1 | ! |
---|
2 | ! $Id: thermcell_main.F90 1790 2013-07-17 09:24:04Z evignon $ |
---|
3 | ! |
---|
4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
5 | & ,pplay,pplev,pphi,debut & |
---|
6 | & ,pu,pv,pt,po & |
---|
7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
8 | & ,fm0,entr0,detr0,zqta,zqla,lmax & |
---|
9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
10 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
11 | & ,zmax0, f0,zw2,fraca,ztv & |
---|
12 | & ,zpspsk,ztla,zthl & |
---|
13 | !!! nrlmd le 10/04/2012 |
---|
14 | & ,pbl_tke,pctsrf,omega,airephy & |
---|
15 | & ,zlcl,fraca0,w0,w_conv,therm_tke_max0,env_tke_max0 & |
---|
16 | & ,n2,s2,ale_bl_stat & |
---|
17 | & ,therm_tke_max,env_tke_max & |
---|
18 | & ,alp_bl_det,alp_bl_fluct_m,alp_bl_fluct_tke & |
---|
19 | & ,alp_bl_conv,alp_bl_stat & |
---|
20 | !!! fin nrlmd le 10/04/2012 |
---|
21 | & ,ztva ) |
---|
22 | |
---|
23 | USE dimphy |
---|
24 | USE ioipsl |
---|
25 | USE comgeomphy , ONLY:rlond,rlatd |
---|
26 | USE indice_sol_mod |
---|
27 | IMPLICIT NONE |
---|
28 | |
---|
29 | !======================================================================= |
---|
30 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
31 | ! Version du 09.02.07 |
---|
32 | ! Calcul du transport vertical dans la couche limite en presence |
---|
33 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
34 | ! |
---|
35 | ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 |
---|
36 | ! |
---|
37 | ! le thermique est suppose homogene et dissipe par melange avec |
---|
38 | ! son environnement. la longueur l_mix controle l'efficacite du |
---|
39 | ! melange |
---|
40 | ! |
---|
41 | ! Le calcul du transport des differentes especes se fait en prenant |
---|
42 | ! en compte: |
---|
43 | ! 1. un flux de masse montant |
---|
44 | ! 2. un flux de masse descendant |
---|
45 | ! 3. un entrainement |
---|
46 | ! 4. un detrainement |
---|
47 | ! |
---|
48 | ! Modif 2013/01/04 (FH hourdin@lmd.jussieu.fr) |
---|
49 | ! Introduction of an implicit computation of vertical advection in |
---|
50 | ! the environment of thermal plumes in thermcell_dq |
---|
51 | ! impl = 0 : explicit, 1 : implicit, -1 : old version |
---|
52 | ! controled by iflag_thermals = |
---|
53 | ! 15, 16 run with impl=-1 : numerical convergence with NPv3 |
---|
54 | ! 17, 18 run with impl=1 : more stable |
---|
55 | ! 15 and 17 correspond to the activation of the stratocumulus "bidouille" |
---|
56 | ! |
---|
57 | !======================================================================= |
---|
58 | |
---|
59 | |
---|
60 | !----------------------------------------------------------------------- |
---|
61 | ! declarations: |
---|
62 | ! ------------- |
---|
63 | |
---|
64 | #include "dimensions.h" |
---|
65 | #include "YOMCST.h" |
---|
66 | #include "YOETHF.h" |
---|
67 | #include "FCTTRE.h" |
---|
68 | #include "iniprint.h" |
---|
69 | #include "thermcell.h" |
---|
70 | |
---|
71 | ! arguments: |
---|
72 | ! ---------- |
---|
73 | |
---|
74 | !IM 140508 |
---|
75 | INTEGER itap |
---|
76 | |
---|
77 | INTEGER ngrid,nlay |
---|
78 | real ptimestep |
---|
79 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
80 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
81 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
82 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
83 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
84 | real pphi(ngrid,nlay) |
---|
85 | |
---|
86 | ! local: |
---|
87 | ! ------ |
---|
88 | |
---|
89 | integer icount |
---|
90 | |
---|
91 | integer, save :: dvdq=1,dqimpl=-1 |
---|
92 | !$OMP THREADPRIVATE(dvdq,dqimpl) |
---|
93 | data icount/0/ |
---|
94 | save icount |
---|
95 | !$OMP THREADPRIVATE(icount) |
---|
96 | |
---|
97 | integer,save :: igout=1 |
---|
98 | !$OMP THREADPRIVATE(igout) |
---|
99 | integer,save :: lunout1=6 |
---|
100 | !$OMP THREADPRIVATE(lunout1) |
---|
