
1111c$OMP THREADPRIVATE(ok_ade, ok_aie, bl95_b0, bl95_b1)
1112      LOGICAL, SAVE :: aerosol_couple ! true  : calcul des aerosols dans INCA
1113                                      ! false : lecture des aerosol dans un fichier
1114c$OMP THREADPRIVATE(aerosol_couple)   
1115      INTEGER, SAVE :: flag_aerosol
1116c$OMP THREADPRIVATE(flag_aerosol)
1117      LOGICAL, SAVE :: new_aod
1118c$OMP THREADPRIVATE(new_aod)
1119   
1120c
1121c Declaration des constantes et des fonctions thermodynamiques
1122c
1123      LOGICAL,SAVE :: first=.true.
1124c$OMP THREADPRIVATE(first)
1125
1126      integer iunit
1127
1128      integer, save::  read_climoz ! read ozone climatology
1129C     (let it keep the default OpenMP shared attribute)
1130C     Allowed values are 0, 1 and 2
1131C     0: do not read an ozone climatology
1132C     1: read a single ozone climatology that will be used day and night
1133C     2: read two ozone climatologies, the average day and night
1134C     climatology and the daylight climatology
1135
1136      integer, save:: ncid_climoz ! NetCDF file containing ozone climatologies
1137C     (let it keep the default OpenMP shared attribute)
1138
1139      real, pointer, save:: press_climoz(:)
1140C     (let it keep the default OpenMP shared attribute)
1141!     edges of pressure intervals for ozone climatologies, in Pa, in strictly
1142!     ascending order
1143
1144      integer, save:: co3i = 0
1145!     time index in NetCDF file of current ozone fields
1146c$OMP THREADPRIVATE(co3i)
1147
1148      integer ro3i
1149!     required time index in NetCDF file for the ozone fields, between 1
1150!     and 360
1151
1152#include "YOMCST.h"
1153#include "YOETHF.h"
1154#include "FCTTRE.h"
1155cIM 100106 BEG : pouvoir sortir les ctes de la physique
1156#include "conema3.h"
1157#include "fisrtilp.h"
1158#include "nuage.h"
1159#include "compbl.h"
1160cIM 100106 END : pouvoir sortir les ctes de la physique
1161c
1162!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1163c Declarations pour Simulateur COSP
1164c============================================================
1165      real :: mr_ozone(klon,klev)
1166cIM for NMC files
1167      missing_val=nf90_fill_real
1168c======================================================================
1169! Gestion calendrier : mise a jour du module phys_cal_mod
1170!
1171      CALL phys_cal_update(jD_cur,jH_cur)
1172
1173c======================================================================
1174! Ecriture eventuelle d'un profil verticale en entree de la physique.
1175! Utilise notamment en 1D mais peut etre active egalement en 3D
1176! en imposant la valeur de igout.
1177c======================================================================
1178
1179      if (prt_level.ge.1) then
1180          igout=klon/2+1/klon
1181         write(lunout,*) 'DEBUT DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
1182         write(lunout,*)
1183     s 'nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys'
1184         write(lunout,*)
1185     s  nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys
1186
1187         write(lunout,*) 'paprs, play, phi, u, v, t'
1188         do k=1,klev
1189            write(lunout,*) paprs(igout,k),pplay(igout,k),pphi(igout,k),
1190     s   u(igout,k),v(igout,k),t(igout,k)
1191         enddo
1192         write(lunout,*) 'ovap (g/kg),  oliq (g/kg)'
1193         do k=1,klev
1194            write(lunout,*) qx(igout,k,1)*1000,qx(igout,k,2)*1000.
1195         enddo
1196      endif
1197
1198c======================================================================
1199
1200cym => necessaire pour iflag_con != 2   
1201      pmfd(:,:) = 0.
1202      pen_u(:,:) = 0.
1203      pen_d(:,:) = 0.
1204      pde_d(:,:) = 0.
1205      pde_u(:,:) = 0.
1206      aam=0.
1207
1208      torsfc=0.
1209      forall (k=1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg
1210
1211      if (first) then
1212     
1213cCR:nvelles variables convection/poches froides
1214     
1215      print*, '================================================='
1216      print*, 'Allocation des variables locales et sauvegardees'
1217      call phys_local_var_init
1218c
1219      pasphys=pdtphys
1220c     appel a la lecture du run.def physique
1221      call conf_phys(ok_journe, ok_mensuel,
1222     .     ok_instan, ok_hf,
1223     .     ok_LES,
1224     .     solarlong0,seuil_inversion,
1225     .     fact_cldcon, facttemps,ok_newmicro,iflag_radia,
1226     .     iflag_cldcon,iflag_ratqs,ratqsbas,ratqshaut,tau_ratqs,
1227     .     ok_ade, ok_aie, aerosol_couple,
1228     .     flag_aerosol, new_aod,
1229     .     bl95_b0, bl95_b1,
1230     .     iflag_thermals,nsplit_thermals,tau_thermals,
1231     .     iflag_thermals_ed,iflag_thermals_optflux,
1232c     nv flags pour la convection et les poches froides
1233     .     iflag_coupl,iflag_clos,iflag_wake, read_climoz,
1234     &     alp_offset)
1235      call phys_state_var_init(read_climoz)
1236      call phys_output_var_init
1237      print*, '================================================='
1238cIM for NMC files
1239cIM freq_moyNMC = frequences auxquelles on moyenne les champs accumules
1240cIM               sur les niveaux de pression standard du NMC
1241      DO n=1, nout
1242       freq_moyNMC(n)=freq_outNMC(n)/freq_calNMC(n)
1243      ENDDO
1244c
1245cIM beg
1246          dnwd0=0.0
1247          ftd=0.0
1248          fqd=0.0
1249          cin=0.
1250cym Attention pbase pas initialise dans concvl !!!!
1251          pbase=0
1252cIM 180608
1253c         pmflxr=0.
1254c         pmflxs=0.
1255
1256        itau_con=0
1257        first=.false.
1258
1259      endif  ! first
1260
1261       modname = 'physiq'
1262cIM
1263      IF (ip_ebil_phy.ge.1) THEN
1264        DO i=1,klon
1265          zero_v(i)=0.
1266        END DO
1267      END IF
1268      ok_sync=.TRUE.
1269
1270      IF (debut) THEN
1271         CALL suphel ! initialiser constantes et parametres phys.
1272      ENDIF
1273
1274      if(prt_level.ge.1) print*,'CONVERGENCE PHYSIQUE THERM 1 '
1275
1276
1277c======================================================================
1278! Gestion calendrier : mise a jour du module phys_cal_mod
1279!
1280c     CALL phys_cal_update(jD_cur,jH_cur)
1281
1282c
1283c Si c'est le debut, il faut initialiser plusieurs choses
1284c          ********
1285c
1286       IF (debut) THEN
1287!rv
1288cCRinitialisation de wght_th et lalim_conv pour la definition de la couche alimentation
1289cde la convection a partir des caracteristiques du thermique
1290         wght_th(:,:)=1.
1291         lalim_conv(:)=1
1292cRC
1293         u10m(:,:)=0.
1294         v10m(:,:)=0.
1295         rain_con(:)=0.
1296         snow_con(:)=0.
1297         topswai(:)=0.
1298         topswad(:)=0.
1299         solswai(:)=0.
1300         solswad(:)=0.
1301
1302         lambda_th(:,:)=0.
1303         wmax_th(:)=0.
1304         tau_overturning_th(:)=0.
1305
1306         IF (config_inca /= 'none') THEN
1307            ! jg : initialisation jusqu'au ces variables sont dans restart
1308            ccm(:,:,:) = 0.
1309            tau_aero(:,:,:,:) = 0.
1310            piz_aero(:,:,:,:) = 0.
1311            cg_aero(:,:,:,:) = 0.
1312         END IF
1313
1314         rnebcon0(:,:) = 0.0
1315         clwcon0(:,:) = 0.0
1316         rnebcon(:,:) = 0.0
1317         clwcon(:,:) = 0.0
1318
1319cIM     
1320         IF (ip_ebil_phy.ge.1) d_h_vcol_phy=0.
1321c
1322      print*,'iflag_coupl,iflag_clos,iflag_wake',
1323     .   iflag_coupl,iflag_clos,iflag_wake
1324      print*,'CYCLE_DIURNE', cycle_diurne
1325c
1326      IF (iflag_con.EQ.2.AND.iflag_cldcon.GT.-1) THEN
1327         abort_message = 'Tiedtke needs iflag_cldcon=-2 or -1'
1328         CALL abort_gcm (modname,abort_message,1)
1329      ENDIF
1330c
1331      IF(ok_isccp.AND.iflag_con.LE.2) THEN
1332         abort_message = 'ISCCP-like outputs may be available for KE
1333     .(iflag_con >= 3); for Tiedtke (iflag_con=-2) put ok_isccp=n'
1334         CALL abort_gcm (modname,abort_message,1)
1335      ENDIF
1336c
1337c Initialiser les compteurs:
1338c
1339         itap    = 0
1340         itaprad = 0
1341
1342!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1343!! Un petit travail à faire ici.
1344!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1345
1346         if (iflag_pbl>1) then
1347             PRINT*, "Using method MELLOR&YAMADA"
1348         endif
1349
1350!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1351! FH 2008/05/02 changement lie a la lecture de nbapp_rad dans phylmd plutot que
1352! dyn3d
1353! Attention : la version precedente n'etait pas tres propre.
1354! Il se peut qu'il faille prendre une valeur differente de nbapp_rad
1355! pour obtenir le meme resultat.
1356         dtime=pdtphys
1357         radpas = NINT( 86400./dtime/nbapp_rad)
1358!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1359
1360         CALL phyetat0 ("startphy.nc",clesphy0,tabcntr0)
1361cIM begin
1362          print*,'physiq: clwcon rnebcon ratqs',clwcon(1,1),rnebcon(1,1)
1363     $,ratqs(1,1)
1364cIM end
1365
1366
1367
1368!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1369c
1370C on remet le calendrier a zero
1371c
1372         IF (raz_date .eq. 1) THEN
1373           itau_phy = 0
1374         ENDIF
1375
1376cIM cf. AM 081204 BEG
1377         PRINT*,'cycle_diurne3 =',cycle_diurne
1378cIM cf. AM 081204 END
1379c
1380         CALL printflag( tabcntr0,radpas,ok_journe,
1381     ,                    ok_instan, ok_region )
1382c
1383         IF (ABS(dtime-pdtphys).GT.0.001) THEN
1384            WRITE(lunout,*) 'Pas physique n est pas correct',dtime,
1385     .                        pdtphys
1386            abort_message='Pas physique n est pas correct '
1387!           call abort_gcm(modname,abort_message,1)
1388            dtime=pdtphys
1389         ENDIF
1390         IF (nlon .NE. klon) THEN
1391            WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon,
1392     .                      klon
1393            abort_message='nlon et klon ne sont pas coherents'
1394            call abort_gcm(modname,abort_message,1)
1395         ENDIF
1396         IF (nlev .NE. klev) THEN
1397            WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev,
1398     .                       klev
1399            abort_message='nlev et klev ne sont pas coherents'
1400            call abort_gcm(modname,abort_message,1)
1401         ENDIF
1402c
1403         IF (dtime*REAL(radpas).GT.21600..AND.cycle_diurne) THEN
1404           WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant'
1405           WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne"
1406           abort_message='Nbre d appels au rayonnement insuffisant'
1407           call abort_gcm(modname,abort_message,1)
1408         ENDIF
1409         WRITE(lunout,*)"Clef pour la convection, iflag_con=", iflag_con
1410         WRITE(lunout,*)"Clef pour le driver de la convection, ok_cvl=",
1411     .                   ok_cvl
1412c
1413cKE43
1414c Initialisation pour la convection de K.E. (sb):
1415         IF (iflag_con.GE.3) THEN
1416
1417         WRITE(lunout,*)"*** Convection de Kerry Emanuel 4.3  "
1418         WRITE(lunout,*)
1419     .      "On va utiliser le melange convectif des traceurs qui"
1420         WRITE(lunout,*)"est calcule dans convect4.3"
1421         WRITE(lunout,*)" !!! penser aux logical flags de phytrac"
1422
1423          DO i = 1, klon
1424           ema_cbmf(i) = 0.
1425           ema_pcb(i)  = 0.
1426           ema_pct(i)  = 0.
1427c          ema_workcbmf(i) = 0.
1428          ENDDO
1429cIM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>BEG
1430          DO i = 1, klon
1431           ibas_con(i) = 1
1432           itop_con(i) = 1
1433          ENDDO
1434cIM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>END
1435c===============================================================================
1436cCR:04.12.07: initialisations poches froides
1437c Controle de ALE et ALP pour la fermeture convective (jyg)
1438          if (iflag_wake.eq.1) then
1439            CALL ini_wake(0.,0.,it_wape_prescr,wape_prescr,fip_prescr
1440     s                  ,alp_bl_prescr, ale_bl_prescr)
1441c 11/09/06 rajout initialisation ALE et ALP du wake et PBL(YU)
1442c        print*,'apres ini_wake iflag_cldcon=', iflag_cldcon
1443          endif
1444
1445        do i = 1,klon
1446         Ale_bl(i)=0.
1447         Alp_bl(i)=0.
1448        enddo
1449
1450c================================================================================
1451
1452         ENDIF !debut
1453
1454           DO i=1,klon
1455             rugoro(i) = f_rugoro * MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1456           ENDDO
1457
1458c34EK
1459         IF (ok_orodr) THEN
1460
1461!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1462! FH sans doute a enlever de finitivement ou, si on le garde, l'activer
1463! justement quand ok_orodr = false.
1464! ce rugoro est utilise par la couche limite et fait double emploi
1465! avec les paramétrisations spécifiques de Francois Lott.
