| 1 | ! $Id: newmicro.F 1479 2011-01-28 14:32:46Z evignon $ |
|---|
| 2 | ! |
|---|
| 3 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
|---|
| 4 | . t, pqlwp, pclc, pcltau, pclemi, |
|---|
| 5 | . pch, pcl, pcm, pct, pctlwp, |
|---|
| 6 | s xflwp, xfiwp, xflwc, xfiwc, |
|---|
| 7 | e ok_aie, |
|---|
| 8 | e mass_solu_aero, mass_solu_aero_pi, |
|---|
| 9 | e bl95_b0, bl95_b1, |
|---|
| 10 | s cldtaupi, re, fl, reliq, reice) |
|---|
| 11 | |
|---|
| 12 | USE dimphy |
|---|
| 13 | USE phys_local_var_mod, only: scdnc,cldncl,reffclwtop,lcc, |
|---|
| 14 | . reffclws,reffclwc,cldnvi,lcc3d, |
|---|
| 15 | . lcc3dcon,lcc3dstra |
|---|
| 16 | USE phys_state_var_mod, only: rnebcon,clwcon |
|---|
| 17 | IMPLICIT none |
|---|
| 18 | c====================================================================== |
|---|
| 19 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
|---|
| 20 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
|---|
| 21 | c====================================================================== |
|---|
| 22 | c Arguments: |
|---|
| 23 | c t-------input-R-temperature |
|---|
| 24 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
|---|
| 25 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
|---|
| 26 | c |
|---|
| 27 | c ok_aie--input-L-apply aerosol indirect effect or not |
|---|
| 28 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
|---|
| 29 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
|---|
| 30 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
|---|
| 31 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
|---|
| 32 | c |
|---|
| 33 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
|---|
| 34 | c needed for the diagnostics of the aerosol indirect |
|---|
| 35 | c radiative forcing (see radlwsw) |
|---|
| 36 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
|---|
| 37 | c fl------output-R-Denominator to re, introduced to avoid problems in |
|---|
| 38 | c the averaging of the output. fl is the fraction of liquid |
|---|
| 39 | c water clouds within a grid cell |
|---|
| 40 | c pcltau--output-R-epaisseur optique des nuages |
|---|
| 41 | c pclemi--output-R-emissivite des nuages (0 a 1) |
|---|
| 42 | c====================================================================== |
|---|
| 43 | C |
|---|
| 44 | #include "YOMCST.h" |
|---|
| 45 | c |
|---|
| 46 | cym#include "dimensions.h" |
|---|
| 47 | cym#include "dimphy.h" |
|---|
| 48 | #include "nuage.h" |
|---|
| 49 | cIM cf. CR: include pour NOVLP et ZEPSEC |
|---|
| 50 | #include "radepsi.h" |
|---|
| 51 | #include "radopt.h" |
|---|
| 52 | c choix de l'hypothese de recouvrememnt nuageuse |
|---|
| 53 | LOGICAL RANDOM,MAXIMUM_RANDOM,MAXIMUM |
|---|
| 54 | parameter (RANDOM=.FALSE., MAXIMUM_RANDOM=.TRUE., MAXIMUM=.FALSE.) |
|---|
| 55 | LOGICAL, SAVE :: FIRST=.TRUE. |
|---|
| 56 | !$OMP THREADPRIVATE(FIRST) |
|---|
| 57 | |
|---|
| 58 | c Hypoyhese de recouvrement : MAXIMUM_RANDOM |
|---|
| 59 | INTEGER flag_max |
|---|
| 60 | REAL phase3d(klon, klev),dh(klon, klev),pdel(klon, klev), |
|---|
| 61 | . zrho(klon, klev) |
|---|
| 62 | REAL tcc(klon), ftmp(klon), lcc_integrat(klon), height(klon) |
|---|
| 63 | REAL thres_tau,thres_neb |
|---|
| 64 | PARAMETER (thres_tau=0.3, thres_neb=0.001) |
|---|
| 65 | REAL t_tmp |
|---|
| 66 | REAL gravit |
|---|
| 67 | PARAMETER (gravit=9.80616) !m/s2 |
|---|
| 68 | REAL pqlwpcon(klon, klev), pqlwpstra(klon, klev) |
|---|
| 69 | c |
|---|
| 70 | REAL paprs(klon,klev+1), pplay(klon,klev) |
|---|
| 71 | REAL t(klon,klev) |
|---|
| 72 | c |
|---|
| 73 | REAL pclc(klon,klev) |
|---|