101 | integer,save :: lev_out=10 |
---|
102 | !$OMP THREADPRIVATE(lev_out) |
---|
103 | |
---|
104 | REAL susqr2pi, Reuler |
---|
105 | |
---|
106 | INTEGER ig,k,l,ll,ierr |
---|
107 | real zsortie1d(klon) |
---|
108 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
109 | INTEGER lmix(klon) |
---|
110 | INTEGER lmix_bis(klon) |
---|
111 | real linter(klon) |
---|
112 | real zmix(klon) |
---|
113 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev),zw_est(klon,klev+1),ztva_est(klon,klev) |
---|
114 | ! real fraca(klon,klev) |
---|
115 | |
---|
116 | real zmax_sec(klon) |
---|
117 | !on garde le zmax du pas de temps precedent |
---|
118 | real zmax0(klon) |
---|
119 | !FH/IM save zmax0 |
---|
120 | |
---|
121 | real lambda |
---|
122 | |
---|
123 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
124 | real deltaz(klon,klev) |
---|
125 | REAL zh(klon,klev) |
---|
126 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
127 | REAL ztv(klon,klev) |
---|
128 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
129 | real zl(klon,klev) |
---|
130 | real zsortie(klon,klev) |
---|
131 | real zva(klon,klev) |
---|
132 | real zua(klon,klev) |
---|
133 | real zoa(klon,klev) |
---|
134 | |
---|
135 | real zta(klon,klev) |
---|
136 | real zha(klon,klev) |
---|
137 | real fraca(klon,klev+1) |
---|
138 | real zf,zf2 |
---|
139 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
140 | real q2(klon,klev) |
---|
141 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
142 | ! common/comtherm/thetath2,wth2 |
---|
143 | real wq(klon,klev) |
---|
144 | real wthl(klon,klev) |
---|
145 | real wthv(klon,klev) |
---|
146 | |
---|
147 | real ratqscth(klon,klev) |
---|
148 | real var |
---|
149 | real vardiff |
---|
150 | real ratqsdiff(klon,klev) |
---|
151 | |
---|
152 | logical sorties |
---|
153 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
154 | real zpspsk(klon,klev) |
---|
155 | |
---|
156 | real wmax(klon) |
---|
157 | real wmax_tmp(klon) |
---|
158 | real wmax_sec(klon) |
---|
159 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
160 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
161 | |
---|
162 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
163 | !niveau de condensation |
---|
164 | integer nivcon(klon) |
---|
165 | real zcon(klon) |
---|
166 | REAL CHI |
---|
167 | real zcon2(klon) |
---|
168 | real pcon(klon) |
---|
169 | real zqsat(klon,klev) |
---|
170 | real zqsatth(klon,klev) |
---|
171 | |
---|
172 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
173 | real detr_star(klon,klev) |
---|
174 | real alim_star_tot(klon) |
---|
175 | real alim_star(klon,klev) |
---|
176 | real alim_star_clos(klon,klev) |
---|
177 | real f(klon), f0(klon) |
---|
178 | !FH/IM save f0 |
---|
179 | real zlevinter(klon) |
---|
180 | logical debut |
---|
181 | real seuil |
---|
182 | real csc(klon,klev) |
---|
183 | |
---|
184 | !!! nrlmd le 10/04/2012 |
---|
185 | |
---|
186 | !------Entrées |
---|
187 | real pbl_tke(klon,klev+1,nbsrf) |
---|
188 | real pctsrf(klon,nbsrf) |
---|
189 | real omega(klon,klev) |
---|
190 | real airephy(klon) |
---|
191 | !------Sorties |
---|
192 | real zlcl(klon),fraca0(klon),w0(klon),w_conv(klon) |
---|
193 | real therm_tke_max0(klon),env_tke_max0(klon) |
---|
194 | real n2(klon),s2(klon) |
---|
195 | real ale_bl_stat(klon) |
---|
196 | real therm_tke_max(klon,klev),env_tke_max(klon,klev) |
---|
197 | real alp_bl_det(klon),alp_bl_fluct_m(klon),alp_bl_fluct_tke(klon),alp_bl_conv(klon),alp_bl_stat(klon) |
---|
198 | !------Local |
---|
199 | integer nsrf |
---|
200 | real rhobarz0(klon) ! Densité au LCL |
---|
201 | logical ok_lcl(klon) ! Existence du LCL des thermiques |
---|
202 | integer klcl(klon) ! Niveau du LCL |
---|
203 | real interp(klon) ! Coef d'interpolation pour le LCL |
---|
204 | !--Triggering |
---|
205 | real Su ! Surface unité: celle d'un updraft élémentaire |
---|
206 | parameter(Su=4e4) |
