1 | ! |
---|
2 | ! $Id: integrd.F 1454 2010-11-18 12:01:24Z emillour $ |
---|
3 | ! |
---|
4 | SUBROUTINE integrd |
---|
5 | $ ( nq,vcovm1,ucovm1,tetam1,psm1,massem1, |
---|
6 | $ dv,du,dteta,dq,dp,vcov,ucov,teta,q,ps,masse,phis,finvmaold ) |
---|
7 | |
---|
8 | use control_mod, only : planet_type |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | |
---|
13 | c======================================================================= |
---|
14 | c |
---|
15 | c Auteur: P. Le Van |
---|
16 | c ------- |
---|
17 | c |
---|
18 | c objet: |
---|
19 | c ------ |
---|
20 | c |
---|
21 | c Incrementation des tendances dynamiques |
---|
22 | c |
---|
23 | c======================================================================= |
---|
24 | c----------------------------------------------------------------------- |
---|
25 | c Declarations: |
---|
26 | c ------------- |
---|
27 | |
---|
28 | #include "dimensions.h" |
---|
29 | #include "paramet.h" |
---|
30 | #include "comconst.h" |
---|
31 | #include "comgeom.h" |
---|
32 | #include "comvert.h" |
---|
33 | #include "logic.h" |
---|
34 | #include "temps.h" |
---|
35 | #include "serre.h" |
---|
36 | |
---|
37 | c Arguments: |
---|
38 | c ---------- |
---|
39 | |
---|
40 | INTEGER nq |
---|
41 | |
---|
42 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm),teta(ip1jmp1,llm) |
---|
43 | REAL q(ip1jmp1,llm,nq) |
---|
44 | REAL ps(ip1jmp1),masse(ip1jmp1,llm),phis(ip1jmp1) |
---|
45 | |
---|
46 | REAL vcovm1(ip1jm,llm),ucovm1(ip1jmp1,llm) |
---|
47 | REAL tetam1(ip1jmp1,llm),psm1(ip1jmp1),massem1(ip1jmp1,llm) |
---|
48 | |
---|
49 | REAL dv(ip1jm,llm),du(ip1jmp1,llm) |
---|
50 | REAL dteta(ip1jmp1,llm),dp(ip1jmp1) |
---|
51 | REAL dq(ip1jmp1,llm,nq), finvmaold(ip1jmp1,llm) |
---|
52 | |
---|
53 | c Local: |
---|
54 | c ------ |
---|
55 | |
---|
56 | REAL vscr( ip1jm ),uscr( ip1jmp1 ),hscr( ip1jmp1 ),pscr(ip1jmp1) |
---|
57 | REAL massescr( ip1jmp1,llm ), finvmasse(ip1jmp1,llm) |
---|
58 | REAL p(ip1jmp1,llmp1) |
---|
59 | REAL tpn,tps,tppn(iim),tpps(iim) |
---|
60 | REAL qpn,qps,qppn(iim),qpps(iim) |
---|
61 | REAL deltap( ip1jmp1,llm ) |
---|
62 | |
---|
63 | INTEGER l,ij,iq |
---|
64 | |
---|
65 | REAL SSUM |
---|
66 | |
---|
67 | c----------------------------------------------------------------------- |
---|
68 | |
---|
69 | DO l = 1,llm |
---|
70 | DO ij = 1,iip1 |
---|
71 | ucov( ij , l) = 0. |
---|
72 | ucov( ij +ip1jm, l) = 0. |
---|
73 | uscr( ij ) = 0. |
---|
74 | uscr( ij +ip1jm ) = 0. |
---|
75 | ENDDO |
---|
76 | ENDDO |
---|
77 | |
---|
78 | |
---|