| 74 | REAL pqlwp(klon,klev) |
|---|
| 75 | REAL pcltau(klon,klev), pclemi(klon,klev) |
|---|
| 76 | c |
|---|
| 77 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
|---|
| 78 | c |
|---|
| 79 | LOGICAL lo |
|---|
| 80 | c |
|---|
| 81 | REAL cetahb, cetamb |
|---|
| 82 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
|---|
| 83 | C |
|---|
| 84 | INTEGER i, k |
|---|
| 85 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
|---|
| 86 | REAL zflwp(klon), zradef, zfice, zmsac |
|---|
| 87 | cIM: 091003 rajout |
|---|
| 88 | REAL xflwp(klon), xfiwp(klon) |
|---|
| 89 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
|---|
| 90 | c |
|---|
| 91 | REAL radius, rad_chaud |
|---|
| 92 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
|---|
| 93 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
|---|
| 94 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
|---|
| 95 | REAL coef, coef_froi, coef_chau |
|---|
| 96 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
|---|
| 97 | REAL seuil_neb |
|---|
| 98 | PARAMETER (seuil_neb=0.001) |
|---|
| 99 | INTEGER nexpo ! exponentiel pour glace/eau |
|---|
| 100 | PARAMETER (nexpo=6) |
|---|
| 101 | ccc PARAMETER (nexpo=1) |
|---|
| 102 | |
|---|
| 103 | c -- sb: |
|---|
| 104 | logical ok_newmicro |
|---|
| 105 | c parameter (ok_newmicro=.FALSE.) |
|---|
| 106 | cIM: 091003 real rel, tc, rei, zfiwp |
|---|
| 107 | real rel, tc, rei, zfiwp(klon) |
|---|
| 108 | real k_liq, k_ice0, k_ice, DF |
|---|
| 109 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
|---|
| 110 | parameter (DF=1.66) ! diffusivity factor |
|---|
| 111 | c sb -- |
|---|
| 112 | cjq for the aerosol indirect effect |
|---|
| 113 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
|---|
| 114 | cjq |
|---|
| 115 | LOGICAL ok_aie ! Apply AIE or not? |
|---|
| 116 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
|---|
| 117 | |
|---|
| 118 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
|---|
| 119 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
|---|
| 120 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
|---|
| 121 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
|---|
| 122 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
|---|
| 123 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
|---|
| 124 | |
|---|
| 125 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
|---|
| 126 | |
|---|
| 127 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
|---|
| 128 | |
|---|
| 129 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
|---|
| 130 | cjq-end |
|---|
| 131 | cIM cf. CR:parametres supplementaires |
|---|
| 132 | REAL zclear(klon) |
|---|
| 133 | REAL zcloud(klon) |
|---|
| 134 | |
|---|
| 135 | c ************************** |
|---|
| 136 | c * * |
|---|
| 137 | c * DEBUT PARTIE OPTIMISEE * |
|---|
| 138 | c * * |
|---|
| 139 | c ************************** |
|---|
| 140 | |
|---|
| 141 | REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) |
|---|
| 142 | REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var |
|---|
| 143 | |
|---|
| 144 | ! Abderrahmane oct 2009 |
|---|
| 145 | Real reliq(klon, klev), reice(klon, klev) |
|---|
| 146 | |
|---|
| 147 | c |
|---|
| 148 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
|---|
| 149 | c |
|---|
| 150 | c IM inversion des DO |
|---|
| 151 | xflwp = 0.d0 |
|---|
| 152 | xfiwp = 0.d0 |
|---|
| 153 | xflwc = 0.d0 |
|---|
| 154 | xfiwc = 0.d0 |
|---|
| 155 | |
|---|
| 156 | ! Initialisation |
|---|
| 157 | reliq=0. |
|---|
| 158 | reice=0. |
|---|
| 159 | |
|---|
| 160 | DO k = 1, klev |
|---|