---|
207 | real hcoef ! Coefficient directeur pour le calcul de s2 |
---|
208 | parameter(hcoef=1) |
---|
209 | real hmincoef ! Coefficient directeur pour l'ordonnée à l'origine pour le calcul de s2 |
---|
210 | parameter(hmincoef=0.3) |
---|
211 | real eps1 ! Fraction de surface occupée par la population 1 : eps1=n1*s1/(fraca0*Sd) |
---|
212 | parameter(eps1=0.3) |
---|
213 | real hmin(ngrid) ! Ordonnée à l'origine pour le calcul de s2 |
---|
214 | real zmax_moy(ngrid) ! Hauteur moyenne des thermiques : zmax_moy = zlcl + 0.33 (zmax-zlcl) |
---|
215 | real zmax_moy_coef |
---|
216 | parameter(zmax_moy_coef=0.33) |
---|
217 | real depth(klon) ! Epaisseur moyenne du cumulus |
---|
218 | real w_max(klon) ! Vitesse max statistique |
---|
219 | real s_max(klon) |
---|
220 | !--Closure |
---|
221 | real pbl_tke_max(klon,klev) ! Profil de TKE moyenne |
---|
222 | real pbl_tke_max0(klon) ! TKE moyenne au LCL |
---|
223 | real w_ls(klon,klev) ! Vitesse verticale grande échelle (m/s) |
---|
224 | real coef_m ! On considère un rendement pour alp_bl_fluct_m |
---|
225 | parameter(coef_m=1.) |
---|
226 | real coef_tke ! On considère un rendement pour alp_bl_fluct_tke |
---|
227 | parameter(coef_tke=1.) |
---|
228 | |
---|
229 | !!! fin nrlmd le 10/04/2012 |
---|
230 | |
---|
231 | ! |
---|
232 | !nouvelles variables pour la convection |
---|
233 | real Ale_bl(klon) |
---|
234 | real Alp_bl(klon) |
---|
235 | real alp_int(klon),dp_int(klon),zdp |
---|
236 | real ale_int(klon) |
---|
237 | integer n_int(klon) |
---|
238 | real fm_tot(klon) |
---|
239 | real wght_th(klon,klev) |
---|
240 | integer lalim_conv(klon) |
---|
241 | !v1d logical therm |
---|
242 | !v1d save therm |
---|
243 | |
---|
244 | character*2 str2 |
---|
245 | character*10 str10 |
---|
246 | |
---|
247 | character (len=20) :: modname='thermcell_main' |
---|
248 | character (len=80) :: abort_message |
---|
249 | |
---|
250 | EXTERNAL SCOPY |
---|
251 | ! |
---|
252 | |
---|
253 | !----------------------------------------------------------------------- |
---|
254 | ! initialisation: |
---|
255 | ! --------------- |
---|
256 | ! |
---|
257 | |
---|
258 | seuil=0.25 |
---|
259 | |
---|
260 | if (debut) then |
---|
261 | ! call getin('dvdq',dvdq) |
---|
262 | ! call getin('dqimpl',dqimpl) |
---|
263 | |
---|
264 | if (iflag_thermals==15.or.iflag_thermals==16) then |
---|
265 | dvdq=0 |
---|
266 | dqimpl=-1 |
---|
267 | else |
---|
268 | dvdq=1 |
---|
269 | dqimpl=1 |
---|
270 | endif |
---|
271 | |
---|
272 | fm0=0. |
---|
273 | entr0=0. |
---|
274 | detr0=0. |
---|
275 | |
---|
276 | |
---|
277 | #undef wrgrads_thermcell |
---|
278 | #ifdef wrgrads_thermcell |
---|
279 | ! Initialisation des sorties grads pour les thermiques. |
---|
280 | ! Pour l'instant en 1D sur le point igout. |
---|
281 | ! Utilise par thermcell_out3d.h |
---|
282 | str10='therm' |
---|
283 | call inigrads(1,1,rlond(igout),1.,-180.,180.,jjm, & |
---|
284 | & rlatd(igout),-90.,90.,1.,llm,pplay(igout,:),1., & |
---|
285 | & ptimestep,str10,'therm ') |
---|
286 | #endif |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | endif |
---|
291 | |
---|
292 | fm=0. ; entr=0. ; detr=0. |
---|
293 | |
---|
294 | |
---|
295 | icount=icount+1 |
---|
296 | |
---|
297 | !IM 090508 beg |
---|
298 | !print*,'=====================================================================' |
---|
299 | !print*,'=====================================================================' |
---|
300 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
301 | !print*,'=====================================================================' |
---|
302 | !print*,'=====================================================================' |
---|
303 | !IM 090508 end |
---|
304 | |
---|
305 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
306 | |
---|
307 | sorties=.true. |
---|
308 | IF(ngrid.NE.klon) THEN |
---|
309 | PRINT* |
---|
310 | PRINT*,'STOP dans convadj' |