1466!           DO i=1,klon
1467!             rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0)
1468!           ENDDO
1469!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1470           IF (ok_strato) THEN
1471             CALL SUGWD_strato(klon,klev,paprs,pplay)
1472           ELSE
1473             CALL SUGWD(klon,klev,paprs,pplay)
1474           ENDIF
1475           
1476           DO i=1,klon
1477             zuthe(i)=0.
1478             zvthe(i)=0.
1479             if(zstd(i).gt.10.)then
1480               zuthe(i)=(1.-zgam(i))*cos(zthe(i))
1481               zvthe(i)=(1.-zgam(i))*sin(zthe(i))
1482             endif
1483           ENDDO
1484         ENDIF
1485c
1486c
1487         lmt_pas = NINT(86400./dtime * 1.0)   ! tous les jours
1488         WRITE(lunout,*)'La frequence de lecture surface est de ',
1489     .                   lmt_pas
1490c
1491cIM 030306 END
1492
1493      capemaxcels = 't_max(X)'
1494      t2mincels = 't_min(X)'
1495      t2maxcels = 't_max(X)'
1496      tinst = 'inst(X)'
1497      tave = 'ave(X)'
1498cIM cf. AM 081204 BEG
1499      write(lunout,*)'AVANT HIST IFLAG_CON=',iflag_con
1500cIM cf. AM 081204 END
1501c
1502c=============================================================
1503c   Initialisation des sorties
1504c=============================================================
1505
1506#ifdef CPP_IOIPSL
1507
1508c$OMP MASTER
1509       call phys_output_open(jjmp1,nlevSTD,clevSTD,nbteta,
1510     &                        ctetaSTD,dtime,ok_veget,
1511     &                        type_ocean,iflag_pbl,ok_mensuel,ok_journe,
1512     &                        ok_hf,ok_instan,ok_LES,ok_ade,ok_aie,
1513     &                        read_climoz, new_aod, aerosol_couple
1514     &                        )
1515c$OMP END MASTER
1516c$OMP BARRIER
1517
1518#ifdef histISCCP
1519#include "ini_histISCCP.h"
1520#endif
1521
1522#ifdef histNMC
1523#include "ini_histhfNMC.h"
1524#include "ini_histdayNMC.h"
1525#include "ini_histmthNMC.h"
1526#endif
1527
1528#include "ini_histday_seri.h"
1529
1530#include "ini_paramLMDZ_phy.h"
1531
1532#endif
1533
1534cIM 250308bad guide        ecrit_hf2mth = 30*1/ecrit_hf
1535         ecrit_hf2mth = ecrit_mth/ecrit_hf
1536
1537         ecrit_hf = ecrit_hf * un_jour
1538cIM
1539         IF(ecrit_day.LE.1.) THEN
1540          ecrit_day = ecrit_day * un_jour !en secondes
1541         ENDIF
1542cIM
1543         ecrit_mth = ecrit_mth * un_jour
1544         ecrit_ins = ecrit_ins * un_jour
1545         ecrit_reg = ecrit_reg * un_jour
1546         ecrit_tra = ecrit_tra * un_jour
1547         ecrit_ISCCP = ecrit_ISCCP * un_jour
1548         ecrit_LES = ecrit_LES * un_jour
1549c
1550         PRINT*,'physiq ecrit_ hf day mth reg tra ISCCP hf2mth',
1551     .   ecrit_hf,ecrit_day,ecrit_mth,ecrit_reg,ecrit_tra,ecrit_ISCCP,
1552     .   ecrit_hf2mth
1553cIM 030306 END
1554
1555
1556cXXXPB Positionner date0 pour initialisation de ORCHIDEE
1557      date0 = jD_ref
1558      WRITE(*,*) 'physiq date0 : ',date0
1559c
1560c
1561c
1562c Prescrire l'ozone dans l'atmosphere
1563c
1564c
1565cc         DO i = 1, klon
1566cc         DO k = 1, klev
1567cc            CALL o3cm (paprs(i,k)/100.,paprs(i,k+1)/100., wo(i,k),20)
1568cc         ENDDO
1569cc         ENDDO
1570c
1571      IF (config_inca /= 'none') THEN
1572#ifdef INCA
1573         CALL VTe(VTphysiq)
1574         CALL VTb(VTinca)
1575!         iii = MOD(NINT(xjour),360)
1576!         calday = REAL(iii) + jH_cur
1577         calday = REAL(days_elapsed) + jH_cur
1578         WRITE(lunout,*) 'initial time chemini', days_elapsed, calday
1579
1580         CALL chemini(
1581     $                   rg,
1582     $                   ra,
1583     $                   airephy,
1584     $                   rlat,
1585     $                   rlon,
1586     $                   presnivs,
1587     $                   calday,
1588     $                   klon,
1589     $                   nqtot,
1590     $                   pdtphys,
1591     $                   annee_ref,
1592     $                   day_ref,
1593     $                   itau_phy)
1594
1595         CALL VTe(VTinca)
1596         CALL VTb(VTphysiq)
1597#endif
1598      END IF
1599c
1600c
1601!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1602! Nouvelle initialisation pour le rayonnement RRTM
1603!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1604
1605      call iniradia(klon,klev,paprs(1,1:klev+1))
1606
1607C$omp single
1608      if (read_climoz >= 1) then
1609         call open_climoz(ncid_climoz, press_climoz)
1610      END IF
1611C$omp end single
1612      ENDIF
1613!
1614!   ****************     Fin  de   IF ( debut  )   ***************
1615!
1616!
1617! Incrementer le compteur de la physique
1618!
1619      itap   = itap + 1
1620!
1621! Update fraction of the sub-surfaces (pctsrf) and
1622! initialize, where a new fraction has appeared, all variables depending
1623! on the surface fraction.
1624!
1625      CALL change_srf_frac(itap, dtime, days_elapsed+1,
1626     *     pctsrf, falb1, falb2, ftsol, u10m, v10m, pbl_tke)
1627
1628! Tendances bidons pour les processus qui n'affectent pas certaines
1629! variables.
1630      du0(:,:)=0.
1631      dv0(:,:)=0.
1632      dq0(:,:)=0.
1633      dql0(:,:)=0.
1634c
1635c Mettre a zero des variables de sortie (pour securite)
1636c
1637      DO i = 1, klon
1638         d_ps(i) = 0.0
1639      ENDDO
1640      DO k = 1, klev
1641      DO i = 1, klon
1642         d_t(i,k) = 0.0
1643         d_u(i,k) = 0.0
1644         d_v(i,k) = 0.0
1645      ENDDO
1646      ENDDO
1647      DO iq = 1, nqtot
1648      DO k = 1, klev
1649      DO i = 1, klon
1650         d_qx(i,k,iq) = 0.0
1651      ENDDO
1652      ENDDO
1653      ENDDO
1654      da(:,:)=0.
1655      mp(:,:)=0.
1656      phi(:,:,:)=0.
1657c
1658c Ne pas affecter les valeurs entrees de u, v, h, et q
1659c
1660      DO k = 1, klev
1661      DO i = 1, klon
1662         t_seri(i,k)  = t(i,k)
1663         u_seri(i,k)  = u(i,k)
1664         v_seri(i,k)  = v(i,k)
1665         q_seri(i,k)  = qx(i,k,ivap)
1666         ql_seri(i,k) = qx(i,k,iliq)
1667         qs_seri(i,k) = 0.
1668      ENDDO
1669      ENDDO
1670      IF (nqtot.GE.3) THEN
1671      DO iq = 3, nqtot
1672      DO  k = 1, klev
1673      DO  i = 1, klon
1674         tr_seri(i,k,iq-2) = qx(i,k,iq)
1675      ENDDO
1676      ENDDO
1677      ENDDO
1678      ELSE
1679      DO k = 1, klev
1680      DO i = 1, klon
1681         tr_seri(i,k,1) = 0.0
1682      ENDDO
1683      ENDDO
1684      ENDIF
1685C
1686      DO i = 1, klon
1687        ztsol(i) = 0.
1688      ENDDO
1689      DO nsrf = 1, nbsrf
1690        DO i = 1, klon
1691          ztsol(i) = ztsol(i) + ftsol(i,nsrf)*pctsrf(i,nsrf)
1692        ENDDO
1693      ENDDO
1694cIM
1695      IF (ip_ebil_phy.ge.1) THEN
1696        ztit='after dynamic'
1697        CALL diagetpq(airephy,ztit,ip_ebil_phy,1,1,dtime
1698     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
1699     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
1700C     Comme les tendances de la physique sont ajoute dans la dynamique,
1701C     on devrait avoir que la variation d'entalpie par la dynamique
1702C     est egale a la variation de la physique au pas de temps precedent.
1703C     Donc la somme de ces 2 variations devrait etre nulle.
1704        call diagphy(airephy,ztit,ip_ebil_phy
1705     e      , zero_v, zero_v, zero_v, zero_v, zero_v
1706     e      , zero_v, zero_v, zero_v, ztsol
1707     e      , d_h_vcol+d_h_vcol_phy, d_qt, 0.
1708     s      , fs_bound, fq_bound )
1709      END IF
1710
1711c Diagnostiquer la tendance dynamique
1712c
1713      IF (ancien_ok) THEN
1714         DO k = 1, klev
1715         DO i = 1, klon
1716            d_u_dyn(i,k) = (u_seri(i,k)-u_ancien(i,k))/dtime
1717            d_v_dyn(i,k) = (v_seri(i,k)-v_ancien(i,k))/dtime
1718            d_t_dyn(i,k) = (t_seri(i,k)-t_ancien(i,k))/dtime
1719            d_q_dyn(i,k) = (q_seri(i,k)-q_ancien(i,k))/dtime
1720         ENDDO
1721         ENDDO
1722      ELSE
1723         DO k = 1, klev
1724         DO i = 1, klon
1725            d_u_dyn(i,k) = 0.0
1726            d_v_dyn(i,k) = 0.0
1727            d_t_dyn(i,k) = 0.0
1728            d_q_dyn(i,k) = 0.0
1729         ENDDO
1730         ENDDO
1731         ancien_ok = .TRUE.
1732      ENDIF
1733c
1734c Ajouter le geopotentiel du sol:
1735c
1736      DO k = 1, klev
1737      DO i = 1, klon
1738         zphi(i,k) = pphi(i,k) + pphis(i)
1739      ENDDO
1740      ENDDO
1741c
1742c Verifier les temperatures
1743c
1744cIM BEG
1745      IF (check) THEN
1746       amn=MIN(ftsol(1,is_ter),1000.)
1747       amx=MAX(ftsol(1,is_ter),-1000.)
1748       DO i=2, klon
1749        amn=MIN(ftsol(i,is_ter),amn)
1750        amx=MAX(ftsol(i,is_ter),amx)
1751       ENDDO
1752c
1753       PRINT*,' debut avant hgardfou min max ftsol',itap,amn,amx
1754      ENDIF !(check) THEN
1755cIM END
1756c
1757      CALL hgardfou(t_seri,ftsol,'debutphy')
1758c
1759cIM BEG
1760      IF (check) THEN
1761       amn=MIN(ftsol(1,is_ter),1000.)
1762       amx=MAX(ftsol(1,is_ter),-1000.)
1763       DO i=2, klon
1764        amn=MIN(ftsol(i,is_ter),amn)
1765        amx=MAX(ftsol(i,is_ter),amx)
1766       ENDDO
1767c
1768       PRINT*,' debut apres hgardfou min max ftsol',itap,amn,amx
1769      ENDIF !(check) THEN
1770cIM END
1771c
1772c Mettre en action les conditions aux limites (albedo, sst, etc.).
1773c Prescrire l'ozone et calculer l'albedo sur l'ocean.
1774c
1775      if (read_climoz >= 1) then
1776C        Ozone from a file
1777!        Update required ozone index:
1778         ro3i = int((days_elapsed + jh_cur - jh_1jan)
1779     $        / ioget_year_len(year_cur) * 360.) + 1
1780         if (ro3i == 361) ro3i = 360
1781C        (This should never occur, except perhaps because of roundup
1782C        error. See documentation.)
1783         if (ro3i /= co3i) then
1784C           Update ozone field:
1785            if (read_climoz == 1) then
1786               call regr_pr_av(ncid_climoz, (/"tro3"/), julien=ro3i,
1787     $              press_in_edg=press_climoz, paprs=paprs, v3=wo)
1788            else
1789C              read_climoz == 2
1790               call regr_pr_av(ncid_climoz,
1791     $              (/"tro3         ", "tro3_daylight"/),
1792     $              julien=ro3i, press_in_edg=press_climoz, paprs=paprs,
1793     $              v3=wo)
1794            end if
1795!           Convert from mole fraction of ozone to column density of ozone in a
1796!           cell, in kDU:
1797            forall (l = 1: read_climoz) wo(:, :, l) = wo(:, :, l)
1798     $           * rmo3 / rmd * zmasse / dobson_u / 1e3
1799C           (By regridding ozone values for LMDZ only once every 360th of
1800C           year, we have already neglected the variation of pressure in one
1801C           360th of year. So do not recompute "wo" at each time step even if
1802C           "zmasse" changes a little.)