79 | c ............ integration de ps .............. |
---|
80 | |
---|
81 | CALL SCOPY(ip1jmp1*llm, masse, 1, massescr, 1) |
---|
82 | |
---|
83 | DO ij = 1,ip1jmp1 |
---|
84 | pscr (ij) = ps(ij) |
---|
85 | ps (ij) = psm1(ij) + dt * dp(ij) |
---|
86 | ENDDO |
---|
87 | c |
---|
88 | DO ij = 1,ip1jmp1 |
---|
89 | IF( ps(ij).LT.0. ) THEN |
---|
90 | PRINT*,' Au point ij = ',ij, ' , pression sol neg. ', ps(ij) |
---|
91 | STOP' dans integrd' |
---|
92 | ENDIF |
---|
93 | ENDDO |
---|
94 | c |
---|
95 | DO ij = 1, iim |
---|
96 | tppn(ij) = aire( ij ) * ps( ij ) |
---|
97 | tpps(ij) = aire(ij+ip1jm) * ps(ij+ip1jm) |
---|
98 | ENDDO |
---|
99 | tpn = SSUM(iim,tppn,1)/apoln |
---|
100 | tps = SSUM(iim,tpps,1)/apols |
---|
101 | DO ij = 1, iip1 |
---|
102 | ps( ij ) = tpn |
---|
103 | ps(ij+ip1jm) = tps |
---|
104 | ENDDO |
---|
105 | c |
---|
106 | c ... Calcul de la nouvelle masse d'air au dernier temps integre t+1 ... |
---|
107 | c |
---|
108 | CALL pression ( ip1jmp1, ap, bp, ps, p ) |
---|
109 | CALL massdair ( p , masse ) |
---|
110 | |
---|
111 | CALL SCOPY( ijp1llm , masse, 1, finvmasse, 1 ) |
---|
112 | CALL filtreg( finvmasse, jjp1, llm, -2, 2, .TRUE., 1 ) |
---|
113 | c |
---|
114 | |
---|
115 | c ............ integration de ucov, vcov, h .............. |
---|
116 | |
---|
117 | DO l = 1,llm |
---|
118 | |
---|
119 | DO ij = iip2,ip1jm |
---|
120 | uscr( ij ) = ucov( ij,l ) |
---|
121 | ucov( ij,l ) = ucovm1( ij,l ) + dt * du( ij,l ) |
---|
122 | ENDDO |
---|
123 | |
---|
124 | DO ij = 1,ip1jm |
---|
125 | vscr( ij ) = vcov( ij,l ) |
---|
126 | vcov( ij,l ) = vcovm1( ij,l ) + dt * dv( ij,l ) |
---|
127 | ENDDO |
---|
128 | |
---|
129 | DO ij = 1,ip1jmp1 |
---|
130 | hscr( ij ) = teta(ij,l) |
---|
131 | teta ( ij,l ) = tetam1(ij,l) * massem1(ij,l) / masse(ij,l) |
---|
132 | & + dt * dteta(ij,l) / masse(ij,l) |
---|
133 | ENDDO |
---|
134 | |
---|
135 | c .... Calcul de la valeur moyenne, unique aux poles pour teta ...... |
---|
136 | c |
---|
137 | c |
---|
138 | DO ij = 1, iim |
---|
139 | tppn(ij) = aire( ij ) * teta( ij ,l) |
---|
140 | tpps(ij) = aire(ij+ip1jm) * teta(ij+ip1jm,l) |
---|
141 | ENDDO |
---|
142 | tpn = SSUM(iim,tppn,1)/apoln |
---|
143 | tps = SSUM(iim,tpps,1)/apols |
---|
144 | |
---|
145 | DO ij = 1, iip1 |
---|
146 | teta( ij ,l) = tpn |
---|
147 | teta(ij+ip1jm,l) = tps |
---|
148 | ENDDO |
---|
149 | c |
---|
150 | |
---|
151 | IF(leapf) THEN |
---|
152 | CALL SCOPY ( ip1jmp1, uscr(1), 1, ucovm1(1, l), 1 ) |
---|
153 | CALL SCOPY ( ip1jm, vscr(1), 1, vcovm1(1, l), 1 ) |
---|