| 161 | DO i = 1, klon |
|---|
| 162 | diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
|---|
| 163 | ENDDO |
|---|
| 164 | ENDDO |
|---|
| 165 | |
|---|
| 166 | IF (ok_newmicro) THEN |
|---|
| 167 | |
|---|
| 168 | |
|---|
| 169 | DO k = 1, klev |
|---|
| 170 | DO i = 1, klon |
|---|
| 171 | c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
|---|
| 172 | zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
|---|
| 173 | & (t_glace_max-t_glace_min) |
|---|
| 174 | zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) |
|---|
| 175 | c IM Total Liquid/Ice water content |
|---|
| 176 | xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) |
|---|
| 177 | xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) |
|---|
| 178 | c IM In-Cloud Liquid/Ice water content |
|---|
| 179 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
|---|
| 180 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
|---|
| 181 | ENDDO |
|---|
| 182 | ENDDO |
|---|
| 183 | |
|---|
| 184 | IF (ok_aie) THEN |
|---|
| 185 | DO k = 1, klev |
|---|
| 186 | DO i = 1, klon |
|---|
| 187 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
|---|
| 188 | ! |
|---|
| 189 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
|---|
| 190 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
|---|
| 191 | ! Cloud droplet number concentration (CDNC) is restricted |
|---|
| 192 | ! to be within [20, 1000 cm^3] |
|---|
| 193 | ! |
|---|
| 194 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
|---|
| 195 | ! |
|---|
| 196 | ! |
|---|
| 197 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
|---|
| 198 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.)) |
|---|
| 199 | & *1.e6 !-m-3 |
|---|
| 200 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
|---|
| 201 | ENDDO |
|---|
| 202 | ENDDO |
|---|
| 203 | DO k = 1, klev |
|---|
| 204 | DO i = 1, klon |
|---|
| 205 | ! rad_chaud_tab(i,k) = |
|---|
| 206 | ! & MAX(1.1e6 |
|---|
| 207 | ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
|---|
| 208 | ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) |
|---|
| 209 | rad_chaud_tab(i,k) = |
|---|
| 210 | & 1.1 |
|---|
| 211 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
|---|
| 212 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
|---|
| 213 | rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) |
|---|
| 214 | ENDDO |
|---|
| 215 | ENDDO |
|---|
| 216 | ELSE |
|---|
| 217 | DO k = 1, MIN(3,klev) |
|---|
| 218 | DO i = 1, klon |
|---|
| 219 | rad_chaud_tab(i,k) = rad_chau2 |
|---|
| 220 | ENDDO |
|---|
| 221 | ENDDO |
|---|
| 222 | DO k = MIN(3,klev)+1, klev |
|---|
| 223 | DO i = 1, klon |
|---|
| 224 | rad_chaud_tab(i,k) = rad_chau1 |
|---|
| 225 | ENDDO |
|---|
| 226 | ENDDO |
|---|
| 227 | |
|---|
| 228 | ENDIF |
|---|
| 229 | |
|---|
| 230 | DO k = 1, klev |
|---|
| 231 | ! IF(.not.ok_aie) THEN |
|---|
| 232 | rad_chaud = rad_chau1 |
|---|
| 233 | IF (k.LE.3) rad_chaud = rad_chau2 |
|---|
| 234 | ! ENDIF |
|---|
| 235 | DO i = 1, klon |
|---|
| 236 | IF (pclc(i,k) .LE. seuil_neb) THEN |
|---|
| 237 | |
|---|
| 238 | c -- effective cloud droplet radius (microns): |
|---|
| 239 | |
|---|
| 240 | c for liquid water clouds: |
|---|
| 241 | ! For output diagnostics |
|---|
| 242 | ! |
|---|
| 243 | ! Cloud droplet effective radius [um] |
|---|
| 244 | ! |
|---|
| 245 | ! we multiply here with f * xl (fraction of liquid water |
|---|
| 246 | ! clouds in the grid cell) to avoid problems in the |
|---|
| 247 | ! averaging of the output. |
|---|
| 248 | ! In the output of IOIPSL, derive the real cloud droplet |
|---|
