1 | *DECK PCHFE |
---|
2 | SUBROUTINE PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
---|
3 | C***BEGIN PROLOGUE PCHFE |
---|
4 | C***PURPOSE Evaluate a piecewise cubic Hermite function at an array of |
---|
5 | C points. May be used by itself for Hermite interpolation, |
---|
6 | C or as an evaluator for PCHIM or PCHIC. |
---|
7 | C***LIBRARY SLATEC (PCHIP) |
---|
8 | C***CATEGORY E3 |
---|
9 | C***TYPE SINGLE PRECISION (PCHFE-S, DPCHFE-D) |
---|
10 | C***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP, |
---|
11 | C PIECEWISE CUBIC EVALUATION |
---|
12 | C***AUTHOR Fritsch, F. N., (LLNL) |
---|
13 | C Lawrence Livermore National Laboratory |
---|
14 | C P.O. Box 808 (L-316) |
---|
15 | C Livermore, CA 94550 |
---|
16 | C FTS 532-4275, (510) 422-4275 |
---|
17 | C***DESCRIPTION |
---|
18 | C |
---|
19 | C PCHFE: Piecewise Cubic Hermite Function Evaluator |
---|
20 | C |
---|
21 | C Evaluates the cubic Hermite function defined by N, X, F, D at |
---|
22 | C the points XE(J), J=1(1)NE. |
---|
23 | C |
---|
24 | C To provide compatibility with PCHIM and PCHIC, includes an |
---|
25 | C increment between successive values of the F- and D-arrays. |
---|
26 | C |
---|
27 | C ---------------------------------------------------------------------- |
---|
28 | C |
---|
29 | C Calling sequence: |
---|
30 | C |
---|
31 | C PARAMETER (INCFD = ...) |
---|
32 | C INTEGER N, NE, IERR |
---|
33 | C REAL X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE) |
---|
34 | C LOGICAL SKIP |
---|
35 | C |
---|
36 | C CALL PCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR) |
---|
37 | C |
---|
38 | C Parameters: |
---|
39 | C |
---|
40 | C N -- (input) number of data points. (Error return if N.LT.2 .) |
---|
41 | C |
---|
42 | C X -- (input) real array of independent variable values. The |
---|
43 | C elements of X must be strictly increasing: |
---|
44 | C X(I-1) .LT. X(I), I = 2(1)N. |
---|
45 | C (Error return if not.) |
---|
46 | C |
---|
47 | C F -- (input) real array of function values. F(1+(I-1)*INCFD) is |
---|
48 | C the value corresponding to X(I). |
---|
49 | C |
---|
50 | C D -- (input) real array of derivative values. D(1+(I-1)*INCFD) is |
---|
51 | C the value corresponding to X(I). |
---|
52 | C |
---|
53 | C INCFD -- (input) increment between successive values in F and D. |
---|
54 | C (Error return if INCFD.LT.1 .) |
---|
55 | C |
---|
56 | C SKIP -- (input/output) logical variable which should be set to |
---|
57 | C .TRUE. if the user wishes to skip checks for validity of |
---|
58 | C preceding parameters, or to .FALSE. otherwise. |
---|
59 | C This will save time in case these checks have already |
---|
60 | C been performed (say, in PCHIM or PCHIC). |
---|
61 | C SKIP will be set to .TRUE. on normal return. |
---|
62 | C |
---|
63 | C NE -- (input) number of evaluation points. (Error return if |
---|
64 | C NE.LT.1 .) |
---|
65 | C |
---|
66 | C XE -- (input) real array of points at which the function is to be |
---|
67 | C evaluated. |
---|
68 | C |
---|