---|
311 | PRINT*,'ngrid =',ngrid |
---|
312 | PRINT*,'klon =',klon |
---|
313 | ENDIF |
---|
314 | ! |
---|
315 | ! write(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
316 | do ig=1,klon |
---|
317 | f0(ig)=max(f0(ig),1.e-2) |
---|
318 | zmax0(ig)=max(zmax0(ig),40.) |
---|
319 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
320 | enddo |
---|
321 | |
---|
322 | if (prt_level.ge.20) then |
---|
323 | do ig=1,ngrid |
---|
324 | print*,'th_main ig f0',ig,f0(ig) |
---|
325 | enddo |
---|
326 | endif |
---|
327 | !----------------------------------------------------------------------- |
---|
328 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
329 | ! -------------------------------------------------------------------- |
---|
330 | ! |
---|
331 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
332 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
333 | |
---|
334 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
335 | |
---|
336 | !------------------------------------------------------------------------ |
---|
337 | ! -------------------- |
---|
338 | ! |
---|
339 | ! |
---|
340 | ! + + + + + + + + + + + |
---|
341 | ! |
---|
342 | ! |
---|
343 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
344 | ! wh,wt,wo ... |
---|
345 | ! |
---|
346 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
347 | ! |
---|
348 | ! |
---|
349 | ! -------------------- zlev(1) |
---|
350 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
351 | ! |
---|
352 | ! |
---|
353 | |
---|
354 | !----------------------------------------------------------------------- |
---|
355 | ! Calcul des altitudes des couches |
---|
356 | !----------------------------------------------------------------------- |
---|
357 | |
---|
358 | do l=2,nlay |
---|
359 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
360 | enddo |
---|
361 | zlev(:,1)=0. |
---|
362 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
363 | do l=1,nlay |
---|
364 | zlay(:,l)=pphi(:,l)/RG |
---|
365 | enddo |
---|
366 | !calcul de l epaisseur des couches |
---|
367 | do l=1,nlay |
---|
368 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
369 | enddo |
---|
370 | |
---|
371 | ! print*,'2 OK convect8' |
---|
372 | !----------------------------------------------------------------------- |
---|
373 | ! Calcul des densites |
---|
374 | !----------------------------------------------------------------------- |
---|
375 | |
---|
376 | rho(:,:)=pplay(:,:)/(zpspsk(:,:)*RD*ztv(:,:)) |
---|
377 | |
---|
378 | if (prt_level.ge.10)write(lunout,*) & |
---|
379 | & 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
380 | rhobarz(:,1)=rho(:,1) |
---|
381 | |
---|
382 | do l=2,nlay |
---|
383 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
384 | enddo |
---|
385 | |
---|
386 | !calcul de la masse |
---|
387 | do l=1,nlay |
---|
388 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
389 | enddo |
---|
390 | |
---|
391 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
392 | |
---|
393 | !------------------------------------------------------------------ |
---|
394 | ! |
---|
395 | ! /|\ |
---|
396 | ! -------- | F_k+1 ------- |
---|
397 | ! ----> D_k |
---|
398 | ! /|\ <---- E_k , A_k |
---|
399 | ! -------- | F_k --------- |
---|
400 | ! ----> D_k-1 |
---|
401 | ! <---- E_k-1 , A_k-1 |
---|
402 | ! |
---|
403 | ! |
---|
404 | ! |
---|
405 | ! |
---|
406 | ! |
---|
407 | ! --------------------------- |
---|
408 | ! |
---|
409 | ! ----- F_lmax+1=0 ---------- \ |
---|
410 | ! lmax (zmax) | |
---|
411 | ! --------------------------- | |
---|
412 | ! | |
---|
413 | ! --------------------------- | |
---|
414 | ! | |
---|
415 | ! --------------------------- | |
---|
416 | ! | |
---|
417 | ! --------------------------- | |
---|
418 | ! | |
---|
419 | ! --------------------------- | |
---|
420 | ! | E |
---|
421 | ! --------------------------- | D |
---|