| 249 | ! effective radius as re/fl |
|---|
| 250 | ! |
|---|
| 251 | |
|---|
| 252 | fl(i,k) = seuil_neb*(1.-zfice2(i,k)) |
|---|
| 253 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
|---|
| 254 | |
|---|
| 255 | rel = 0. |
|---|
| 256 | rei = 0. |
|---|
| 257 | pclc(i,k) = 0.0 |
|---|
| 258 | pcltau(i,k) = 0.0 |
|---|
| 259 | pclemi(i,k) = 0.0 |
|---|
| 260 | cldtaupi(i,k) = 0.0 |
|---|
| 261 | ELSE |
|---|
| 262 | |
|---|
| 263 | c -- liquid/ice cloud water paths: |
|---|
| 264 | |
|---|
| 265 | zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) |
|---|
| 266 | & *diff_paprs(i,k) |
|---|
| 267 | zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) |
|---|
| 268 | & *diff_paprs(i,k) |
|---|
| 269 | |
|---|
| 270 | c -- effective cloud droplet radius (microns): |
|---|
| 271 | |
|---|
| 272 | c for liquid water clouds: |
|---|
| 273 | |
|---|
| 274 | IF (ok_aie) THEN |
|---|
| 275 | radius = |
|---|
| 276 | & 1.1 |
|---|
| 277 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
|---|
| 278 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
|---|
| 279 | radius = MAX(radius*1e6, 5.) |
|---|
| 280 | |
|---|
| 281 | tc = t(i,k)-273.15 |
|---|
| 282 | rei = 0.71*tc + 61.29 |
|---|
| 283 | if (tc.le.-81.4) rei = 3.5 |
|---|
| 284 | if (zflwp_var.eq.0.) radius = 1. |
|---|
| 285 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
|---|
| 286 | cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
|---|
| 287 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
|---|
| 288 | |
|---|
| 289 | ENDIF ! ok_aie |
|---|
| 290 | ! For output diagnostics |
|---|
| 291 | ! |
|---|
| 292 | ! Cloud droplet effective radius [um] |
|---|
| 293 | ! |
|---|
| 294 | ! we multiply here with f * xl (fraction of liquid water |
|---|
| 295 | ! clouds in the grid cell) to avoid problems in the |
|---|
| 296 | ! averaging of the output. |
|---|
| 297 | ! In the output of IOIPSL, derive the real cloud droplet |
|---|
| 298 | ! effective radius as re/fl |
|---|
| 299 | ! |
|---|
| 300 | |
|---|
| 301 | fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) |
|---|
| 302 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
|---|
| 303 | |
|---|
| 304 | rel = rad_chaud_tab(i,k) |
|---|
| 305 | c for ice clouds: as a function of the ambiant temperature |
|---|
| 306 | c [formula used by Iacobellis and Somerville (2000), with an |
|---|
| 307 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
|---|
| 308 | c consistent with observations of Heymsfield et al. 1986]: |
|---|
| 309 | tc = t(i,k)-273.15 |
|---|
| 310 | rei = 0.71*tc + 61.29 |
|---|
| 311 | if (tc.le.-81.4) rei = 3.5 |
|---|
| 312 | c -- cloud optical thickness : |
|---|
| 313 | |
|---|
| 314 | c [for liquid clouds, traditional formula, |
|---|
| 315 | c for ice clouds, Ebert & Curry (1992)] |
|---|
| 316 | |
|---|
| 317 | if (zflwp_var.eq.0.) rel = 1. |
|---|
| 318 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
|---|
| 319 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
|---|
| 320 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
|---|
| 321 | c -- cloud infrared emissivity: |
|---|
| 322 | |
|---|
| 323 | c [the broadband infrared absorption coefficient is parameterized |
|---|
| 324 | c as a function of the effective cld droplet radius] |
|---|
| 325 | |
|---|
| 326 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
|---|
| 327 | k_ice = k_ice0 + 1.0/rei |
|---|
| 328 | |
|---|
| 329 | pclemi(i,k) = 1.0 |
|---|
| 330 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
|---|
| 331 | |
|---|
| 332 | ENDIF |
|---|
| 333 | reliq(i,k)=rel |
|---|