1803            co3i = ro3i
1804         end if
1805      elseif (MOD(itap-1,lmt_pas) == 0) THEN
1806C        Once per day, update ozone from Royer:
1807         wo(:, :, 1) = ozonecm(rlat, paprs, rjour=real(days_elapsed+1))
1808      ENDIF
1809c
1810c Re-evaporer l'eau liquide nuageuse
1811c
1812      DO k = 1, klev  ! re-evaporation de l'eau liquide nuageuse
1813      DO i = 1, klon
1814         zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i,k))
1815c        zlsdcp=RLSTT/RCPD/(1.0+RVTMP2*q_seri(i,k))
1816         zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i,k))
1817         zdelta = MAX(0.,SIGN(1.,RTT-t_seri(i,k)))
1818         zb = MAX(0.0,ql_seri(i,k))
1819         za = - MAX(0.0,ql_seri(i,k))
1820     .                  * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta)
1821         t_seri(i,k) = t_seri(i,k) + za
1822         q_seri(i,k) = q_seri(i,k) + zb
1823         ql_seri(i,k) = 0.0
1824         d_t_eva(i,k) = za
1825         d_q_eva(i,k) = zb
1826      ENDDO
1827      ENDDO
1828cIM
1829      IF (ip_ebil_phy.ge.2) THEN
1830        ztit='after reevap'
1831        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,1,dtime
1832     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
1833     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
1834         call diagphy(airephy,ztit,ip_ebil_phy
1835     e      , zero_v, zero_v, zero_v, zero_v, zero_v
1836     e      , zero_v, zero_v, zero_v, ztsol
1837     e      , d_h_vcol, d_qt, d_ec
1838     s      , fs_bound, fq_bound )
1839C
1840      END IF
1841
1842c
1843c=========================================================================
1844! Calculs de l'orbite.
1845! Necessaires pour le rayonnement et la surface (calcul de l'albedo).
1846! doit donc etre placé avant radlwsw et pbl_surface
1847
1848!!!   jyg 17 Sep 2010 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1849      call ymds2ju(year_cur, mth_eq, day_eq,0., jD_eq)
1850      day_since_equinox = (jD_cur + jH_cur) - jD_eq
1851!
1852!   choix entre calcul de la longitude solaire vraie ou valeur fixee a
1853!   solarlong0
1854      if (solarlong0<-999.) then
1855       if (new_orbit) then
1856! calcul selon la routine utilisee pour les planetes
1857        call solarlong(day_since_equinox, zlongi, dist)
1858       else   
1859! calcul selon la routine utilisee pour l'AR4
1860        CALL orbite(REAL(days_elapsed+1),zlongi,dist)
1861       endif   
1862      else   
1863           zlongi=solarlong0  ! longitude solaire vraie
1864           dist=1.            ! distance au soleil / moyenne
1865      endif   
1866      if(prt_level.ge.1)                                                &
1867     &    write(lunout,*)'Longitude solaire ',zlongi,solarlong0,dist
1868
1869!  Avec ou sans cycle diurne
1870      IF (cycle_diurne) THEN
1871        zdtime=dtime*REAL(radpas) ! pas de temps du rayonnement (s)
1872        CALL zenang(zlongi,jH_cur,zdtime,rlat,rlon,rmu0,fract)
1873      ELSE
1874        CALL angle(zlongi, rlat, fract, rmu0)
1875      ENDIF
1876
1877      if (mydebug) then
1878        call writefield_phy('u_seri',u_seri,llm)
1879        call writefield_phy('v_seri',v_seri,llm)
1880        call writefield_phy('t_seri',t_seri,llm)
1881        call writefield_phy('q_seri',q_seri,llm)
1882      endif
1883
1884ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1885c Appel au pbl_surface : Planetary Boudary Layer et Surface
1886c Cela implique tous les interactions des sous-surfaces et la partie diffusion
1887c turbulent du couche limit.
1888c
1889c Certains varibales de sorties de pbl_surface sont utiliser que pour
1890c ecriture des fihiers hist_XXXX.nc, ces sont :
1891c   qsol,      zq2m,      s_pblh,  s_lcl,
1892c   s_capCL,   s_oliqCL,  s_cteiCL,s_pblT,
1893c   s_therm,   s_trmb1,   s_trmb2, s_trmb3,
1894c   zxrugs,    zu10m,     zv10m,   fder,
1895c   zxqsurf,   rh2m,      zxfluxu, zxfluxv,
1896c   frugs,     agesno,    fsollw,  fsolsw,
1897c   d_ts,      fevap,     fluxlat, t2m,
1898c   wfbils,    wfbilo,    fluxt,   fluxu, fluxv,
1899c
1900c Certains ne sont pas utiliser du tout :
1901c   dsens, devap, zxsnow, zxfluxt, zxfluxq, q2m, fluxq
1902c
1903
1904      CALL pbl_surface(
1905     e     dtime,     date0,     itap,    days_elapsed+1,
1906     e     debut,     lafin,
1907     e     rlon,      rlat,      rugoro,  rmu0,     
1908     e     rain_fall, snow_fall, solsw,   sollw,   
1909     e     t_seri,    q_seri,    u_seri,  v_seri,   
1910     e     pplay,     paprs,     pctsrf,           
1911     +     ftsol,     falb1,     falb2,   u10m,   v10m,
1912     s     sollwdown, cdragh,    cdragm,  u1,    v1,
1913     s     albsol1,   albsol2,   sens,    evap, 
1914     s     zxtsol,    zxfluxlat, zt2m,    qsat2m,
1915     s     d_t_vdf,   d_q_vdf,   d_u_vdf, d_v_vdf,
1916     s     coefh,     slab_wfbils,               
1917     d     qsol,      zq2m,      s_pblh,  s_lcl,
1918     d     s_capCL,   s_oliqCL,  s_cteiCL,s_pblT,
1919     d     s_therm,   s_trmb1,   s_trmb2, s_trmb3,
1920     d     zxrugs,    zu10m,     zv10m,   fder,
1921     d     zxqsurf,   rh2m,      zxfluxu, zxfluxv,
1922     d     frugs,     agesno,    fsollw,  fsolsw,
1923     d     d_ts,      fevap,     fluxlat, t2m,
1924     d     wfbils,    wfbilo,    fluxt,   fluxu,  fluxv,
1925     -     dsens,     devap,     zxsnow,
1926     -     zxfluxt,   zxfluxq,   q2m,     fluxq, pbl_tke )
1927
1928
1929!-----------------------------------------------------------------------------------------
1930! ajout des tendances de la diffusion turbulente
1931      CALL add_phys_tend(d_u_vdf,d_v_vdf,d_t_vdf,d_q_vdf,dql0,'vdf')
1932!-----------------------------------------------------------------------------------------
1933
1934      if (mydebug) then
1935        call writefield_phy('u_seri',u_seri,llm)
1936        call writefield_phy('v_seri',v_seri,llm)
1937        call writefield_phy('t_seri',t_seri,llm)
1938        call writefield_phy('q_seri',q_seri,llm)
1939      endif
1940
1941
1942      IF (ip_ebil_phy.ge.2) THEN
1943        ztit='after surface_main'
1944        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
1945     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
1946     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
1947         call diagphy(airephy,ztit,ip_ebil_phy
1948     e      , zero_v, zero_v, zero_v, zero_v, sens
1949     e      , evap  , zero_v, zero_v, ztsol
1950     e      , d_h_vcol, d_qt, d_ec
1951     s      , fs_bound, fq_bound )
1952      END IF
1953
1954c =================================================================== c
1955c   Calcul de Qsat
1956
1957      DO k = 1, klev
1958      DO i = 1, klon
1959         zx_t = t_seri(i,k)
1960         IF (thermcep) THEN
1961            zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
1962            zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
1963            zx_qs  = MIN(0.5,zx_qs)
1964            zcor   = 1./(1.-retv*zx_qs)
1965            zx_qs  = zx_qs*zcor
1966         ELSE
1967           IF (zx_t.LT.t_coup) THEN
1968              zx_qs = qsats(zx_t)/pplay(i,k)
1969           ELSE
1970              zx_qs = qsatl(zx_t)/pplay(i,k)
1971           ENDIF
1972         ENDIF
1973         zqsat(i,k)=zx_qs
1974      ENDDO
1975      ENDDO
1976
1977      if (prt_level.ge.1) then
1978      write(lunout,*) 'L   qsat (g/kg) avant clouds_gno'
1979      write(lunout,'(i4,f15.4)') (k,1000.*zqsat(igout,k),k=1,klev)
1980      endif
1981c
1982c Appeler la convection (au choix)
1983c
1984      DO k = 1, klev
1985      DO i = 1, klon
1986         conv_q(i,k) = d_q_dyn(i,k)
1987     .               + d_q_vdf(i,k)/dtime
1988         conv_t(i,k) = d_t_dyn(i,k)
1989     .               + d_t_vdf(i,k)/dtime
1990      ENDDO
1991      ENDDO
1992      IF (check) THEN
1993         za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy)
1994         WRITE(lunout,*) "avantcon=", za
1995      ENDIF
1996      zx_ajustq = .FALSE.
1997      IF (iflag_con.EQ.2) zx_ajustq=.TRUE.
1998      IF (zx_ajustq) THEN
1999         DO i = 1, klon
2000            z_avant(i) = 0.0
2001         ENDDO
2002         DO k = 1, klev
2003         DO i = 1, klon
2004            z_avant(i) = z_avant(i) + (q_seri(i,k)+ql_seri(i,k))
2005     .                        *(paprs(i,k)-paprs(i,k+1))/RG
2006         ENDDO
2007         ENDDO
2008      ENDIF
2009
2010c Calcule de vitesse verticale a partir de flux de masse verticale
2011      DO k = 1, klev
2012         DO i = 1, klon
2013            omega(i,k) = RG*flxmass_w(i,k) / airephy(i)
2014         END DO
2015      END DO
2016      if (prt_level.ge.1) write(lunout,*) 'omega(igout, :) = ',
2017     $     omega(igout, :)
2018
2019      IF (iflag_con.EQ.1) THEN
2020        abort_message ='reactiver le call conlmd dans physiq.F'
2021        CALL abort_gcm (modname,abort_message,1)
2022c     CALL conlmd (dtime, paprs, pplay, t_seri, q_seri, conv_q,
2023c    .             d_t_con, d_q_con,
2024c    .             rain_con, snow_con, ibas_con, itop_con)
2025      ELSE IF (iflag_con.EQ.2) THEN
2026      CALL conflx(dtime, paprs, pplay, t_seri, q_seri,
2027     e            conv_t, conv_q, -evap, omega,
2028     s            d_t_con, d_q_con, rain_con, snow_con,
2029     s            pmfu, pmfd, pen_u, pde_u, pen_d, pde_d,
2030     s            kcbot, kctop, kdtop, pmflxr, pmflxs)
2031      d_u_con = 0.
2032      d_v_con = 0.
2033
2034      WHERE (rain_con < 0.) rain_con = 0.
2035      WHERE (snow_con < 0.) snow_con = 0.
2036      DO i = 1, klon
2037         ibas_con(i) = klev+1 - kcbot(i)
2038         itop_con(i) = klev+1 - kctop(i)
2039      ENDDO
2040      ELSE IF (iflag_con.GE.3) THEN
2041c nb of tracers for the KE convection:
2042c MAF la partie traceurs est faite dans phytrac
2043c on met ntra=1 pour limiter les appels mais on peut
2044c supprimer les calculs / ftra.
2045              ntra = 1
2046
2047c=====================================================================================
2048cajout pour la parametrisation des poches froides:
2049ccalcul de t_wake et t_undi: si pas de poches froides, t_wake=t_undi=t_seri
2050      do k=1,klev
2051            do i=1,klon
2052             if (iflag_wake.eq.1) then
2053             t_wake(i,k) = t_seri(i,k)
2054     .           +(1-wake_s(i))*wake_deltat(i,k)
2055             q_wake(i,k) = q_seri(i,k)
2056     .           +(1-wake_s(i))*wake_deltaq(i,k)
2057             t_undi(i,k) = t_seri(i,k)
2058     .           -wake_s(i)*wake_deltat(i,k)
2059             q_undi(i,k) = q_seri(i,k)
2060     .           -wake_s(i)*wake_deltaq(i,k)
2061             else
2062             t_wake(i,k) = t_seri(i,k)
2063             q_wake(i,k) = q_seri(i,k)
2064             t_undi(i,k) = t_seri(i,k)
2065             q_undi(i,k) = q_seri(i,k)
2066             endif
2067            enddo
2068         enddo
2069     
2070cc--   Calcul de l'energie disponible ALE (J/kg) et de la puissance disponible ALP (W/m2)
2071cc--    pour le soulevement des particules dans le modele convectif
2072c
2073      do i = 1,klon
2074        ALE(i) = 0.
2075        ALP(i) = 0.
2076      enddo
2077c
2078ccalcul de ale_wake et alp_wake
2079       if (iflag_wake.eq.1) then
2080         if (itap .le. it_wape_prescr) then
2081          do i = 1,klon
2082           ale_wake(i) = wape_prescr
2083           alp_wake(i) = fip_prescr
2084          enddo
2085         else
2086          do i = 1,klon
2087cjyg  ALE=WAPE au lieu de ALE = 1/2 Cstar**2
2088ccc           ale_wake(i) = 0.5*wake_cstar(i)**2
2089           ale_wake(i) = wake_pe(i)
2090           alp_wake(i) = wake_fip(i)
2091          enddo
2092         endif
2093       else
2094         do i = 1,klon
2095           ale_wake(i) = 0.
2096           alp_wake(i) = 0.
2097         enddo
2098       endif
2099ccombinaison avec ale et alp de couche limite: constantes si pas de couplage, valeurs calculees
2100cdans le thermique sinon
2101       if (iflag_coupl.eq.0) then
2102          if (debut.and.prt_level.gt.9)
2103     $                     WRITE(lunout,*)'ALE et ALP imposes'
2104          do i = 1,klon
2105con ne couple que ale
2106c           ALE(i) = max(ale_wake(i),Ale_bl(i))
2107            ALE(i) = max(ale_wake(i),ale_bl_prescr)
2108con ne couple que alp
2109c           ALP(i) = alp_wake(i) + Alp_bl(i)
2110            ALP(i) = alp_wake(i) + alp_bl_prescr
2111          enddo
2112       else
2113         IF(prt_level>9)WRITE(lunout,*)'ALE et ALP couples au thermique'
2114!         do i = 1,klon
2115!             ALE(i) = max(ale_wake(i),Ale_bl(i))
2116! avant        ALP(i) = alp_wake(i) + Alp_bl(i)
2117!             ALP(i) = alp_wake(i) + Alp_bl(i) + alp_offset ! modif sb
2118!         write(20,*)'ALE',ALE(i),Ale_bl(i),ale_wake(i)
2119!         write(21,*)'ALP',ALP(i),Alp_bl(i),alp_wake(i)
2120!         enddo
2121
2122!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2123! Modif FH 2010/04/27. Sans doute temporaire.