154 | CALL SCOPY ( ip1jmp1, hscr(1), 1, tetam1(1, l), 1 ) |
---|
155 | END IF |
---|
156 | |
---|
157 | ENDDO ! of DO l = 1,llm |
---|
158 | |
---|
159 | |
---|
160 | c |
---|
161 | c ....... integration de q ...... |
---|
162 | c |
---|
163 | c$$$ IF( iadv(1).NE.3.AND.iadv(2).NE.3 ) THEN |
---|
164 | c$$$c |
---|
165 | c$$$ IF( forward. OR . leapf ) THEN |
---|
166 | c$$$ DO iq = 1,2 |
---|
167 | c$$$ DO l = 1,llm |
---|
168 | c$$$ DO ij = 1,ip1jmp1 |
---|
169 | c$$$ q(ij,l,iq) = ( q(ij,l,iq)*finvmaold(ij,l) + dtvr *dq(ij,l,iq) )/ |
---|
170 | c$$$ $ finvmasse(ij,l) |
---|
171 | c$$$ ENDDO |
---|
172 | c$$$ ENDDO |
---|
173 | c$$$ ENDDO |
---|
174 | c$$$ ELSE |
---|
175 | c$$$ DO iq = 1,2 |
---|
176 | c$$$ DO l = 1,llm |
---|
177 | c$$$ DO ij = 1,ip1jmp1 |
---|
178 | c$$$ q( ij,l,iq ) = q( ij,l,iq ) * finvmaold(ij,l) / finvmasse(ij,l) |
---|
179 | c$$$ ENDDO |
---|
180 | c$$$ ENDDO |
---|
181 | c$$$ ENDDO |
---|
182 | c$$$ |
---|
183 | c$$$ END IF |
---|
184 | c$$$c |
---|
185 | c$$$ ENDIF |
---|
186 | |
---|
187 | if (planet_type.eq."earth") then |
---|
188 | ! Earth-specific treatment of first 2 tracers (water) |
---|
189 | DO l = 1, llm |
---|
190 | DO ij = 1, ip1jmp1 |
---|
191 | deltap(ij,l) = p(ij,l) - p(ij,l+1) |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | |
---|
195 | CALL qminimum( q, nq, deltap ) |
---|
196 | |
---|
197 | c |
---|
198 | c ..... Calcul de la valeur moyenne, unique aux poles pour q ..... |
---|
199 | c |
---|
200 | |
---|
201 | DO iq = 1, nq |
---|
202 | DO l = 1, llm |
---|
203 | |
---|
204 | DO ij = 1, iim |
---|
205 | qppn(ij) = aire( ij ) * q( ij ,l,iq) |
---|
206 | qpps(ij) = aire(ij+ip1jm) * q(ij+ip1jm,l,iq) |
---|
207 | ENDDO |
---|
208 | qpn = SSUM(iim,qppn,1)/apoln |
---|
209 | qps = SSUM(iim,qpps,1)/apols |
---|
210 | |
---|
211 | DO ij = 1, iip1 |
---|
212 | q( ij ,l,iq) = qpn |
---|
213 | q(ij+ip1jm,l,iq) = qps |
---|
214 | ENDDO |
---|
215 | |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | |
---|
219 | |
---|
220 | CALL SCOPY( ijp1llm , finvmasse, 1, finvmaold, 1 ) |
---|
221 | |
---|
222 | endif ! of if (planet_type.eq."earth") |
---|
223 | c |
---|
224 | c |
---|
225 | c ..... FIN de l'integration de q ....... |
---|
226 | |
---|
227 | c ................................................................. |
---|
228 | |
---|
229 | |
---|
230 | IF( leapf ) THEN |
---|
231 | CALL SCOPY ( ip1jmp1 , pscr , 1, psm1 , 1 ) |
---|
232 | CALL SCOPY ( ip1jmp1*llm, massescr, 1, massem1, 1 ) |
---|
233 | END IF |
---|
234 | |
---|
235 | RETURN |
---|
236 | END |
---|