| 334 | reice(i,k)=rei |
|---|
| 335 | ! if (i.eq.1) then |
|---|
| 336 | ! print*,'Dans newmicro rel, rei :',rel, rei |
|---|
| 337 | ! print*,'Dans newmicro reliq, reice :', |
|---|
| 338 | ! $ reliq(i,k),reice(i,k) |
|---|
| 339 | ! endif |
|---|
| 340 | |
|---|
| 341 | ENDDO |
|---|
| 342 | ENDDO |
|---|
| 343 | |
|---|
| 344 | DO k = 1, klev |
|---|
| 345 | DO i = 1, klon |
|---|
| 346 | xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) |
|---|
| 347 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) |
|---|
| 348 | ENDDO |
|---|
| 349 | ENDDO |
|---|
| 350 | |
|---|
| 351 | ELSE |
|---|
| 352 | DO k = 1, klev |
|---|
| 353 | rad_chaud = rad_chau1 |
|---|
| 354 | IF (k.LE.3) rad_chaud = rad_chau2 |
|---|
| 355 | DO i = 1, klon |
|---|
| 356 | |
|---|
| 357 | IF (pclc(i,k) .LE. seuil_neb) THEN |
|---|
| 358 | |
|---|
| 359 | pclc(i,k) = 0.0 |
|---|
| 360 | pcltau(i,k) = 0.0 |
|---|
| 361 | pclemi(i,k) = 0.0 |
|---|
| 362 | cldtaupi(i,k) = 0.0 |
|---|
| 363 | |
|---|
| 364 | ELSE |
|---|
| 365 | |
|---|
| 366 | zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) |
|---|
| 367 | & /pclc(i,k) |
|---|
| 368 | |
|---|
| 369 | zfice1 = MIN( |
|---|
| 370 | & MAX( 1.0 - (t(i,k)-t_glace_min) / |
|---|
| 371 | & (t_glace_max-t_glace_min),0.0),1.0)**nexpo |
|---|
| 372 | |
|---|
| 373 | radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 |
|---|
| 374 | coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 |
|---|
| 375 | |
|---|
| 376 | pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) |
|---|
| 377 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) |
|---|
| 378 | |
|---|
| 379 | ENDIF |
|---|
| 380 | |
|---|
| 381 | ENDDO |
|---|
| 382 | ENDDO |
|---|
| 383 | ENDIF |
|---|
| 384 | |
|---|
| 385 | IF (.NOT.ok_aie) THEN |
|---|
| 386 | DO k = 1, klev |
|---|
| 387 | DO i = 1, klon |
|---|
| 388 | cldtaupi(i,k)=pcltau(i,k) |
|---|
| 389 | ENDDO |
|---|
| 390 | ENDDO |
|---|
| 391 | ENDIF |
|---|
| 392 | |
|---|
| 393 | ccc DO k = 1, klev |
|---|
| 394 | ccc DO i = 1, klon |
|---|
| 395 | ccc t(i,k) = t(i,k) |
|---|
| 396 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
|---|
| 397 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
|---|
| 398 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
|---|
| 399 | ccc . /(rg*pclc(i,k)) |
|---|
| 400 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
|---|
| 401 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
|---|
| 402 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
|---|
| 403 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
|---|
| 404 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
|---|
| 405 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
|---|
| 406 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
|---|
| 407 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
|---|
| 408 | ccc ENDDO |
|---|
| 409 | ccc ENDDO |
|---|
| 410 | ccccc print*, 'pas de nuage dans le rayonnement' |
|---|
| 411 | ccccc DO k = 1, klev |
|---|
| 412 | ccccc DO i = 1, klon |
|---|
| 413 | ccccc pclc(i,k) = 0.0 |
|---|
| 414 | ccccc pcltau(i,k) = 0.0 |
|---|
| 415 | ccccc pclemi(i,k) = 0.0 |
|---|
| 416 | ccccc ENDDO |
|---|
| 417 | ccccc ENDDO |
|---|
| 418 | C |
|---|
| 419 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
|---|
| 420 | C |
|---|
| 421 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
|---|
| 422 | c initialisations |
|---|
| 423 | DO i=1,klon |
|---|
| 424 | zclear(i)=1. |
|---|
| 425 | zcloud(i)=0. |
|---|
| 426 | pch(i)=1.0 |
|---|
| 427 | pcm(i) = 1.0 |
|---|
| 428 | pcl(i) = 1.0 |
|---|