2124! Deux options pour le alp_offset : constant si >Â 0 ou proportionnel Ãa
2125! w si <0
2126!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2127       do i = 1,klon
2128          ALE(i) = max(ale_wake(i),Ale_bl(i))
2129          if (alp_offset>=0.) then
2130            ALP(i) = alp_wake(i) + Alp_bl(i) + alp_offset ! modif sb
2131          else
2132            ALP(i)=alp_wake(i)+Alp_bl(i)+alp_offset*min(omega(i,6),0.)
2133            if (alp(i)<0.) then
2134               print*,'ALP ',alp(i),alp_wake(i)
2135     s         ,Alp_bl(i),alp_offset*min(omega(i,6),0.)
2136            endif
2137          endif
2138       enddo
2139!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2140
2141       endif
2142       do i=1,klon
2143          if (alp(i)>alp_max) then
2144             IF(prt_level>9)WRITE(lunout,*)                             &
2145     &       'WARNING SUPER ALP (seuil=',alp_max,
2146     ,       '): i, alp, alp_wake,ale',i,alp(i),alp_wake(i),ale(i)
2147             alp(i)=alp_max
2148          endif
2149          if (ale(i)>ale_max) then
2150             IF(prt_level>9)WRITE(lunout,*)                             &
2151     &       'WARNING SUPER ALE (seuil=',ale_max,
2152     ,       '): i, alp, alp_wake,ale',i,ale(i),ale_wake(i),alp(i)
2153             ale(i)=ale_max
2154          endif
2155       enddo
2156
2157cfin calcul ale et alp
2158c=================================================================================================
2159
2160
2161c sb, oct02:
2162c Schema de convection modularise et vectorise:
2163c (driver commun aux versions 3 et 4)
2164c
2165          IF (ok_cvl) THEN ! new driver for convectL
2166
2167          CALL concvl (iflag_con,iflag_clos,
2168     .        dtime,paprs,pplay,t_undi,q_undi,
2169     .        t_wake,q_wake,wake_s,
2170     .        u_seri,v_seri,tr_seri,nbtr,
2171     .        ALE,ALP,
2172     .        ema_work1,ema_work2,
2173     .        d_t_con,d_q_con,d_u_con,d_v_con,d_tr,
2174     .        rain_con, snow_con, ibas_con, itop_con, sigd,
2175     .        ema_cbmf,upwd,dnwd,dnwd0,
2176     .        Ma,mip,Vprecip,cape,cin,tvp,Tconv,iflagctrl,
2177     .        pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr,qcondc,wd,
2178     .        pmflxr,pmflxs,da,phi,mp,
2179     .        ftd,fqd,lalim_conv,wght_th)
2180
2181cIM begin
2182c       print*,'physiq: cin pbase dnwd0 ftd fqd ',cin(1),pbase(1),
2183c    .dnwd0(1,1),ftd(1,1),fqd(1,1)
2184cIM end
2185cIM cf. FH
2186              clwcon0=qcondc
2187              pmfu(:,:)=upwd(:,:)+dnwd(:,:)
2188
2189              do i = 1, klon
2190                if (iflagctrl(i).le.1) itau_con(i)=itau_con(i)+1
2191              enddo
2192
2193          ELSE ! ok_cvl
2194
2195c MAF conema3 ne contient pas les traceurs
2196          CALL conema3 (dtime,
2197     .        paprs,pplay,t_seri,q_seri,
2198     .        u_seri,v_seri,tr_seri,ntra,
2199     .        ema_work1,ema_work2,
2200     .        d_t_con,d_q_con,d_u_con,d_v_con,d_tr,
2201     .        rain_con, snow_con, ibas_con, itop_con,
2202     .        upwd,dnwd,dnwd0,bas,top,
2203     .        Ma,cape,tvp,rflag,
2204     .        pbase
2205     .        ,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr
2206     .        ,clwcon0)
2207
2208          ENDIF ! ok_cvl
2209
2210c
2211c Correction precip
2212          rain_con = rain_con * cvl_corr
2213          snow_con = snow_con * cvl_corr
2214c
2215
2216           IF (.NOT. ok_gust) THEN
2217           do i = 1, klon
2218            wd(i)=0.0
2219           enddo
2220           ENDIF
2221
2222c =================================================================== c
2223c Calcul des proprietes des nuages convectifs
2224c
2225
2226c   calcul des proprietes des nuages convectifs
2227             clwcon0(:,:)=fact_cldcon*clwcon0(:,:)
2228             call clouds_gno
2229     s       (klon,klev,q_seri,zqsat,clwcon0,ptconv,ratqsc,rnebcon0)
2230
2231c =================================================================== c
2232
2233          DO i = 1, klon
2234           itop_con(i) = min(max(itop_con(i),1),klev)
2235           ibas_con(i) = min(max(ibas_con(i),1),itop_con(i))
2236          ENDDO
2237
2238          DO i = 1, klon
2239            ema_pcb(i)  = paprs(i,ibas_con(i))
2240          ENDDO
2241          DO i = 1, klon
2242! L'idicage de itop_con peut cacher un pb potentiel
2243! FH sous la dictee de JYG, CR
2244            ema_pct(i)  = paprs(i,itop_con(i)+1)
2245
2246            if (itop_con(i).gt.klev-3) then
2247              if(prt_level >= 9) then
2248                write(lunout,*)'La convection monte trop haut '
2249                write(lunout,*)'itop_con(,',i,',)=',itop_con(i)
2250              endif
2251            endif
2252          ENDDO     
2253      ELSE IF (iflag_con.eq.0) THEN
2254          write(lunout,*) 'On n appelle pas la convection'
2255          clwcon0=0.
2256          rnebcon0=0.
2257          d_t_con=0.
2258          d_q_con=0.
2259          d_u_con=0.
2260          d_v_con=0.
2261          rain_con=0.
2262          snow_con=0.
2263          bas=1
2264          top=1
2265      ELSE
2266          WRITE(lunout,*) "iflag_con non-prevu", iflag_con
2267          CALL abort
2268      ENDIF
2269
2270c     CALL homogene(paprs, q_seri, d_q_con, u_seri,v_seri,
2271c    .              d_u_con, d_v_con)
2272
2273!-----------------------------------------------------------------------------------------
2274! ajout des tendances de la diffusion turbulente
2275      CALL add_phys_tend(d_u_con,d_v_con,d_t_con,d_q_con,dql0,'con')
2276!-----------------------------------------------------------------------------------------
2277
2278      if (mydebug) then
2279        call writefield_phy('u_seri',u_seri,llm)
2280        call writefield_phy('v_seri',v_seri,llm)
2281        call writefield_phy('t_seri',t_seri,llm)
2282        call writefield_phy('q_seri',q_seri,llm)
2283      endif
2284
2285cIM
2286      IF (ip_ebil_phy.ge.2) THEN
2287        ztit='after convect'
2288        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
2289     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
2290     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
2291         call diagphy(airephy,ztit,ip_ebil_phy
2292     e      , zero_v, zero_v, zero_v, zero_v, zero_v
2293     e      , zero_v, rain_con, snow_con, ztsol
2294     e      , d_h_vcol, d_qt, d_ec
2295     s      , fs_bound, fq_bound )
2296      END IF
2297C
2298      IF (check) THEN
2299          za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy)
2300          WRITE(lunout,*)"aprescon=", za
2301          zx_t = 0.0
2302          za = 0.0
2303          DO i = 1, klon
2304            za = za + airephy(i)/REAL(klon)
2305            zx_t = zx_t + (rain_con(i)+
2306     .                   snow_con(i))*airephy(i)/REAL(klon)
2307          ENDDO
2308          zx_t = zx_t/za*dtime
2309          WRITE(lunout,*)"Precip=", zx_t
2310      ENDIF
2311      IF (zx_ajustq) THEN
2312          DO i = 1, klon
2313            z_apres(i) = 0.0
2314          ENDDO
2315          DO k = 1, klev
2316            DO i = 1, klon
2317              z_apres(i) = z_apres(i) + (q_seri(i,k)+ql_seri(i,k))
2318     .            *(paprs(i,k)-paprs(i,k+1))/RG
2319            ENDDO
2320          ENDDO
2321          DO i = 1, klon
2322            z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime)
2323     .          /z_apres(i)
2324          ENDDO
2325          DO k = 1, klev
2326            DO i = 1, klon
2327              IF (z_factor(i).GT.(1.0+1.0E-08) .OR.
2328     .            z_factor(i).LT.(1.0-1.0E-08)) THEN
2329                  q_seri(i,k) = q_seri(i,k) * z_factor(i)
2330              ENDIF
2331            ENDDO
2332          ENDDO
2333      ENDIF
2334      zx_ajustq=.FALSE.
2335
2336c
2337c=============================================================================
2338cRR:Evolution de la poche froide: on ne fait pas de separation wake/env
2339cpour la couche limite diffuse pour l instant
2340c
2341      if (iflag_wake.eq.1) then
2342      DO k=1,klev
2343        DO i=1,klon
2344          dt_dwn(i,k)  = ftd(i,k)
2345          wdt_PBL(i,k) = 0.
2346          dq_dwn(i,k)  = fqd(i,k)
2347          wdq_PBL(i,k) = 0.
2348          M_dwn(i,k)   = dnwd0(i,k)
2349          M_up(i,k)    = upwd(i,k)
2350          dt_a(i,k)    = d_t_con(i,k)/dtime - ftd(i,k)
2351          udt_PBL(i,k) = 0.
2352          dq_a(i,k)    = d_q_con(i,k)/dtime - fqd(i,k)
2353          udq_PBL(i,k) = 0.
2354        ENDDO
2355      ENDDO
2356c
2357ccalcul caracteristiques de la poche froide
2358      call calWAKE (paprs,pplay,dtime
2359     :               ,t_seri,q_seri,omega
2360     :               ,dt_dwn,dq_dwn,M_dwn,M_up
2361     :               ,dt_a,dq_a,sigd
2362     :               ,wdt_PBL,wdq_PBL
2363     :               ,udt_PBL,udq_PBL
2364     o               ,wake_deltat,wake_deltaq,wake_dth
2365     o               ,wake_h,wake_s,wake_dens
2366     o               ,wake_pe,wake_fip,wake_gfl
2367     o               ,dt_wake,dq_wake
2368     o               ,wake_k, t_undi,q_undi
2369     o               ,wake_omgbdth,wake_dp_omgb
2370     o               ,wake_dtKE,wake_dqKE
2371     o               ,wake_dtPBL,wake_dqPBL
2372     o               ,wake_omg,wake_dp_deltomg
2373     o               ,wake_spread,wake_Cstar,wake_d_deltat_gw
2374     o               ,wake_ddeltat,wake_ddeltaq)
2375c
2376!-----------------------------------------------------------------------------------------
2377! ajout des tendances des poches froides
2378! Faire rapidement disparaitre l'ancien dt_wake pour garder un d_t_wake
2379! coherent avec les autres d_t_...
2380      d_t_wake(:,:)=dt_wake(:,:)*dtime
2381      d_q_wake(:,:)=dq_wake(:,:)*dtime
2382      CALL add_phys_tend(du0,dv0,d_t_wake,d_q_wake,dql0,'wake')
2383!-----------------------------------------------------------------------------------------
2384
2385      endif
2386c
2387c===================================================================
2388cJYG
2389      IF (ip_ebil_phy.ge.2) THEN
2390        ztit='after wake'
2391        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
2392     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
2393     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
2394        call diagphy(airephy,ztit,ip_ebil_phy
2395     e      , zero_v, zero_v, zero_v, zero_v, zero_v
2396     e      , zero_v, zero_v, zero_v, ztsol
2397     e      , d_h_vcol, d_qt, d_ec
2398     s      , fs_bound, fq_bound )
2399      END IF
2400
2401c      print*,'apres callwake iflag_cldcon=', iflag_cldcon
2402c
2403c===================================================================
2404c Convection seche (thermiques ou ajustement)
2405c===================================================================
2406c
2407       call stratocu_if(klon,klev,pctsrf,paprs, pplay,t_seri
2408     s ,seuil_inversion,weak_inversion,dthmin)
2409
2410
2411
2412      d_t_ajsb(:,:)=0.
2413      d_q_ajsb(:,:)=0.
2414      d_t_ajs(:,:)=0.
2415      d_u_ajs(:,:)=0.
2416      d_v_ajs(:,:)=0.
2417      d_q_ajs(:,:)=0.
2418      clwcon0th(:,:)=0.
2419c
2420c      fm_therm(:,:)=0.
2421c      entr_therm(:,:)=0.
2422c      detr_therm(:,:)=0.
2423c
2424      IF(prt_level>9)WRITE(lunout,*)
2425     .    'AVANT LA CONVECTION SECHE , iflag_thermals='
2426     s   ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
2427      if(iflag_thermals.lt.0) then
2428c  Rien
2429c  ====
2430         IF(prt_level>9)WRITE(lunout,*)'pas de convection'
2431
2432
2433      else
2434
2435c  Thermiques
2436c  ==========
2437         IF(prt_level>9)WRITE(lunout,*)'JUSTE AVANT , iflag_thermals='
2438     s   ,iflag_thermals,'   nsplit_thermals=',nsplit_thermals
2439
2440
2441         if (iflag_thermals.gt.1) then
2442         call calltherm(pdtphys
2443     s      ,pplay,paprs,pphi,weak_inversion
2444     s      ,u_seri,v_seri,t_seri,q_seri,zqsat,debut
2445     s      ,d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs
2446     s      ,fm_therm,entr_therm,detr_therm
2447     s      ,zqasc,clwcon0th,lmax_th,ratqscth
2448     s      ,ratqsdiff,zqsatth
2449con rajoute ale et alp, et les caracteristiques de la couche alim
2450     s      ,Ale_bl,Alp_bl,lalim_conv,wght_th, zmax0, f0, zw2,fraca
2451     s      ,ztv,zpspsk,ztla,zthl)
2452
2453! ----------------------------------------------------------------------
2454! Transport de la TKE par les panaches thermiques.