69 | C NOTES: |
---|
70 | C 1. The evaluation will be most efficient if the elements |
---|
71 | C of XE are increasing relative to X; |
---|
72 | C that is, XE(J) .GE. X(I) |
---|
73 | C implies XE(K) .GE. X(I), all K.GE.J . |
---|
74 | C 2. If any of the XE are outside the interval [X(1),X(N)], |
---|
75 | C values are extrapolated from the nearest extreme cubic, |
---|
76 | C and a warning error is returned. |
---|
77 | C |
---|
78 | C FE -- (output) real array of values of the cubic Hermite function |
---|
79 | C defined by N, X, F, D at the points XE. |
---|
80 | C |
---|
81 | C IERR -- (output) error flag. |
---|
82 | C Normal return: |
---|
83 | C IERR = 0 (no errors). |
---|
84 | C Warning error: |
---|
85 | C IERR.GT.0 means that extrapolation was performed at |
---|
86 | C IERR points. |
---|
87 | C "Recoverable" errors: |
---|
88 | C IERR = -1 if N.LT.2 . |
---|
89 | C IERR = -2 if INCFD.LT.1 . |
---|
90 | C IERR = -3 if the X-array is not strictly increasing. |
---|
91 | C IERR = -4 if NE.LT.1 . |
---|
92 | C (The FE-array has not been changed in any of these cases.) |
---|
93 | C NOTE: The above errors are checked in the order listed, |
---|
94 | C and following arguments have **NOT** been validated. |
---|
95 | C |
---|
96 | C***REFERENCES (NONE) |
---|
97 | C***ROUTINES CALLED CHFEV, XERMSG |
---|
98 | C***REVISION HISTORY (YYMMDD) |
---|
99 | C 811020 DATE WRITTEN |
---|
100 | C 820803 Minor cosmetic changes for release 1. |
---|
101 | C 870707 Minor cosmetic changes to prologue. |
---|
102 | C 890531 Changed all specific intrinsics to generic. (WRB) |
---|
103 | C 890831 Modified array declarations. (WRB) |
---|
104 | C 890831 REVISION DATE from Version 3.2 |
---|
105 | C 891214 Prologue converted to Version 4.0 format. (BAB) |
---|
106 | C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) |
---|
107 | C***END PROLOGUE PCHFE |
---|
108 | C Programming notes: |
---|
109 | C |
---|
110 | C 1. To produce a double precision version, simply: |
---|
111 | C a. Change PCHFE to DPCHFE, and CHFEV to DCHFEV, wherever they |
---|
112 | C occur, |
---|
113 | C b. Change the real declaration to double precision, |
---|
114 | C |
---|
115 | C 2. Most of the coding between the call to CHFEV and the end of |
---|
116 | C the IR-loop could be eliminated if it were permissible to |
---|
117 | C assume that XE is ordered relative to X. |
---|
118 | C |
---|
119 | C 3. CHFEV does not assume that X1 is less than X2. thus, it would |
---|
120 | C be possible to write a version of PCHFE that assumes a strict- |
---|
121 | C ly decreasing X-array by simply running the IR-loop backwards |
---|
122 | C (and reversing the order of appropriate tests). |
---|
123 | C |
---|
124 | C 4. The present code has a minor bug, which I have decided is not |
---|
125 | C worth the effort that would be required to fix it. |
---|
126 | C If XE contains points in [X(N-1),X(N)], followed by points .LT. |
---|
127 | C X(N-1), followed by points .GT.X(N), the extrapolation points |
---|