| 429 | pctlwp(i) = 0.0 |
|---|
| 430 | ENDDO |
|---|
| 431 | C |
|---|
| 432 | cIM cf CR DO k=1,klev |
|---|
| 433 | DO k = klev, 1, -1 |
|---|
| 434 | DO i = 1, klon |
|---|
| 435 | pctlwp(i) = pctlwp(i) |
|---|
| 436 | & + pqlwp(i,k)*diff_paprs(i,k) |
|---|
| 437 | ENDDO |
|---|
| 438 | ENDDO |
|---|
| 439 | c IM cf. CR |
|---|
| 440 | IF (NOVLP.EQ.1) THEN |
|---|
| 441 | DO k = klev, 1, -1 |
|---|
| 442 | DO i = 1, klon |
|---|
| 443 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
|---|
| 444 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
|---|
| 445 | pct(i)=1.-zclear(i) |
|---|
| 446 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
|---|
| 447 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
|---|
| 448 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
|---|
| 449 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
|---|
| 450 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
|---|
| 451 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
|---|
| 452 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
|---|
| 453 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
|---|
| 454 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
|---|
| 455 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
|---|
| 456 | endif |
|---|
| 457 | zcloud(i)=pclc(i,k) |
|---|
| 458 | ENDDO |
|---|
| 459 | ENDDO |
|---|
| 460 | ELSE IF (NOVLP.EQ.2) THEN |
|---|
| 461 | DO k = klev, 1, -1 |
|---|
| 462 | DO i = 1, klon |
|---|
| 463 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
|---|
| 464 | pct(i)=zcloud(i) |
|---|
| 465 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
|---|
| 466 | pch(i) = MIN(pclc(i,k),pch(i)) |
|---|
| 467 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
|---|
| 468 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
|---|
| 469 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
|---|
| 470 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
|---|
| 471 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
|---|
| 472 | endif |
|---|
| 473 | ENDDO |
|---|
| 474 | ENDDO |
|---|
| 475 | ELSE IF (NOVLP.EQ.3) THEN |
|---|
| 476 | DO k = klev, 1, -1 |
|---|
| 477 | DO i = 1, klon |
|---|
| 478 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
|---|
| 479 | pct(i)=1-zclear(i) |
|---|
| 480 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
|---|
| 481 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
|---|
| 482 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
|---|
| 483 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
|---|
| 484 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
|---|
| 485 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
|---|
| 486 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
|---|
| 487 | endif |
|---|
| 488 | ENDDO |
|---|
| 489 | ENDDO |
|---|
| 490 | ENDIF |
|---|
| 491 | |
|---|
| 492 | C |
|---|
| 493 | DO i = 1, klon |
|---|
| 494 | c IM cf. CR pct(i)=1.-pct(i) |
|---|
| 495 | pch(i)=1.-pch(i) |
|---|
| 496 | pcm(i)=1.-pcm(i) |
|---|
| 497 | pcl(i)=1.-pcl(i) |
|---|
| 498 | ENDDO |
|---|
| 499 | |
|---|
| 500 | c ======================================================== |
|---|
| 501 | ! DIAGNOSTICS CALCULATION FOR CMIP5 PROTOCOL |
|---|
| 502 | c ======================================================== |
|---|
| 503 | !! change by Nicolas Yan (LSCE) |
|---|
| 504 | !! Cloud Droplet Number Concentration (CDNC) : 3D variable |
|---|
| 505 | !! Fractionnal cover by liquid water cloud (LCC3D) : 3D variable |
|---|
| 506 | !! Cloud Droplet Number Concentration at top of cloud (CLDNCL) : 2D variable |