2455! FH : 2010/02/01
2456      if (iflag_pbl.eq.10) then
2457      call thermcell_dtke(klon,klev,nbsrf,pdtphys,fm_therm,entr_therm,
2458     s           rg,paprs,pbl_tke)
2459      endif
2460! ----------------------------------------------------------------------
2461
2462         endif
2463
2464
2465
2466c  Ajustement sec
2467c  ==============
2468
2469! Dans le cas où on active les thermiques, on fait partir l'ajustement
2470! a partir du sommet des thermiques.
2471! Dans le cas contraire, on demarre au niveau 1.
2472
2473         if (iflag_thermals.ge.13.or.iflag_thermals.eq.0) then
2474
2475         if(iflag_thermals.eq.0) then
2476            IF(prt_level>9)WRITE(lunout,*)'ajsec'
2477            limbas(:)=1
2478         else
2479            limbas(:)=lmax_th(:)
2480         endif
2481 
2482! Attention : le call ajsec_convV2 n'est maintenu que momentanneement
2483! pour des test de convergence numerique.
2484! Le nouveau ajsec est a priori mieux, meme pour le cas
2485! iflag_thermals = 0 (l'ancienne version peut faire des tendances
2486! non nulles numeriquement pour des mailles non concernees.
2487
2488         if (iflag_thermals.eq.0) then
2489            CALL ajsec_convV2(paprs, pplay, t_seri,q_seri
2490     s      , d_t_ajsb, d_q_ajsb)
2491         else
2492            CALL ajsec(paprs, pplay, t_seri,q_seri,limbas
2493     s      , d_t_ajsb, d_q_ajsb)
2494         endif
2495
2496!-----------------------------------------------------------------------------------------
2497! ajout des tendances de l'ajustement sec ou des thermiques
2498      CALL add_phys_tend(du0,dv0,d_t_ajsb,d_q_ajsb,dql0,'ajsb')
2499         d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_ajsb(:,:)
2500         d_q_ajs(:,:)=d_q_ajs(:,:)+d_q_ajsb(:,:)
2501
2502!-----------------------------------------------------------------------------------------
2503
2504         endif
2505
2506      endif
2507c
2508c===================================================================
2509cIM
2510      IF (ip_ebil_phy.ge.2) THEN
2511        ztit='after dry_adjust'
2512        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
2513     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
2514     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
2515        call diagphy(airephy,ztit,ip_ebil_phy
2516     e      , zero_v, zero_v, zero_v, zero_v, zero_v
2517     e      , zero_v, zero_v, zero_v, ztsol
2518     e      , d_h_vcol, d_qt, d_ec
2519     s      , fs_bound, fq_bound )
2520      END IF
2521
2522
2523c-------------------------------------------------------------------------
2524c  Caclul des ratqs
2525c-------------------------------------------------------------------------
2526
2527c      print*,'calcul des ratqs'
2528c   ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q
2529c   ----------------
2530c   on ecrase le tableau ratqsc calcule par clouds_gno
2531      if (iflag_cldcon.eq.1) then
2532         do k=1,klev
2533         do i=1,klon
2534            if(ptconv(i,k)) then
2535              ratqsc(i,k)=ratqsbas
2536     s        +fact_cldcon*(q_seri(i,1)-q_seri(i,k))/q_seri(i,k)
2537            else
2538               ratqsc(i,k)=0.
2539            endif
2540         enddo
2541         enddo
2542
2543c-----------------------------------------------------------------------
2544c  par nversion de la fonction log normale
2545c-----------------------------------------------------------------------
2546      else if (iflag_cldcon.eq.4) then
2547         ptconvth(:,:)=.false.
2548         ratqsc(:,:)=0.
2549         if(prt_level.ge.9) print*,'avant clouds_gno thermique'
2550         call clouds_gno
2551     s   (klon,klev,q_seri,zqsat,clwcon0th,ptconvth,ratqsc,rnebcon0th)
2552         if(prt_level.ge.9) print*,' CLOUDS_GNO OK'
2553       
2554       endif
2555
2556c   ratqs stables
2557c   -------------
2558
2559      if (iflag_ratqs.eq.0) then
2560
2561! Le cas iflag_ratqs=0 correspond a la version IPCC 2005 du modele.
2562         do k=1,klev
2563            do i=1, klon
2564               ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)*
2565     s         min((paprs(i,1)-pplay(i,k))/(paprs(i,1)-30000.),1.)
2566            enddo
2567         enddo
2568
2569! Pour iflag_ratqs=1 ou 2, le ratqs est constant au dessus de
2570! 300 hPa (ratqshaut), varie lineariement en fonction de la pression
2571! entre 600 et 300 hPa et est soit constant (ratqsbas) pour iflag_ratqs=1
2572! soit lineaire (entre 0 a la surface et ratqsbas) pour iflag_ratqs=2
2573! Il s'agit de differents tests dans la phase de reglage du modele
2574! avec thermiques.
2575
2576      else if (iflag_ratqs.eq.1) then
2577
2578         do k=1,klev
2579            do i=1, klon
2580               if (pplay(i,k).ge.60000.) then
2581                  ratqss(i,k)=ratqsbas
2582               else if ((pplay(i,k).ge.30000.).and.
2583     s            (pplay(i,k).lt.60000.)) then
2584                  ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)*
2585     s            (60000.-pplay(i,k))/(60000.-30000.)
2586               else
2587                  ratqss(i,k)=ratqshaut
2588               endif
2589            enddo
2590         enddo
2591
2592      else
2593
2594         do k=1,klev
2595            do i=1, klon
2596               if (pplay(i,k).ge.60000.) then
2597                  ratqss(i,k)=ratqsbas
2598     s            *(paprs(i,1)-pplay(i,k))/(paprs(i,1)-60000.)
2599               else if ((pplay(i,k).ge.30000.).and.
2600     s             (pplay(i,k).lt.60000.)) then
2601                    ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)*
2602     s              (60000.-pplay(i,k))/(60000.-30000.)
2603               else
2604                    ratqss(i,k)=ratqshaut
2605               endif
2606            enddo
2607         enddo
2608      endif
2609
2610
2611
2612
2613c  ratqs final
2614c  -----------
2615
2616      if (iflag_cldcon.eq.1 .or.iflag_cldcon.eq.2
2617     s    .or.iflag_cldcon.eq.4) then
2618
2619! On ajoute une constante au ratqsc*2 pour tenir compte de
2620! fluctuations turbulentes de petite echelle
2621
2622         do k=1,klev
2623            do i=1,klon
2624               if ((fm_therm(i,k).gt.1.e-10)) then
2625                  ratqsc(i,k)=sqrt(ratqsc(i,k)**2+0.05**2)
2626               endif
2627            enddo
2628         enddo
2629
2630!   les ratqs sont une combinaison de ratqss et ratqsc
2631       if(prt_level.ge.9)
2632     $       write(lunout,*)'PHYLMD NOUVEAU TAU_RATQS ',tau_ratqs
2633
2634         if (tau_ratqs>1.e-10) then
2635            facteur=exp(-pdtphys/tau_ratqs)
2636         else
2637            facteur=0.
2638         endif
2639         ratqs(:,:)=ratqsc(:,:)*(1.-facteur)+ratqs(:,:)*facteur
2640!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2641! FH 22/09/2009
2642! La ligne ci-dessous faisait osciller le modele et donnait une solution
2643! assymptotique bidon et dépendant fortement du pas de temps.
2644!        ratqs(:,:)=sqrt(ratqs(:,:)**2+ratqss(:,:)**2)
2645!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2646         ratqs(:,:)=max(ratqs(:,:),ratqss(:,:))
2647      else
2648!   on ne prend que le ratqs stable pour fisrtilp
2649         ratqs(:,:)=ratqss(:,:)
2650      endif
2651
2652
2653c
2654c Appeler le processus de condensation a grande echelle
2655c et le processus de precipitation
2656c-------------------------------------------------------------------------
2657      CALL fisrtilp(dtime,paprs,pplay,
2658     .           t_seri, q_seri,ptconv,ratqs,
2659     .           d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq,
2660     .           rain_lsc, snow_lsc,
2661     .           pfrac_impa, pfrac_nucl, pfrac_1nucl,
2662     .           frac_impa, frac_nucl,
2663     .           prfl, psfl, rhcl,
2664     .           zqasc, fraca,ztv,zpspsk,ztla,zthl,iflag_cldcon )
2665
2666      WHERE (rain_lsc < 0) rain_lsc = 0.
2667      WHERE (snow_lsc < 0) snow_lsc = 0.
2668!-----------------------------------------------------------------------------------------
2669! ajout des tendances de la diffusion turbulente
2670      CALL add_phys_tend(du0,dv0,d_t_lsc,d_q_lsc,d_ql_lsc,'lsc')
2671!-----------------------------------------------------------------------------------------
2672      DO k = 1, klev
2673      DO i = 1, klon
2674         cldfra(i,k) = rneb(i,k)
2675         IF (.NOT.new_oliq) cldliq(i,k) = ql_seri(i,k)
2676      ENDDO
2677      ENDDO
2678      IF (check) THEN
2679         za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy)
2680         WRITE(lunout,*)"apresilp=", za
2681         zx_t = 0.0
2682         za = 0.0
2683         DO i = 1, klon
2684            za = za + airephy(i)/REAL(klon)
2685            zx_t = zx_t + (rain_lsc(i)
2686     .                  + snow_lsc(i))*airephy(i)/REAL(klon)
2687        ENDDO
2688         zx_t = zx_t/za*dtime
2689         WRITE(lunout,*)"Precip=", zx_t
2690      ENDIF
2691cIM
2692      IF (ip_ebil_phy.ge.2) THEN
2693        ztit='after fisrt'
2694        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
2695     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
2696     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
2697        call diagphy(airephy,ztit,ip_ebil_phy
2698     e      , zero_v, zero_v, zero_v, zero_v, zero_v
2699     e      , zero_v, rain_lsc, snow_lsc, ztsol
2700     e      , d_h_vcol, d_qt, d_ec
2701     s      , fs_bound, fq_bound )
2702      END IF
2703
2704      if (mydebug) then
2705        call writefield_phy('u_seri',u_seri,llm)
2706        call writefield_phy('v_seri',v_seri,llm)
2707        call writefield_phy('t_seri',t_seri,llm)
2708        call writefield_phy('q_seri',q_seri,llm)
2709      endif
2710
2711c
2712c-------------------------------------------------------------------
2713c  PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT
2714c-------------------------------------------------------------------
2715
2716c 1. NUAGES CONVECTIFS
2717c
2718cIM cf FH
2719c     IF (iflag_cldcon.eq.-1) THEN ! seulement pour Tiedtke
2720      IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke
2721       snow_tiedtke=0.
2722c     print*,'avant calcul de la pseudo precip '
2723c     print*,'iflag_cldcon',iflag_cldcon
2724       if (iflag_cldcon.eq.-1) then
2725          rain_tiedtke=rain_con
2726       else
2727c       print*,'calcul de la pseudo precip '
2728          rain_tiedtke=0.
2729c         print*,'calcul de la pseudo precip 0'
2730          do k=1,klev
2731          do i=1,klon
2732             if (d_q_con(i,k).lt.0.) then
2733                rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i,k)/pdtphys
2734     s         *(paprs(i,k)-paprs(i,k+1))/rg
2735             endif
2736          enddo
2737          enddo
2738       endif
2739c
2740c     call dump2d(iim,jjm,rain_tiedtke(2:klon-1),'PSEUDO PRECIP ')
2741c
2742
2743c Nuages diagnostiques pour Tiedtke
2744      CALL diagcld1(paprs,pplay,
2745cIM cf FH  .             rain_con,snow_con,ibas_con,itop_con,
2746     .             rain_tiedtke,snow_tiedtke,ibas_con,itop_con,
2747     .             diafra,dialiq)
2748      DO k = 1, klev
2749      DO i = 1, klon
2750      IF (diafra(i,k).GT.cldfra(i,k)) THEN
2751         cldliq(i,k) = dialiq(i,k)
2752         cldfra(i,k) = diafra(i,k)
2753      ENDIF
2754      ENDDO
2755      ENDDO
2756
2757      ELSE IF (iflag_cldcon.ge.3) THEN
2758c  On prend pour les nuages convectifs le max du calcul de la
2759c  convection et du calcul du pas de temps precedent diminue d'un facteur
2760c  facttemps
2761      facteur = pdtphys *facttemps
2762      do k=1,klev
2763         do i=1,klon
2764            rnebcon(i,k)=rnebcon(i,k)*facteur
2765            if (rnebcon0(i,k)*clwcon0(i,k).gt.rnebcon(i,k)*clwcon(i,k))
2766     s      then
2767                rnebcon(i,k)=rnebcon0(i,k)
2768                clwcon(i,k)=clwcon0(i,k)
2769            endif
2770         enddo
2771      enddo
2772
2773c
2774cjq - introduce the aerosol direct and first indirect radiative forcings
2775cjq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr)
2776      IF (ok_ade.OR.ok_aie) THEN
2777         IF (.NOT. aerosol_couple)
2778     &        CALL readaerosol_optic(
2779     &        debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref,
2780     &        pdtphys, pplay, paprs, t_seri, rhcl, presnivs,
2781     &        mass_solu_aero, mass_solu_aero_pi,
2782     &        tau_aero, piz_aero, cg_aero,
2783     &        tausum_aero, tau3d_aero)
2784      ELSE
2785cIM 170310 BEG
2786         tausum_aero(:,:,:) = 0.