128 | C will be counted (at least) twice in the total returned in IERR. |
---|
129 | C |
---|
130 | C DECLARE ARGUMENTS. |
---|
131 | C |
---|
132 | INTEGER N, INCFD, NE, IERR |
---|
133 | REAL X(*), F(INCFD,*), D(INCFD,*), XE(*), FE(*) |
---|
134 | LOGICAL SKIP |
---|
135 | C |
---|
136 | C DECLARE LOCAL VARIABLES. |
---|
137 | C |
---|
138 | INTEGER I, IERC, IR, J, JFIRST, NEXT(2), NJ |
---|
139 | C |
---|
140 | C VALIDITY-CHECK ARGUMENTS. |
---|
141 | C |
---|
142 | C***FIRST EXECUTABLE STATEMENT PCHFE |
---|
143 | IF (SKIP) GO TO 5 |
---|
144 | C |
---|
145 | IF ( N.LT.2 ) GO TO 5001 |
---|
146 | IF ( INCFD.LT.1 ) GO TO 5002 |
---|
147 | DO 1 I = 2, N |
---|
148 | IF ( X(I).LE.X(I-1) ) GO TO 5003 |
---|
149 | 1 CONTINUE |
---|
150 | C |
---|
151 | C FUNCTION DEFINITION IS OK, GO ON. |
---|
152 | C |
---|
153 | 5 CONTINUE |
---|
154 | IF ( NE.LT.1 ) GO TO 5004 |
---|
155 | IERR = 0 |
---|
156 | SKIP = .TRUE. |
---|
157 | C |
---|
158 | C LOOP OVER INTERVALS. ( INTERVAL INDEX IS IL = IR-1 . ) |
---|
159 | C ( INTERVAL IS X(IL).LE.X.LT.X(IR) . ) |
---|
160 | JFIRST = 1 |
---|
161 | IR = 2 |
---|
162 | 10 CONTINUE |
---|
163 | C |
---|
164 | C SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS. |
---|
165 | C |
---|
166 | IF (JFIRST .GT. NE) GO TO 5000 |
---|
167 | C |
---|
168 | C LOCATE ALL POINTS IN INTERVAL. |
---|
169 | C |
---|
170 | DO 20 J = JFIRST, NE |
---|
171 | IF (XE(J) .GE. X(IR)) GO TO 30 |
---|
172 | 20 CONTINUE |
---|
173 | J = NE + 1 |
---|
174 | GO TO 40 |
---|
175 | C |
---|
176 | C HAVE LOCATED FIRST POINT BEYOND INTERVAL. |
---|
177 | C |
---|
178 | 30 CONTINUE |
---|
179 | IF (IR .EQ. N) J = NE + 1 |
---|
180 | C |
---|
181 | 40 CONTINUE |
---|
182 | NJ = J - JFIRST |
---|
183 | C |
---|
184 | C SKIP EVALUATION IF NO POINTS IN INTERVAL. |
---|
185 | C |
---|
186 | IF (NJ .EQ. 0) GO TO 50 |
---|
187 | C |
---|
188 | C EVALUATE CUBIC AT XE(I), I = JFIRST (1) J-1 . |
---|
189 | C |
---|
190 | C ---------------------------------------------------------------- |
---|
191 | CALL CHFEV (X(IR-1),X(IR), F(1,IR-1),F(1,IR), D(1,IR-1),D(1,IR), |
---|
192 | * NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC) |
---|
193 | C ---------------------------------------------------------------- |
---|
194 | IF (IERC .LT. 0) GO TO 5005 |
---|
195 | C |
---|
196 | IF (NEXT(2) .EQ. 0) GO TO 42 |
---|
197 | C IF (NEXT(2) .GT. 0) THEN |
---|
198 | C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE |
---|
199 | C RIGHT OF X(IR). |
---|
200 | C |
---|
201 | IF (IR .LT. N) GO TO 41 |
---|
202 | C IF (IR .EQ. N) THEN |
---|
203 | C THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
---|
204 | IERR = IERR + NEXT(2) |
---|
205 | GO TO 42 |
---|
206 | 41 CONTINUE |
---|
207 | C ELSE |
---|
208 | C WE SHOULD NEVER HAVE GOTTEN HERE. |
---|
209 | GO TO 5005 |
---|
210 | C ENDIF |
---|
211 | C ENDIF |
---|
212 | 42 CONTINUE |
---|
213 | C |
---|
214 | IF (NEXT(1) .EQ. 0) GO TO 49 |
---|
215 | C IF (NEXT(1) .GT. 0) THEN |
---|
216 | C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE |
---|