422 | ! | |
---|
423 | ! --------------------------- | |
---|
424 | ! | |
---|
425 | ! --------------------------- \ | |
---|
426 | ! lalim | | |
---|
427 | ! --------------------------- | | |
---|
428 | ! | | |
---|
429 | ! --------------------------- | | |
---|
430 | ! | A | |
---|
431 | ! --------------------------- | | |
---|
432 | ! | | |
---|
433 | ! --------------------------- | | |
---|
434 | ! lmin (=1 pour le moment) | | |
---|
435 | ! ----- F_lmin=0 ------------ / / |
---|
436 | ! |
---|
437 | ! --------------------------- |
---|
438 | ! ////////////////////////// |
---|
439 | ! |
---|
440 | ! |
---|
441 | !============================================================================= |
---|
442 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
443 | !============================================================================= |
---|
444 | |
---|
445 | !------------------------------------------------------------------ |
---|
446 | ! 1. alim_star est le profil vertical de l'alimentation a la base du |
---|
447 | ! panache thermique, calcule a partir de la flotabilite de l'air sec |
---|
448 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
449 | !------------------------------------------------------------------ |
---|
450 | ! |
---|
451 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
452 | lmin=1 |
---|
453 | |
---|
454 | !----------------------------------------------------------------------------- |
---|
455 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
456 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
457 | ! Il s'agit d'un calcul de type CAPE |
---|
458 | ! zmax_sec est utilise pour determiner la geometrie du thermique. |
---|
459 | !------------------------------------------------------------------------------ |
---|
460 | !--------------------------------------------------------------------------------- |
---|
461 | !calcul du melange et des variables dans le thermique |
---|
462 | !-------------------------------------------------------------------------------- |
---|
463 | ! |
---|
464 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
465 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
466 | |
---|
467 | ! Gestion temporaire de plusieurs appels à thermcell_plume au travers |
---|
468 | ! de la variable iflag_thermals |
---|
469 | |
---|
470 | ! print*,'THERM thermcell_main iflag_thermals_ed=',iflag_thermals_ed |
---|
471 | if (iflag_thermals_ed<=9) then |
---|
472 | ! print*,'THERM NOUVELLE/NOUVELLE Arnaud' |
---|
473 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
474 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
475 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
476 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
477 | & ,lev_out,lunout1,igout) |
---|
478 | |
---|
479 | elseif (iflag_thermals_ed>9) then |
---|
480 | ! print*,'THERM RIO et al 2010, version d Arnaud' |
---|
481 | CALL thermcellV1_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
482 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
483 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
484 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
485 | & ,lev_out,lunout1,igout) |
---|
486 | |
---|
487 | endif |
---|
488 | |
---|
489 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
490 | |
---|
491 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
492 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
493 | |
---|
494 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
495 | if (prt_level.ge.10) then |
---|
496 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
497 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
498 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
499 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
500 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
501 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
502 | endif |