2787cIM 170310 END
2788         tau_aero(:,:,:,:) = 0.
2789         piz_aero(:,:,:,:) = 0.
2790         cg_aero(:,:,:,:)  = 0.
2791      ENDIF
2792
2793cIM calcul nuages par le simulateur ISCCP
2794c
2795#ifdef histISCCP
2796      IF (ok_isccp) THEN
2797c
2798cIM lecture invtau, tautab des fichiers formattes
2799c
2800      IF (debut) THEN
2801c$OMP MASTER
2802c
2803      open(99,file='tautab.formatted', FORM='FORMATTED')
2804      read(99,'(f30.20)') tautab_omp
2805      close(99)
2806c
2807      open(99,file='invtau.formatted',form='FORMATTED')
2808      read(99,'(i10)') invtau_omp
2809
2810c     print*,'calcul_simulISCCP invtau_omp',invtau_omp
2811c     write(6,'(a,8i10)') 'invtau_omp',(invtau_omp(i),i=1,100)
2812
2813      close(99)
2814c$OMP END MASTER
2815c$OMP BARRIER
2816      tautab=tautab_omp
2817      invtau=invtau_omp
2818c
2819      ENDIF !debut
2820c
2821cIM appel simulateur toutes les  NINT(freq_ISCCP/dtime) heures
2822       IF (MOD(itap,NINT(freq_ISCCP/dtime)).EQ.0) THEN
2823#include "calcul_simulISCCP.h"
2824       ENDIF !(MOD(itap,NINT(freq_ISCCP/dtime))
2825      ENDIF !ok_isccp
2826#endif
2827
2828c   On prend la somme des fractions nuageuses et des contenus en eau
2829
2830      if (iflag_cldcon>=5) then
2831
2832! Si on est sur un point touche par la convection profonde et pas
2833! par les thermiques, on prend la couverture nuageuse et l'eau nuageuse
2834! de la convection profonde.
2835
2836         print*,'TEST SCHEMA DE NUAGES '
2837         do k=1,klev
2838            do i=1,klon
2839               if (ptconv(i,k).and. .not. ptconvth(i,k)) then
2840                   cldfra(i,k)=rnebcon(i,k)
2841                   cldliq(i,k)=rnebcon(i,k)*clwcon(i,k)
2842               endif
2843            enddo
2844         enddo
2845      else
2846! Ancienne version
2847      cldfra(:,:)=min(max(cldfra(:,:),rnebcon(:,:)),1.)
2848      cldliq(:,:)=cldliq(:,:)+rnebcon(:,:)*clwcon(:,:)
2849      endif
2850
2851      ENDIF
2852c
2853c 2. NUAGES STARTIFORMES
2854c
2855      IF (ok_stratus) THEN
2856      CALL diagcld2(paprs,pplay,t_seri,q_seri, diafra,dialiq)
2857      DO k = 1, klev
2858      DO i = 1, klon
2859      IF (diafra(i,k).GT.cldfra(i,k)) THEN
2860         cldliq(i,k) = dialiq(i,k)
2861         cldfra(i,k) = diafra(i,k)
2862      ENDIF
2863      ENDDO
2864      ENDDO
2865      ENDIF
2866c
2867c Precipitation totale
2868c
2869      DO i = 1, klon
2870         rain_fall(i) = rain_con(i) + rain_lsc(i)
2871         snow_fall(i) = snow_con(i) + snow_lsc(i)
2872      ENDDO
2873cIM
2874      IF (ip_ebil_phy.ge.2) THEN
2875        ztit="after diagcld"
2876        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
2877     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
2878     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
2879        call diagphy(airephy,ztit,ip_ebil_phy
2880     e      , zero_v, zero_v, zero_v, zero_v, zero_v
2881     e      , zero_v, zero_v, zero_v, ztsol
2882     e      , d_h_vcol, d_qt, d_ec
2883     s      , fs_bound, fq_bound )
2884      END IF
2885c
2886c Calculer l'humidite relative pour diagnostique
2887c
2888      DO k = 1, klev
2889      DO i = 1, klon
2890         zx_t = t_seri(i,k)
2891         IF (thermcep) THEN
2892            zdelta = MAX(0.,SIGN(1.,rtt-zx_t))
2893            zx_qs  = r2es * FOEEW(zx_t,zdelta)/pplay(i,k)
2894            zx_qs  = MIN(0.5,zx_qs)
2895            zcor   = 1./(1.-retv*zx_qs)
2896            zx_qs  = zx_qs*zcor
2897         ELSE
2898           IF (zx_t.LT.t_coup) THEN
2899              zx_qs = qsats(zx_t)/pplay(i,k)
2900           ELSE
2901              zx_qs = qsatl(zx_t)/pplay(i,k)
2902           ENDIF
2903         ENDIF
2904         zx_rh(i,k) = q_seri(i,k)/zx_qs
2905         zqsat(i,k)=zx_qs
2906      ENDDO
2907      ENDDO
2908
2909cIM Calcul temp.potentielle a 2m (tpot) et temp. potentielle
2910c   equivalente a 2m (tpote) pour diagnostique
2911c
2912      DO i = 1, klon
2913       tpot(i)=zt2m(i)*(100000./paprs(i,1))**RKAPPA
2914       IF (thermcep) THEN
2915        IF(zt2m(i).LT.RTT) then
2916         Lheat=RLSTT
2917        ELSE
2918         Lheat=RLVTT
2919        ENDIF
2920       ELSE
2921        IF (zt2m(i).LT.RTT) THEN
2922         Lheat=RLSTT
2923        ELSE
2924         Lheat=RLVTT
2925        ENDIF
2926       ENDIF
2927       tpote(i) = tpot(i)*     
2928     . EXP((Lheat *qsat2m(i))/(RCPD*zt2m(i)))
2929      ENDDO
2930
2931      IF (config_inca /= 'none') THEN
2932#ifdef INCA
2933         CALL VTe(VTphysiq)
2934         CALL VTb(VTinca)
2935         calday = REAL(days_elapsed + 1) + jH_cur
2936
2937         call chemtime(itap+itau_phy-1, date0, dtime)
2938         IF (config_inca == 'aero') THEN
2939            CALL AEROSOL_METEO_CALC(
2940     $           calday,pdtphys,pplay,paprs,t,pmflxr,pmflxs,
2941     $           prfl,psfl,pctsrf,airephy,rlat,rlon,u10m,v10m)
2942         END IF
2943
2944         zxsnow_dummy(:) = 0.0
2945
2946         CALL chemhook_begin (calday,
2947     $                          days_elapsed+1,
2948     $                          jH_cur,
2949     $                          pctsrf(1,1),
2950     $                          rlat,
2951     $                          rlon,
2952     $                          airephy,
2953     $                          paprs,
2954     $                          pplay,
2955     $                          coefh,
2956     $                          pphi,
2957     $                          t_seri,
2958     $                          u,
2959     $                          v,
2960     $                          wo(:, :, 1),
2961     $                          q_seri,
2962     $                          zxtsol,
2963     $                          zxsnow_dummy,
2964     $                          solsw,
2965     $                          albsol1,
2966     $                          rain_fall,
2967     $                          snow_fall,
2968     $                          itop_con,
2969     $                          ibas_con,
2970     $                          cldfra,
2971     $                          iim,
2972     $                          jjm,
2973     $                          tr_seri,
2974     $                          ftsol,
2975     $                          paprs,
2976     $                          cdragh,
2977     $                          cdragm,
2978     $                          pctsrf,
2979     $                          pdtphys,
2980     $                            itap)
2981
2982         CALL VTe(VTinca)
2983         CALL VTb(VTphysiq)
2984#endif
2985      END IF !config_inca /= 'none'
2986c     
2987c Calculer les parametres optiques des nuages et quelques
2988c parametres pour diagnostiques:
2989c
2990
2991      IF (aerosol_couple) THEN
2992         mass_solu_aero(:,:)    = ccm(:,:,1)
2993         mass_solu_aero_pi(:,:) = ccm(:,:,2)
2994      END IF
2995
2996      if (ok_newmicro) then
2997      CALL newmicro (paprs, pplay,ok_newmicro,
2998     .            t_seri, cldliq, cldfra, cldtau, cldemi,
2999     .            cldh, cldl, cldm, cldt, cldq,
3000     .            flwp, fiwp, flwc, fiwc,
3001     e            ok_aie,
3002     e            mass_solu_aero, mass_solu_aero_pi,
3003     e            bl95_b0, bl95_b1,
3004     s            cldtaupi, re, fl, ref_liq, ref_ice)
3005      else
3006      CALL nuage (paprs, pplay,
3007     .            t_seri, cldliq, cldfra, cldtau, cldemi,
3008     .            cldh, cldl, cldm, cldt, cldq,
3009     e            ok_aie,
3010     e            mass_solu_aero, mass_solu_aero_pi,
3011     e            bl95_b0, bl95_b1,
3012     s            cldtaupi, re, fl)
3013     
3014      endif
3015c
3016c Appeler le rayonnement mais calculer tout d'abord l'albedo du sol.
3017c
3018      IF (MOD(itaprad,radpas).EQ.0) THEN
3019
3020      DO i = 1, klon
3021         albsol1(i) = falb1(i,is_oce) * pctsrf(i,is_oce)
3022     .             + falb1(i,is_lic) * pctsrf(i,is_lic)
3023     .             + falb1(i,is_ter) * pctsrf(i,is_ter)
3024     .             + falb1(i,is_sic) * pctsrf(i,is_sic)
3025         albsol2(i) = falb2(i,is_oce) * pctsrf(i,is_oce)
3026     .               + falb2(i,is_lic) * pctsrf(i,is_lic)
3027     .               + falb2(i,is_ter) * pctsrf(i,is_ter)
3028     .               + falb2(i,is_sic) * pctsrf(i,is_sic)
3029      ENDDO
3030
3031      if (mydebug) then
3032        call writefield_phy('u_seri',u_seri,llm)
3033        call writefield_phy('v_seri',v_seri,llm)
3034        call writefield_phy('t_seri',t_seri,llm)
3035       call writefield_phy('q_seri',q_seri,llm)
3036      endif
3037     
3038      IF (aerosol_couple) THEN
3039#ifdef INCA
3040         CALL radlwsw_inca
3041     e        (kdlon,kflev,dist, rmu0, fract, solaire,
3042     e        paprs, pplay,zxtsol,albsol1, albsol2, t_seri,q_seri,
3043     e        wo(:, :, 1),
3044     e        cldfra, cldemi, cldtau,
3045     s        heat,heat0,cool,cool0,radsol,albpla,
3046     s        topsw,toplw,solsw,sollw,
3047     s        sollwdown,
3048     s        topsw0,toplw0,solsw0,sollw0,
3049     s        lwdn0, lwdn, lwup0, lwup,
3050     s        swdn0, swdn, swup0, swup,
3051     e        ok_ade, ok_aie,
3052     e        tau_aero, piz_aero, cg_aero,
3053     s        topswad_aero, solswad_aero,
3054     s        topswad0_aero, solswad0_aero,
3055     s        topsw_aero, topsw0_aero,
3056     s        solsw_aero, solsw0_aero,
3057     e        cldtaupi,
3058     s        topswai_aero, solswai_aero)
3059           
3060#endif
3061      ELSE
3062
3063         CALL radlwsw
3064     e        (dist, rmu0, fract,
3065     e        paprs, pplay,zxtsol,albsol1, albsol2,
3066     e        t_seri,q_seri,wo,
3067     e        cldfra, cldemi, cldtau,
3068     e        ok_ade, ok_aie,
3069     e        tau_aero, piz_aero, cg_aero,
3070     e        cldtaupi,new_aod,
3071     e        zqsat, flwc, fiwc,
3072     s        heat,heat0,cool,cool0,radsol,albpla,
3073     s        topsw,toplw,solsw,sollw,
3074     s        sollwdown,
3075     s        topsw0,toplw0,solsw0,sollw0,
3076     s        lwdn0, lwdn, lwup0, lwup,
3077     s        swdn0, swdn, swup0, swup,
3078     s        topswad_aero, solswad_aero,
3079     s        topswai_aero, solswai_aero,
3080     o        topswad0_aero, solswad0_aero,
3081     o        topsw_aero, topsw0_aero,
3082     o        solsw_aero, solsw0_aero,
3083     o        topswcf_aero, solswcf_aero)
3084         
3085
3086      ENDIF ! aerosol_couple
3087      itaprad = 0
3088      ENDIF ! MOD(itaprad,radpas)
3089      itaprad = itaprad + 1
3090
3091      IF (iflag_radia.eq.0) THEN
3092         IF (prt_level.ge.9) THEN
3093            PRINT *,'--------------------------------------------------'
3094            PRINT *,'>>>> ATTENTION rayonnement desactive pour ce cas'
3095            PRINT *,'>>>>           heat et cool mis a zero '
3096            PRINT *,'--------------------------------------------------'
3097         END IF
3098         heat=0.
3099         cool=0.