217 | C LEFT OF X(IR-1). |
---|
218 | C |
---|
219 | IF (IR .GT. 2) GO TO 43 |
---|
220 | C IF (IR .EQ. 2) THEN |
---|
221 | C THESE ARE ACTUALLY EXTRAPOLATION POINTS. |
---|
222 | IERR = IERR + NEXT(1) |
---|
223 | GO TO 49 |
---|
224 | 43 CONTINUE |
---|
225 | C ELSE |
---|
226 | C XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST |
---|
227 | C EVALUATION INTERVAL. |
---|
228 | C |
---|
229 | C FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1). |
---|
230 | DO 44 I = JFIRST, J-1 |
---|
231 | IF (XE(I) .LT. X(IR-1)) GO TO 45 |
---|
232 | 44 CONTINUE |
---|
233 | C NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR |
---|
234 | C IN CHFEV. |
---|
235 | GO TO 5005 |
---|
236 | C |
---|
237 | 45 CONTINUE |
---|
238 | C RESET J. (THIS WILL BE THE NEW JFIRST.) |
---|
239 | J = I |
---|
240 | C |
---|
241 | C NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY. |
---|
242 | DO 46 I = 1, IR-1 |
---|
243 | IF (XE(J) .LT. X(I)) GO TO 47 |
---|
244 | 46 CONTINUE |
---|
245 | C NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1). |
---|
246 | C |
---|
247 | 47 CONTINUE |
---|
248 | C AT THIS POINT, EITHER XE(J) .LT. X(1) |
---|
249 | C OR X(I-1) .LE. XE(J) .LT. X(I) . |
---|
250 | C RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE |
---|
251 | C CYCLING. |
---|
252 | IR = MAX(1, I-1) |
---|
253 | C ENDIF |
---|
254 | C ENDIF |
---|
255 | 49 CONTINUE |
---|
256 | C |
---|
257 | JFIRST = J |
---|
258 | C |
---|
259 | C END OF IR-LOOP. |
---|
260 | C |
---|
261 | 50 CONTINUE |
---|
262 | IR = IR + 1 |
---|
263 | IF (IR .LE. N) GO TO 10 |
---|
264 | C |
---|
265 | C NORMAL RETURN. |
---|
266 | C |
---|
267 | 5000 CONTINUE |
---|
268 | RETURN |
---|
269 | C |
---|
270 | C ERROR RETURNS. |
---|
271 | C |
---|
272 | 5001 CONTINUE |
---|
273 | C N.LT.2 RETURN. |
---|
274 | IERR = -1 |
---|
275 | CALL XERMSG ('SLATEC', 'PCHFE', |
---|
276 | + 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1) |
---|
277 | RETURN |
---|
278 | C |
---|
279 | 5002 CONTINUE |
---|
280 | C INCFD.LT.1 RETURN. |
---|
281 | IERR = -2 |
---|
282 | CALL XERMSG ('SLATEC', 'PCHFE', 'INCREMENT LESS THAN ONE', IERR, |
---|
283 | + 1) |
---|
284 | RETURN |
---|
285 | C |
---|
286 | 5003 CONTINUE |
---|
287 | C X-ARRAY NOT STRICTLY INCREASING. |
---|
288 | IERR = -3 |
---|
289 | CALL XERMSG ('SLATEC', 'PCHFE', 'X-ARRAY NOT STRICTLY INCREASING' |
---|
290 | + , IERR, 1) |
---|
291 | RETURN |
---|
292 | C |
---|
293 | 5004 CONTINUE |
---|
294 | C NE.LT.1 RETURN. |
---|
295 | IERR = -4 |
---|
296 | CALL XERMSG ('SLATEC', 'PCHFE', |
---|
297 | + 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1) |
---|
298 | RETURN |
---|
299 | C |
---|
300 | 5005 CONTINUE |
---|
301 | C ERROR RETURN FROM CHFEV. |
---|
302 | C *** THIS CASE SHOULD NEVER OCCUR *** |
---|
303 | IERR = -5 |
---|
304 | CALL XERMSG ('SLATEC', 'PCHFE', |
---|
305 | + 'ERROR RETURN FROM CHFEV -- FATAL', IERR, 2) |
---|
306 | RETURN |
---|
307 | C------------- LAST LINE OF PCHFE FOLLOWS ------------------------------ |
---|
308 | END |
---|