|---|
| 507 | !! Droplet effective radius at top of cloud (REFFCLWTOP) : 2D variable |
|---|
| 508 | !! Fractionnal cover by liquid water at top of clouds (LCC) : 2D variable |
|---|
| 509 | IF (ok_newmicro) THEN |
|---|
| 510 | IF (ok_aie) THEN |
|---|
| 511 | DO k = 1, klev |
|---|
| 512 | DO i = 1, klon |
|---|
| 513 | phase3d(i,k)=1-zfice2(i,k) |
|---|
| 514 | IF (pclc(i,k) .LE. seuil_neb) THEN |
|---|
| 515 | lcc3d(i,k)=seuil_neb*phase3d(i,k) |
|---|
| 516 | ELSE |
|---|
| 517 | lcc3d(i,k)=pclc(i,k)*phase3d(i,k) |
|---|
| 518 | ENDIF |
|---|
| 519 | scdnc(i,k)=lcc3d(i,k)*cdnc(i,k) ! m-3 |
|---|
| 520 | ENDDO |
|---|
| 521 | ENDDO |
|---|
| 522 | |
|---|
| 523 | DO i=1,klon |
|---|
| 524 | lcc(i)=0. |
|---|
| 525 | reffclwtop(i)=0. |
|---|
| 526 | cldncl(i)=0. |
|---|
| 527 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i) = 1. |
|---|
| 528 | IF(MAXIMUM) tcc(i) = 0. |
|---|
| 529 | ENDDO |
|---|
| 530 | |
|---|
| 531 | DO i=1,klon |
|---|
| 532 | DO k=klev-1,1,-1 !From TOA down |
|---|
| 533 | |
|---|
| 534 | |
|---|
| 535 | ! Test, if the cloud optical depth exceeds the necessary |
|---|
| 536 | ! threshold: |
|---|
| 537 | |
|---|
| 538 | IF (pcltau(i,k).GT.thres_tau .AND. pclc(i,k).GT.thres_neb) |
|---|
| 539 | . THEN |
|---|
| 540 | ! To calculate the right Temperature at cloud top, |
|---|
| 541 | ! interpolate it between layers: |
|---|
| 542 | t_tmp = t(i,k) + |
|---|
| 543 | . (paprs(i,k+1)-pplay(i,k))/(pplay(i,k+1)-pplay(i,k)) |
|---|
| 544 | . * ( t(i,k+1) - t(i,k) ) |
|---|
| 545 | |
|---|
| 546 | IF(MAXIMUM) THEN |
|---|
| 547 | IF(FIRST) THEN |
|---|
| 548 | write(*,*)'Hypothese de recouvrement: MAXIMUM' |
|---|
| 549 | FIRST=.FALSE. |
|---|
| 550 | ENDIF |
|---|
| 551 | flag_max= -1. |
|---|
| 552 | ftmp(i) = MAX(tcc(i),pclc(i,k)) |
|---|
| 553 | ENDIF |
|---|
| 554 | |
|---|
| 555 | IF(RANDOM) THEN |
|---|
| 556 | IF(FIRST) THEN |
|---|
| 557 | write(*,*)'Hypothese de recouvrement: RANDOM' |
|---|
| 558 | FIRST=.FALSE. |
|---|
| 559 | ENDIF |
|---|
| 560 | flag_max= 1. |
|---|
| 561 | ftmp(i) = tcc(i) * (1-pclc(i,k)) |
|---|
| 562 | ENDIF |
|---|
| 563 | |
|---|
| 564 | IF(MAXIMUM_RANDOM) THEN |
|---|
| 565 | IF(FIRST) THEN |
|---|
| 566 | write(*,*)'Hypothese de recouvrement: MAXIMUM_ |
|---|
| 567 | . RANDOM' |
|---|
| 568 | FIRST=.FALSE. |
|---|
| 569 | ENDIF |
|---|
| 570 | flag_max= 1. |
|---|
| 571 | ftmp(i) = tcc(i) * |
|---|
| 572 | . (1. - MAX(pclc(i,k),pclc(i,k+1))) / |
|---|
| 573 | . (1. - MIN(pclc(i,k+1),1.-thres_neb)) |
|---|
| 574 | ENDIF |
|---|
| 575 | c Effective radius of cloud droplet at top of cloud (m) |
|---|
| 576 | reffclwtop(i) = reffclwtop(i) + rad_chaud_tab(i,k) * |
|---|
| 577 | . 1.0E-06 * phase3d(i,k) * ( tcc(i) - ftmp(i))*flag_max |
|---|
| 578 | c CDNC at top of cloud (m-3) |
|---|
| 579 | cldncl(i) = cldncl(i) + cdnc(i,k) * phase3d(i,k) * |
|---|
| 580 | . (tcc(i) - ftmp(i))*flag_max |
|---|
| 581 | c Liquid Cloud Content at top of cloud |
|---|
| 582 | lcc(i) = lcc(i) + phase3d(i,k) * (tcc(i)-ftmp(i))* |
|---|
| 583 | . flag_max |
|---|
| 584 | c Total Cloud Content at top of cloud |
|---|
| 585 | tcc(i)=ftmp(i) |
|---|
| 586 | |
|---|
| 587 | ENDIF ! is there a visible, not-too-small cloud? |
|---|
| 588 | ENDDO ! loop over k |
|---|
| 589 | |
|---|
| 590 | IF(RANDOM .OR. MAXIMUM_RANDOM) tcc(i)=1.-tcc(i) |
|---|
| 591 | ENDDO ! loop over i |
|---|
| 592 | |
|---|
| 593 | !! Convective and Stratiform Cloud Droplet Effective Radius (REFFCLWC REFFCLWS) |
|---|
| 594 | DO i = 1, klon |
|---|
| 595 | DO k = 1, klev |
|---|