---|
503 | |
---|
504 | !------------------------------------------------------------------------------- |
---|
505 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
506 | !------------------------------------------------------------------------------- |
---|
507 | ! |
---|
508 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
509 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
510 | ! Attention, w2 est transforme en sa racine carree dans cette routine |
---|
511 | ! Le probleme vient du fait que linter et lmix sont souvent égaux à 1. |
---|
512 | wmax_tmp=0. |
---|
513 | do l=1,nlay |
---|
514 | wmax_tmp(:)=max(wmax_tmp(:),zw2(:,l)) |
---|
515 | enddo |
---|
516 | ! print*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax |
---|
517 | |
---|
518 | |
---|
519 | |
---|
520 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
521 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
522 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
523 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
524 | |
---|
525 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
526 | |
---|
527 | !------------------------------------------------------------------------------- |
---|
528 | ! Fermeture,determination de f |
---|
529 | !------------------------------------------------------------------------------- |
---|
530 | ! |
---|
531 | ! |
---|
532 | !! write(lunout,*)'THERM NOUVEAU XXXXX' |
---|
533 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
534 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
535 | |
---|
536 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
537 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
538 | |
---|
539 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
540 | if (prt_level.ge.10) then |
---|
541 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
542 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
543 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
544 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
545 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
546 | & ,l=1,lalim(igout)+4) |
---|
547 | endif |
---|
548 | |
---|
549 | |
---|
550 | |
---|
551 | |
---|
552 | ! Choix de la fonction d'alimentation utilisee pour la fermeture. |
---|
553 | ! Apparemment sans importance |
---|
554 | alim_star_clos(:,:)=alim_star(:,:) |
---|
555 | alim_star_clos(:,:)=entr_star(:,:)+alim_star(:,:) |
---|
556 | |
---|
557 | ! Appel avec la version seche |
---|
558 | CALL thermcell_closure(ngrid,nlay,r_aspect_thermals,ptimestep,rho, & |
---|
559 | & zlev,lalim,alim_star_clos,f_star,zmax_sec,wmax_sec,f,lev_out) |
---|
560 | |
---|
561 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
562 | ! Appel avec les zmax et wmax tenant compte de la condensation |
---|
563 | ! Semble moins bien marcher |
---|
564 | ! CALL thermcell_closure(ngrid,nlay,r_aspect_thermals,ptimestep,rho, & |
---|
565 | ! & zlev,lalim,alim_star,f_star,zmax,wmax,f,lev_out) |
---|
566 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
567 | |
---|
568 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
569 | |
---|
570 | if (tau_thermals>1.) then |
---|
571 | lambda=exp(-ptimestep/tau_thermals) |
---|
572 | f0=(1.-lambda)*f+lambda*f0 |
---|
573 | else |
---|
574 | f0=f |
---|
575 | endif |
---|
576 | |
---|
577 | ! Test valable seulement en 1D mais pas genant |
---|
578 | if (.not. (f0(1).ge.0.) ) then |
---|
579 | abort_message = '.not. (f0(1).ge.0.)' |
---|
580 | CALL abort_gcm (modname,abort_message,1) |
---|
581 | endif |
---|
582 | |
---|
583 | !------------------------------------------------------------------------------- |
---|
584 | !deduction des flux |
---|
585 | !------------------------------------------------------------------------------- |
---|
586 | |
---|
587 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
588 | & lalim,lmax,alim_star, & |
---|
589 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