3100      END IF
3101
3102c
3103c Ajouter la tendance des rayonnements (tous les pas)
3104c
3105      DO k = 1, klev
3106      DO i = 1, klon
3107         t_seri(i,k) = t_seri(i,k)
3108     .               + (heat(i,k)-cool(i,k)) * dtime/RDAY
3109      ENDDO
3110      ENDDO
3111c
3112      if (mydebug) then
3113        call writefield_phy('u_seri',u_seri,llm)
3114        call writefield_phy('v_seri',v_seri,llm)
3115        call writefield_phy('t_seri',t_seri,llm)
3116        call writefield_phy('q_seri',q_seri,llm)
3117      endif
3118 
3119cIM
3120      IF (ip_ebil_phy.ge.2) THEN
3121        ztit='after rad'
3122        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
3123     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
3124     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
3125        call diagphy(airephy,ztit,ip_ebil_phy
3126     e      , topsw, toplw, solsw, sollw, zero_v
3127     e      , zero_v, zero_v, zero_v, ztsol
3128     e      , d_h_vcol, d_qt, d_ec
3129     s      , fs_bound, fq_bound )
3130      END IF
3131c
3132c
3133c Calculer l'hydrologie de la surface
3134c
3135c      CALL hydrol(dtime,pctsrf,rain_fall, snow_fall, zxevap,
3136c     .            agesno, ftsol,fqsurf,fsnow, ruis)
3137c
3138
3139c
3140c Calculer le bilan du sol et la derive de temperature (couplage)
3141c
3142      DO i = 1, klon
3143c         bils(i) = radsol(i) - sens(i) - evap(i)*RLVTT
3144c a la demande de JLD
3145         bils(i) = radsol(i) - sens(i) + zxfluxlat(i)
3146      ENDDO
3147c
3148cmoddeblott(jan95)
3149c Appeler le programme de parametrisation de l'orographie
3150c a l'echelle sous-maille:
3151c
3152      IF (ok_orodr) THEN
3153c
3154c  selection des points pour lesquels le shema est actif:
3155        igwd=0
3156        DO i=1,klon
3157        itest(i)=0
3158c        IF ((zstd(i).gt.10.0)) THEN
3159        IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN
3160          itest(i)=1
3161          igwd=igwd+1
3162          idx(igwd)=i
3163        ENDIF
3164        ENDDO
3165c        igwdim=MAX(1,igwd)
3166c
3167        IF (ok_strato) THEN
3168       
3169          CALL drag_noro_strato(klon,klev,dtime,paprs,pplay,
3170     e                   zmea,zstd, zsig, zgam, zthe,zpic,zval,
3171     e                   igwd,idx,itest,
3172     e                   t_seri, u_seri, v_seri,
3173     s                   zulow, zvlow, zustrdr, zvstrdr,
3174     s                   d_t_oro, d_u_oro, d_v_oro)
3175
3176       ELSE
3177        CALL drag_noro(klon,klev,dtime,paprs,pplay,
3178     e                   zmea,zstd, zsig, zgam, zthe,zpic,zval,
3179     e                   igwd,idx,itest,
3180     e                   t_seri, u_seri, v_seri,
3181     s                   zulow, zvlow, zustrdr, zvstrdr,
3182     s                   d_t_oro, d_u_oro, d_v_oro)
3183       ENDIF
3184c
3185c  ajout des tendances
3186!-----------------------------------------------------------------------------------------
3187! ajout des tendances de la trainee de l'orographie
3188      CALL add_phys_tend(d_u_oro,d_v_oro,d_t_oro,dq0,dql0,'oro')
3189!-----------------------------------------------------------------------------------------
3190c
3191      ENDIF ! fin de test sur ok_orodr
3192c
3193      if (mydebug) then
3194        call writefield_phy('u_seri',u_seri,llm)
3195        call writefield_phy('v_seri',v_seri,llm)
3196        call writefield_phy('t_seri',t_seri,llm)
3197        call writefield_phy('q_seri',q_seri,llm)
3198      endif
3199     
3200      IF (ok_orolf) THEN
3201c
3202c  selection des points pour lesquels le shema est actif:
3203        igwd=0
3204        DO i=1,klon
3205        itest(i)=0
3206        IF ((zpic(i)-zmea(i)).GT.100.) THEN
3207          itest(i)=1
3208          igwd=igwd+1
3209          idx(igwd)=i
3210        ENDIF
3211        ENDDO
3212c        igwdim=MAX(1,igwd)
3213c
3214        IF (ok_strato) THEN
3215
3216          CALL lift_noro_strato(klon,klev,dtime,paprs,pplay,
3217     e                   rlat,zmea,zstd,zpic,zgam,zthe,zpic,zval,
3218     e                   igwd,idx,itest,
3219     e                   t_seri, u_seri, v_seri,
3220     s                   zulow, zvlow, zustrli, zvstrli,
3221     s                   d_t_lif, d_u_lif, d_v_lif               )
3222       
3223        ELSE
3224          CALL lift_noro(klon,klev,dtime,paprs,pplay,
3225     e                   rlat,zmea,zstd,zpic,
3226     e                   itest,
3227     e                   t_seri, u_seri, v_seri,
3228     s                   zulow, zvlow, zustrli, zvstrli,
3229     s                   d_t_lif, d_u_lif, d_v_lif)
3230       ENDIF
3231c   
3232!-----------------------------------------------------------------------------------------
3233! ajout des tendances de la portance de l'orographie
3234      CALL add_phys_tend(d_u_lif,d_v_lif,d_t_lif,dq0,dql0,'lif')
3235!-----------------------------------------------------------------------------------------
3236c
3237      ENDIF ! fin de test sur ok_orolf
3238C  HINES GWD PARAMETRIZATION
3239
3240       IF (ok_hines) then
3241
3242         CALL hines_gwd(klon,klev,dtime,paprs,pplay,
3243     i                  rlat,t_seri,u_seri,v_seri,
3244     o                  zustrhi,zvstrhi,
3245     o                  d_t_hin, d_u_hin, d_v_hin)
3246c
3247c  ajout des tendances
3248        CALL add_phys_tend(d_u_hin,d_v_hin,d_t_hin,dq0,dql0,'lif')
3249
3250      ENDIF
3251c
3252
3253c
3254cIM cf. FLott BEG
3255C STRESS NECESSAIRES: TOUTE LA PHYSIQUE
3256
3257      if (mydebug) then
3258        call writefield_phy('u_seri',u_seri,llm)
3259        call writefield_phy('v_seri',v_seri,llm)
3260        call writefield_phy('t_seri',t_seri,llm)
3261        call writefield_phy('q_seri',q_seri,llm)
3262      endif
3263
3264      DO i = 1, klon
3265        zustrph(i)=0.
3266        zvstrph(i)=0.
3267      ENDDO
3268      DO k = 1, klev
3269      DO i = 1, klon
3270       zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime*
3271     c            (paprs(i,k)-paprs(i,k+1))/rg
3272       zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime*
3273     c            (paprs(i,k)-paprs(i,k+1))/rg
3274      ENDDO
3275      ENDDO
3276c
3277cIM calcul composantes axiales du moment angulaire et couple des montagnes
3278c
3279      IF (is_sequential) THEN
3280     
3281        CALL aaam_bud (27,klon,klev,jD_cur-jD_ref,jH_cur,
3282     C                 ra,rg,romega,
3283     C                 rlat,rlon,pphis,
3284     C                 zustrdr,zustrli,zustrph,
3285     C                 zvstrdr,zvstrli,zvstrph,
3286     C                 paprs,u,v,
3287     C                 aam, torsfc)
3288       ENDIF
3289cIM cf. FLott END
3290cIM
3291      IF (ip_ebil_phy.ge.2) THEN
3292        ztit='after orography'
3293        CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime
3294     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
3295     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
3296         call diagphy(airephy,ztit,ip_ebil_phy
3297     e      , zero_v, zero_v, zero_v, zero_v, zero_v
3298     e      , zero_v, zero_v, zero_v, ztsol
3299     e      , d_h_vcol, d_qt, d_ec
3300     s      , fs_bound, fq_bound )
3301      END IF
3302c
3303c
3304!====================================================================
3305! Interface Simulateur COSP (Calipso, ISCCP, MISR, ..)
3306!====================================================================
3307! Abderrahmane 24.08.09
3308
3309      IF (ok_cosp) THEN
3310! adeclarer
3311#ifdef CPP_COSP
3312       IF (MOD(itap,NINT(freq_cosp/dtime)).EQ.0) THEN
3313
3314       print*,'freq_cosp',freq_cosp
3315          mr_ozone=wo(:, :, 1) * dobson_u * 1e3 / zmasse
3316!       print*,'Dans physiq.F avant appel cosp ref_liq,ref_ice=',
3317!     s        ref_liq,ref_ice
3318          call phys_cosp(itap,dtime,freq_cosp,
3319     $                   ok_mensuelCOSP,ok_journeCOSP,ok_hfCOSP,
3320     $                   ecrit_mth,ecrit_day,ecrit_hf,
3321     $                   klon,klev,rlon,rlat,presnivs,overlap,
3322     $                   ref_liq,ref_ice,
3323     $                   pctsrf(:,is_ter)+pctsrf(:,is_lic),
3324     $                   zu10m,zv10m,
3325     $                   zphi,paprs(:,1:klev),pplay,zxtsol,t_seri,
3326     $                   qx(:,:,ivap),zx_rh,cldfra,rnebcon,flwc,fiwc,
3327     $                   prfl(:,1:klev),psfl(:,1:klev),
3328     $                   pmflxr(:,1:klev),pmflxs(:,1:klev),
3329     $                   mr_ozone,cldtau, cldemi)
3330
3331!     L          calipso2D,calipso3D,cfadlidar,parasolrefl,atb,betamol,
3332!     L          cfaddbze,clcalipso2,dbze,cltlidarradar,
3333!     M          clMISR,
3334!     R          clisccp2,boxtauisccp,boxptopisccp,tclisccp,ctpisccp,
3335!     I          tauisccp,albisccp,meantbisccp,meantbclrisccp)
3336
3337         ENDIF
3338
3339#endif
3340       ENDIF  !ok_cosp
3341!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3342cAA
3343cAA Installation de l'interface online-offline pour traceurs
3344cAA
3345c====================================================================
3346c   Calcul  des tendances traceurs
3347c====================================================================
3348C
3349
3350      call phytrac (
3351     I     itap,     days_elapsed+1,    jH_cur,   debut,
3352     I     lafin,    dtime,     u, v,     t,
3353     I     paprs,    pplay,     pmfu,     pmfd,
3354     I     pen_u,    pde_u,     pen_d,    pde_d,
3355     I     cdragh,   coefh,     fm_therm, entr_therm,
3356     I     u1,       v1,        ftsol,    pctsrf,
3357     I     rlat,     frac_impa, frac_nucl,rlon,
3358     I     presnivs, pphis,     pphi,     albsol1,
3359     I     qx(:,:,ivap),rhcl,   cldfra,   rneb,
3360     I     diafra,   cldliq,    itop_con, ibas_con,
3361     I     pmflxr,   pmflxs,    prfl,     psfl,
3362     I     da,       phi,       mp,       upwd,     
3363     I     dnwd,     aerosol_couple,      flxmass_w,
3364     I     tau_aero, piz_aero,  cg_aero,  ccm,
3365     I     rfname,
3366     O     tr_seri)
3367
3368      IF (offline) THEN
3369
3370       IF (prt_level.ge.9)
3371     $    print*,'Attention on met a 0 les thermiques pour phystoke'
3372         call phystokenc (
3373     I                   nlon,klev,pdtphys,rlon,rlat,
3374     I                   t,pmfu, pmfd, pen_u, pde_u, pen_d, pde_d,
3375     I                   fm_therm,entr_therm,
3376     I                   cdragh,coefh,u1,v1,ftsol,pctsrf,
3377     I                   frac_impa, frac_nucl,
3378     I                   pphis,airephy,dtime,itap,
3379     I                   rlon,rlat,qx(:,:,ivap),da,phi,mp,upwd,dnwd)
3380
3381
3382      ENDIF
3383
3384c
3385c Calculer le transport de l'eau et de l'energie (diagnostique)
3386c
3387      CALL transp (paprs,zxtsol,
3388     e                   t_seri, q_seri, u_seri, v_seri, zphi,
3389     s                   ve, vq, ue, uq)
3390c
3391cIM global posePB BEG
3392      IF(1.EQ.0) THEN
3393c
3394      CALL transp_lay (paprs,zxtsol,
3395     e                   t_seri, q_seri, u_seri, v_seri, zphi,
3396     s                   ve_lay, vq_lay, ue_lay, uq_lay)
3397c
3398      ENDIF !(1.EQ.0) THEN
3399cIM global posePB END
3400c Accumuler les variables a stocker dans les fichiers histoire:
3401c
3402c+jld ec_conser
3403      DO k = 1, klev
3404      DO i = 1, klon
3405        ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i,k))
3406        d_t_ec(i,k)=0.5/ZRCPD
3407     $      *(u(i,k)**2+v(i,k)**2-u_seri(i,k)**2-v_seri(i,k)**2)
3408      ENDDO
3409      ENDDO
3410
3411      DO k = 1, klev
3412      DO i = 1, klon
3413        t_seri(i,k)=t_seri(i,k)+d_t_ec(i,k)
3414        d_t_ec(i,k) = d_t_ec(i,k)/dtime
3415       END DO
3416      END DO
3417c-jld ec_conser
3418cIM
3419      IF (ip_ebil_phy.ge.1) THEN
3420        ztit='after physic'
3421        CALL diagetpq(airephy,ztit,ip_ebil_phy,1,1,dtime
3422     e      , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay
3423     s      , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
3424C     Comme les tendances de la physique sont ajoute dans la dynamique,
3425C     on devrait avoir que la variation d'entalpie par la dynamique
3426C     est egale a la variation de la physique au pas de temps precedent.
3427C     Donc la somme de ces 2 variations devrait etre nulle.