| 596 | pqlwpcon(i,k)=rnebcon(i,k)*clwcon(i,k) ! fraction eau liquide convective |
|---|
| 597 | pqlwpstra(i,k)=pclc(i,k)*phase3d(i,k)-pqlwpcon(i,k) ! fraction eau liquide stratiforme |
|---|
| 598 | IF (pqlwpstra(i,k) .LE. 0.0) pqlwpstra(i,k)=0.0 |
|---|
| 599 | ! Convective Cloud Droplet Effective Radius (REFFCLWC) : variable 3D |
|---|
| 600 | reffclwc(i,k)=1.1 |
|---|
| 601 | & *((pqlwpcon(i,k)*pplay(i,k)/(RD * T(i,k))) |
|---|
| 602 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
|---|
| 603 | reffclwc(i,k) = MAX(reffclwc(i,k) * 1e6, 5.) |
|---|
| 604 | |
|---|
| 605 | ! Stratiform Cloud Droplet Effective Radius (REFFCLWS) : variable 3D |
|---|
| 606 | IF ((pclc(i,k)-rnebcon(i,k)) .LE. seuil_neb) THEN ! tout sous la forme convective |
|---|
| 607 | reffclws(i,k)=0.0 |
|---|
| 608 | lcc3dstra(i,k)= 0.0 |
|---|
| 609 | ELSE |
|---|
| 610 | reffclws(i,k) = (pclc(i,k)*phase3d(i,k)* |
|---|
| 611 | & rad_chaud_tab(i,k)- |
|---|
| 612 | & pqlwpcon(i,k)*reffclwc(i,k)) |
|---|
| 613 | IF(reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
|---|
| 614 | lcc3dstra(i,k)=pqlwpstra(i,k) |
|---|
| 615 | ENDIF |
|---|
| 616 | !Convertion from um to m |
|---|
| 617 | IF(rnebcon(i,k). LE. seuil_neb) THEN |
|---|
| 618 | reffclwc(i,k) = reffclwc(i,k)*seuil_neb*clwcon(i,k) |
|---|
| 619 | & *1.0E-06 |
|---|
| 620 | lcc3dcon(i,k)= seuil_neb*clwcon(i,k) |
|---|
| 621 | ELSE |
|---|
| 622 | reffclwc(i,k) = reffclwc(i,k)*pqlwpcon(i,k) |
|---|
| 623 | & *1.0E-06 |
|---|
| 624 | lcc3dcon(i,k) = pqlwpcon(i,k) |
|---|
| 625 | ENDIF |
|---|
| 626 | |
|---|
| 627 | reffclws(i,k) = reffclws(i,k)*1.0E-06 |
|---|
| 628 | |
|---|
| 629 | ENDDO !klev |
|---|
| 630 | ENDDO !klon |
|---|
| 631 | |
|---|
| 632 | !! Column Integrated Cloud Droplet Number (CLDNVI) : variable 2D |
|---|
| 633 | DO k = 1, klev |
|---|
| 634 | DO i = 1, klon |
|---|
| 635 | pdel(i,k) = paprs(i,k)-paprs(i,k+1) |
|---|
| 636 | zrho(i,k)=pplay(i,k)/t(i,k)/RD ! kg/m3 |
|---|
| 637 | dh(i,k)=pdel(i,k)/(gravit*zrho(i,k)) ! hauteur de chaque boite (m) |
|---|
| 638 | ENDDO |
|---|
| 639 | ENDDO |
|---|
| 640 | c |
|---|
| 641 | DO i = 1, klon |
|---|
| 642 | cldnvi(i)=0. |
|---|
| 643 | lcc_integrat(i)=0. |
|---|
| 644 | height(i)=0. |
|---|
| 645 | DO k = 1, klev |
|---|
| 646 | cldnvi(i)=cldnvi(i)+cdnc(i,k)*lcc3d(i,k)*dh(i,k) |
|---|
| 647 | lcc_integrat(i)=lcc_integrat(i)+lcc3d(i,k)*dh(i,k) |
|---|
| 648 | height(i)=height(i)+dh(i,k) |
|---|
| 649 | ENDDO ! klev |
|---|
| 650 | lcc_integrat(i)=lcc_integrat(i)/height(i) |
|---|
| 651 | IF (lcc_integrat(i) .LE. 1.0E-03) THEN |
|---|
| 652 | cldnvi(i)=cldnvi(i)*lcc(i)/seuil_neb |
|---|
| 653 | ELSE |
|---|
| 654 | cldnvi(i)=cldnvi(i)*lcc(i)/lcc_integrat(i) |
|---|
| 655 | ENDIF |
|---|
| 656 | ENDDO ! klon |
|---|
| 657 | |
|---|
| 658 | DO i = 1, klon |
|---|
| 659 | DO k = 1, klev |
|---|
| 660 | IF (scdnc(i,k) .LE. 0.0) scdnc(i,k)=0.0 |
|---|
| 661 | IF (reffclws(i,k) .LE. 0.0) reffclws(i,k)=0.0 |
|---|
| 662 | IF (reffclwc(i,k) .LE. 0.0) reffclwc(i,k)=0.0 |
|---|
| 663 | IF (lcc3d(i,k) .LE. 0.0) lcc3d(i,k)=0.0 |
|---|
| 664 | IF (lcc3dcon(i,k) .LE. 0.0) lcc3dcon(i,k)=0.0 |
|---|
| 665 | IF (lcc3dstra(i,k) .LE. 0.0) lcc3dstra(i,k)=0.0 |
|---|
| 666 | ENDDO |
|---|
| 667 | IF (reffclwtop(i) .LE. 0.0) reffclwtop(i)=0.0 |
|---|
| 668 | IF (cldncl(i) .LE. 0.0) cldncl(i)=0.0 |
|---|
| 669 | IF (cldnvi(i) .LE. 0.0) cldnvi(i)=0.0 |
|---|
| 670 | IF (lcc(i) .LE. 0.0) lcc(i)=0.0 |
|---|
| 671 | ENDDO |
|---|
| 672 | |
|---|
| 673 | ENDIF !ok_aie |
|---|
| 674 | ENDIF !ok newmicro |
|---|
| 675 | c |
|---|
| 676 | C |
|---|
| 677 | RETURN |
|---|
| 678 | END |
|---|