590 | & detr,zqla,lev_out,lunout1,igout) |
---|
591 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
592 | |
---|
593 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
594 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
595 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
596 | |
---|
597 | !------------------------------------------------------------------ |
---|
598 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
599 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
600 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
601 | !------------------------------------------------------------------ |
---|
602 | |
---|
603 | if (tau_thermals>1.) then |
---|
604 | lambda=exp(-ptimestep/tau_thermals) |
---|
605 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
606 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
607 | detr0=(1.-lambda)*detr+lambda*detr0 |
---|
608 | else |
---|
609 | fm0=fm |
---|
610 | entr0=entr |
---|
611 | detr0=detr |
---|
612 | endif |
---|
613 | |
---|
614 | !c------------------------------------------------------------------ |
---|
615 | ! calcul du transport vertical |
---|
616 | !------------------------------------------------------------------ |
---|
617 | |
---|
618 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & |
---|
619 | & zthl,zdthladj,zta,lev_out) |
---|
620 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse, & |
---|
621 | & po,pdoadj,zoa,lev_out) |
---|
622 | |
---|
623 | !------------------------------------------------------------------ |
---|
624 | ! Calcul de la fraction de l'ascendance |
---|
625 | !------------------------------------------------------------------ |
---|
626 | do ig=1,klon |
---|
627 | fraca(ig,1)=0. |
---|
628 | fraca(ig,nlay+1)=0. |
---|
629 | enddo |
---|
630 | do l=2,nlay |
---|
631 | do ig=1,klon |
---|
632 | if (zw2(ig,l).gt.1.e-10) then |
---|
633 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
634 | else |
---|
635 | fraca(ig,l)=0. |
---|
636 | endif |
---|
637 | enddo |
---|
638 | enddo |
---|
639 | |
---|
640 | !------------------------------------------------------------------ |
---|
641 | ! calcul du transport vertical du moment horizontal |
---|
642 | !------------------------------------------------------------------ |
---|
643 | |
---|
644 | !IM 090508 |
---|
645 | if (dvdq == 0 ) then |
---|
646 | |
---|
647 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
648 | ! de pression horizontal avec l'environnement |
---|
649 | |
---|
650 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
651 | ! & ,fraca*dvdq,zmax & |
---|
652 | & ,fraca,zmax & |
---|
653 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
654 | |
---|
655 | else |
---|
656 | |
---|
657 | ! calcul purement conservatif pour le transport de V |
---|
658 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse & |
---|
659 | & ,zu,pduadj,zua,lev_out) |
---|
660 | call thermcell_dq(ngrid,nlay,dqimpl,ptimestep,fm0,entr0,masse & |
---|
661 | & ,zv,pdvadj,zva,lev_out) |
---|
662 | |
---|
663 | endif |
---|
664 | |
---|
665 | ! print*,'13 OK convect8' |
---|
666 | do l=1,nlay |
---|
667 | do ig=1,ngrid |
---|
668 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
669 | enddo |
---|
670 | enddo |
---|
671 | |
---|
672 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
673 | !------------------------------------------------------------------ |
---|
674 | ! Calculs de diagnostiques pour les sorties |
---|
675 | !------------------------------------------------------------------ |
---|
676 | !calcul de fraca pour les sorties |
---|
677 | |
---|
678 | if (sorties) then |
---|
679 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
680 | ! calcul du niveau de condensation |
---|
681 | ! initialisation |
---|
682 | do ig=1,ngrid |
---|
683 | nivcon(ig)=0 |
---|
684 | zcon(ig)=0. |
---|
685 | enddo |
---|
686 | !nouveau calcul |