3428
3429        call diagphy(airephy,ztit,ip_ebil_phy
3430     e      , topsw, toplw, solsw, sollw, sens
3431     e      , evap, rain_fall, snow_fall, ztsol
3432     e      , d_h_vcol, d_qt, d_ec
3433     s      , fs_bound, fq_bound )
3434C
3435      d_h_vcol_phy=d_h_vcol
3436C
3437      END IF
3438C
3439c=======================================================================
3440c   SORTIES
3441c=======================================================================
3442
3443cIM Interpolation sur les niveaux de pression du NMC
3444c   -------------------------------------------------
3445c
3446#include "calcul_STDlev.h"
3447      twriteSTD(:,:,1)=tsumSTD(:,:,1)
3448      qwriteSTD(:,:,1)=qsumSTD(:,:,1)
3449      rhwriteSTD(:,:,1)=rhsumSTD(:,:,1)
3450      phiwriteSTD(:,:,1)=phisumSTD(:,:,1)
3451      uwriteSTD(:,:,1)=usumSTD(:,:,1)
3452      vwriteSTD(:,:,1)=vsumSTD(:,:,1)
3453      wwriteSTD(:,:,1)=wsumSTD(:,:,1)
3454
3455      twriteSTD(:,:,2)=tsumSTD(:,:,2)
3456      qwriteSTD(:,:,2)=qsumSTD(:,:,2)
3457      rhwriteSTD(:,:,2)=rhsumSTD(:,:,2)
3458      phiwriteSTD(:,:,2)=phisumSTD(:,:,2)
3459      uwriteSTD(:,:,2)=usumSTD(:,:,2)
3460      vwriteSTD(:,:,2)=vsumSTD(:,:,2)
3461      wwriteSTD(:,:,2)=wsumSTD(:,:,2)
3462
3463      twriteSTD(:,:,3)=tlevSTD(:,:)
3464      qwriteSTD(:,:,3)=qlevSTD(:,:)
3465      rhwriteSTD(:,:,3)=rhlevSTD(:,:)
3466      phiwriteSTD(:,:,3)=philevSTD(:,:)
3467      uwriteSTD(:,:,3)=ulevSTD(:,:)
3468      vwriteSTD(:,:,3)=vlevSTD(:,:)
3469      wwriteSTD(:,:,3)=wlevSTD(:,:)
3470
3471      twriteSTD(:,:,4)=tlevSTD(:,:)
3472      qwriteSTD(:,:,4)=qlevSTD(:,:)
3473      rhwriteSTD(:,:,4)=rhlevSTD(:,:)
3474      phiwriteSTD(:,:,4)=philevSTD(:,:)
3475      uwriteSTD(:,:,4)=ulevSTD(:,:)
3476      vwriteSTD(:,:,4)=vlevSTD(:,:)
3477      wwriteSTD(:,:,4)=wlevSTD(:,:)
3478c
3479cIM initialisation 5eme fichier de sortie
3480cIM ajoute 5eme niveau 170310 BEG
3481      twriteSTD(:,:,5)=tlevSTD(:,:)
3482      qwriteSTD(:,:,5)=qlevSTD(:,:)
3483      rhwriteSTD(:,:,5)=rhlevSTD(:,:)
3484      phiwriteSTD(:,:,5)=philevSTD(:,:)
3485      uwriteSTD(:,:,5)=ulevSTD(:,:)
3486      vwriteSTD(:,:,5)=vlevSTD(:,:)
3487      wwriteSTD(:,:,5)=wlevSTD(:,:)
3488cIM for NMC files
3489      DO n=1, nlevSTD3
3490       DO k=1, nlevSTD
3491        if(rlevSTD3(n).EQ.rlevSTD(k)) THEN
3492         twriteSTD3(:,n)=tlevSTD(:,k)
3493         qwriteSTD3(:,n)=qlevSTD(:,k)
3494         rhwriteSTD3(:,n)=rhlevSTD(:,k)
3495         phiwriteSTD3(:,n)=philevSTD(:,k)
3496         uwriteSTD3(:,n)=ulevSTD(:,k)
3497         vwriteSTD3(:,n)=vlevSTD(:,k)
3498         wwriteSTD3(:,n)=wlevSTD(:,k)
3499        endif !rlevSTD3(n).EQ.rlevSTD(k)
3500       ENDDO
3501      ENDDO
3502c
3503      DO n=1, nlevSTD8
3504       DO k=1, nlevSTD
3505        if(rlevSTD8(n).EQ.rlevSTD(k)) THEN
3506         tnondefSTD8(:,n)=tnondef(:,k,2)
3507         twriteSTD8(:,n)=tsumSTD(:,k,2)
3508         qwriteSTD8(:,n)=qsumSTD(:,k,2)
3509         rhwriteSTD8(:,n)=rhsumSTD(:,k,2)
3510         phiwriteSTD8(:,n)=phisumSTD(:,k,2)
3511         uwriteSTD8(:,n)=usumSTD(:,k,2)
3512         vwriteSTD8(:,n)=vsumSTD(:,k,2)
3513         wwriteSTD8(:,n)=wsumSTD(:,k,2)
3514        endif !rlevSTD8(n).EQ.rlevSTD(k)
3515       ENDDO
3516      ENDDO
3517c
3518c slp sea level pressure
3519      slp(:) = paprs(:,1)*exp(pphis(:)/(RD*t_seri(:,1)))
3520c
3521ccc prw = eau precipitable
3522      DO i = 1, klon
3523       prw(i) = 0.
3524       DO k = 1, klev
3525        prw(i) = prw(i) +
3526     .           q_seri(i,k)*(paprs(i,k)-paprs(i,k+1))/RG
3527       ENDDO
3528      ENDDO
3529c
3530cIM initialisation + calculs divers diag AMIP2
3531c
3532#include "calcul_divers.h"
3533c
3534      IF (config_inca /= 'none') THEN
3535#ifdef INCA
3536         CALL VTe(VTphysiq)
3537         CALL VTb(VTinca)
3538
3539         CALL chemhook_end (
3540     $                        dtime,
3541     $                        pplay,
3542     $                        t_seri,
3543     $                        tr_seri,
3544     $                        nbtr,
3545     $                        paprs,
3546     $                        q_seri,
3547     $                        airephy,
3548     $                        pphi,
3549     $                        pphis,
3550     $                        zx_rh)
3551
3552         CALL VTe(VTinca)
3553         CALL VTb(VTphysiq)
3554#endif
3555      END IF
3556
3557c=============================================================
3558c
3559c Convertir les incrementations en tendances
3560c
3561      if (mydebug) then
3562        call writefield_phy('u_seri',u_seri,llm)
3563        call writefield_phy('v_seri',v_seri,llm)
3564        call writefield_phy('t_seri',t_seri,llm)
3565        call writefield_phy('q_seri',q_seri,llm)
3566      endif
3567
3568      DO k = 1, klev
3569      DO i = 1, klon
3570         d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime
3571         d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime
3572         d_t(i,k) = ( t_seri(i,k)-t(i,k) ) / dtime
3573         d_qx(i,k,ivap) = ( q_seri(i,k) - qx(i,k,ivap) ) / dtime
3574         d_qx(i,k,iliq) = ( ql_seri(i,k) - qx(i,k,iliq) ) / dtime
3575      ENDDO
3576      ENDDO
3577c
3578      IF (nqtot.GE.3) THEN
3579      DO iq = 3, nqtot
3580      DO  k = 1, klev
3581      DO  i = 1, klon
3582         d_qx(i,k,iq) = ( tr_seri(i,k,iq-2) - qx(i,k,iq) ) / dtime
3583      ENDDO
3584      ENDDO
3585      ENDDO
3586      ENDIF
3587c
3588cIM rajout diagnostiques bilan KP pour analyse MJO par Jun-Ichi Yano
3589cIM global posePB#include "write_bilKP_ins.h"
3590cIM global posePB#include "write_bilKP_ave.h"
3591c
3592
3593c Sauvegarder les valeurs de t et q a la fin de la physique:
3594c
3595      DO k = 1, klev
3596      DO i = 1, klon
3597         u_ancien(i,k) = u_seri(i,k)
3598         v_ancien(i,k) = v_seri(i,k)
3599         t_ancien(i,k) = t_seri(i,k)
3600         q_ancien(i,k) = q_seri(i,k)
3601      ENDDO
3602      ENDDO
3603c
3604!==========================================================================
3605! Sorties des tendances pour un point particulier
3606! a utiliser en 1D, avec igout=1 ou en 3D sur un point particulier
3607! pour le debug
3608! La valeur de igout est attribuee plus haut dans le programme
3609!==========================================================================
3610
3611      if (prt_level.ge.1) then
3612      write(lunout,*) 'FIN DE PHYSIQ !!!!!!!!!!!!!!!!!!!!'
3613      write(lunout,*)
3614     s 'nlon,klev,nqtot,debut,lafin,jD_cur, jH_cur, pdtphys pct tlos'
3615      write(lunout,*)
3616     s  nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur ,pdtphys,
3617     s  pctsrf(igout,is_ter), pctsrf(igout,is_lic),pctsrf(igout,is_oce),
3618     s  pctsrf(igout,is_sic)
3619      write(lunout,*) 'd_t_dyn,d_t_con,d_t_lsc,d_t_ajsb,d_t_ajs,d_t_eva'
3620      do k=1,klev
3621         write(lunout,*) d_t_dyn(igout,k),d_t_con(igout,k),
3622     s   d_t_lsc(igout,k),d_t_ajsb(igout,k),d_t_ajs(igout,k),
3623     s   d_t_eva(igout,k)
3624      enddo
3625      write(lunout,*) 'cool,heat'
3626      do k=1,klev
3627         write(lunout,*) cool(igout,k),heat(igout,k)
3628      enddo
3629
3630      write(lunout,*) 'd_t_oli,d_t_vdf,d_t_oro,d_t_lif,d_t_ec'
3631      do k=1,klev
3632         write(lunout,*) d_t_oli(igout,k),d_t_vdf(igout,k),
3633     s d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k)
3634      enddo
3635
3636      write(lunout,*) 'd_ps ',d_ps(igout)
3637      write(lunout,*) 'd_u, d_v, d_t, d_qx1, d_qx2 '
3638      do k=1,klev
3639         write(lunout,*) d_u(igout,k),d_v(igout,k),d_t(igout,k),
3640     s  d_qx(igout,k,1),d_qx(igout,k,2)
3641      enddo
3642      endif
3643
3644!==========================================================================
3645
3646c============================================================
3647c   Calcul de la temperature potentielle
3648c============================================================
3649      DO k = 1, klev
3650      DO i = 1, klon
3651cJYG/IM theta en debut du pas de temps
3652cJYG/IM       theta(i,k)=t(i,k)*(100000./pplay(i,k))**(RD/RCPD)
3653cJYG/IM theta en fin de pas de temps de physique
3654        theta(i,k)=t_seri(i,k)*(100000./pplay(i,k))**(RD/RCPD)
3655      ENDDO
3656      ENDDO
3657c
3658
3659c 22.03.04 BEG
3660c=============================================================
3661c   Ecriture des sorties
3662c=============================================================
3663#ifdef CPP_IOIPSL
3664 
3665c Recupere des varibles calcule dans differents modules
3666c pour ecriture dans histxxx.nc
3667
3668      ! Get some variables from module fonte_neige_mod
3669      CALL fonte_neige_get_vars(pctsrf,
3670     .     zxfqcalving, zxfqfonte, zxffonte)
3671
3672
3673#include "phys_output_write.h"
3674
3675#ifdef histISCCP
3676#include "write_histISCCP.h"
3677#endif
3678
3679#ifdef histNMC
3680#include "write_histhfNMC.h"
3681#include "write_histdayNMC.h"
3682#include "write_histmthNMC.h"
3683#endif
3684
3685#include "write_histday_seri.h"
3686
3687#include "write_paramLMDZ_phy.h"
3688
3689#endif
3690
3691c 22.03.04 END
3692c
3693c====================================================================
3694c Si c'est la fin, il faut conserver l'etat de redemarrage
3695c====================================================================
3696c
3697     
3698
3699      IF (lafin) THEN
3700         itau_phy = itau_phy + itap
3701         CALL phyredem ("restartphy.nc")
3702!         open(97,form="unformatted",file="finbin")
3703!         write(97) u_seri,v_seri,t_seri,q_seri
3704!         close(97)
3705C$OMP MASTER
3706         if (read_climoz >= 1) then
3707            if (is_mpi_root) then
3708               call nf95_close(ncid_climoz)
3709            end if
3710            deallocate(press_climoz) ! pointer
3711         end if
3712C$OMP END MASTER
3713      ENDIF
3714     
3715!      first=.false.
3716
3717      RETURN
3718      END
3719      FUNCTION qcheck(klon,klev,paprs,q,ql,aire)
3720      IMPLICIT none
3721c
3722c Calculer et imprimer l'eau totale. A utiliser pour verifier
3723c la conservation de l'eau
3724c
3725#include "YOMCST.h"
3726      INTEGER klon,klev
3727      REAL paprs(klon,klev+1), q(klon,klev), ql(klon,klev)
3728      REAL aire(klon)
3729      REAL qtotal, zx, qcheck
3730      INTEGER i, k
3731c
3732      zx = 0.0
3733      DO i = 1, klon
3734         zx = zx + aire(i)
3735      ENDDO
3736      qtotal = 0.0
3737      DO k = 1, klev
3738      DO i = 1, klon
3739         qtotal = qtotal + (q(i,k)+ql(i,k)) * aire(i)
3740     .                     *(paprs(i,k)-paprs(i,k+1))/RG
3741      ENDDO
3742      ENDDO
3743c
3744      qcheck = qtotal/zx
3745c
3746      RETURN
3747      END
3748      SUBROUTINE gr_fi_ecrit(nfield,nlon,iim,jjmp1,fi,ecrit)
3749      IMPLICIT none
3750c
3751c Tranformer une variable de la grille physique a
3752c la grille d'ecriture
3753c
3754      INTEGER nfield,nlon,iim,jjmp1, jjm
3755      REAL fi(nlon,nfield), ecrit(iim*jjmp1,nfield)
3756c
3757      INTEGER i, n, ig
3758c
3759      jjm = jjmp1 - 1
3760      DO n = 1, nfield
3761         DO i=1,iim
3762            ecrit(i,n) = fi(1,n)
3763            ecrit(i+jjm*iim,n) = fi(nlon,n)
3764         ENDDO
3765         DO ig = 1, nlon - 2
3766           ecrit(iim+ig,n) = fi(1+ig,n)
3767         ENDDO
3768      ENDDO
3769      RETURN
3770      END
Note: See TracBrowser for help on using the repository browser.