---|
687 | do ig=1,ngrid |
---|
688 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
689 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
690 | enddo |
---|
691 | !IM do k=1,nlay |
---|
692 | do k=1,nlay-1 |
---|
693 | do ig=1,ngrid |
---|
694 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
695 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
696 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
697 | endif |
---|
698 | enddo |
---|
699 | enddo |
---|
700 | !IM |
---|
701 | ierr=0 |
---|
702 | do ig=1,ngrid |
---|
703 | if (pcon(ig).le.pplay(ig,nlay)) then |
---|
704 | zcon2(ig)=zlay(ig,nlay)-(pcon(ig)-pplay(ig,nlay))/(RG*rho(ig,nlay))/100. |
---|
705 | ierr=1 |
---|
706 | endif |
---|
707 | enddo |
---|
708 | if (ierr==1) then |
---|
709 | abort_message = 'thermcellV0_main: les thermiques vont trop haut ' |
---|
710 | CALL abort_gcm (modname,abort_message,1) |
---|
711 | endif |
---|
712 | |
---|
713 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
714 | do k=nlay,1,-1 |
---|
715 | do ig=1,ngrid |
---|
716 | if (zqla(ig,k).gt.1e-10) then |
---|
717 | nivcon(ig)=k |
---|
718 | zcon(ig)=zlev(ig,k) |
---|
719 | endif |
---|
720 | enddo |
---|
721 | enddo |
---|
722 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
723 | !calcul des moments |
---|
724 | !initialisation |
---|
725 | do l=1,nlay |
---|
726 | do ig=1,ngrid |
---|
727 | q2(ig,l)=0. |
---|
728 | wth2(ig,l)=0. |
---|
729 | wth3(ig,l)=0. |
---|
730 | ratqscth(ig,l)=0. |
---|
731 | ratqsdiff(ig,l)=0. |
---|
732 | enddo |
---|
733 | enddo |
---|
734 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
735 | if (prt_level.ge.10)write(lunout,*) & |
---|
736 | & 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
737 | do l=1,nlay |
---|
738 | do ig=1,ngrid |
---|
739 | zf=fraca(ig,l) |
---|
740 | zf2=zf/(1.-zf) |
---|
741 | ! |
---|
742 | thetath2(ig,l)=zf2*(ztla(ig,l)-zthl(ig,l))**2 |
---|
743 | if(zw2(ig,l).gt.1.e-10) then |
---|
744 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
745 | else |
---|
746 | wth2(ig,l)=0. |
---|
747 | endif |
---|
748 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
749 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
750 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
751 | !test: on calcul q2/po=ratqsc |
---|
752 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
753 | enddo |
---|
754 | enddo |
---|
755 | !calcul des flux: q, thetal et thetav |
---|
756 | do l=1,nlay |
---|
757 | do ig=1,ngrid |
---|
758 | wq(ig,l)=fraca(ig,l)*zw2(ig,l)*(zqta(ig,l)*1000.-po(ig,l)*1000.) |
---|
759 | wthl(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztla(ig,l)-zthl(ig,l)) |
---|
760 | wthv(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztva(ig,l)-ztv(ig,l)) |
---|
761 | enddo |
---|
762 | enddo |
---|
763 | ! |
---|
764 | |
---|
765 | !!! nrlmd le 10/04/2012 |
---|
766 | |
---|
767 | !------------Test sur le LCL des thermiques |
---|
768 | do ig=1,ngrid |
---|
769 | ok_lcl(ig)=.false. |
---|
770 | if ( (pcon(ig) .gt. pplay(ig,klev-1)) .and. (pcon(ig) .lt. pplay(ig,1)) ) ok_lcl(ig)=.true. |
---|
771 | enddo |
---|
772 | |
---|
773 | !------------Localisation des niveaux entourant le LCL et du coef d'interpolation |
---|
774 | do l=1,nlay-1 |
---|
775 | do ig=1,ngrid |
---|
776 | if (ok_lcl(ig)) then |
---|
777 | if ((pplay(ig,l) .ge. pcon(ig)) .and. (pplay(ig,l+1) .le. pcon(ig))) then |
---|
778 | klcl(ig)=l |
---|
779 | interp(ig)=(pcon(ig)-pplay(ig,klcl(ig)))/(pplay(ig,klcl(ig)+1)-pplay(ig,klcl(ig))) |
---|
780 | endif |
---|
781 | endif |
---|
782 | enddo |
---|
783 | enddo |
---|
784 | |
---|
785 | !------------Hauteur des thermiques |
---|
786 | !!jyg le 27/04/2012 |
---|
787 | !! do ig =1,ngrid |
---|
788 | !! rhobarz0(ig)=rhobarz(ig,klcl(ig))+(rhobarz(ig,klcl(ig)+1) & |
---|
789 | !! & -rhobarz(ig,klcl(ig)))*interp(ig) |
---|
790 | !! zlcl(ig)=(pplev(ig,1)-pcon(ig))/(rhobarz0(ig)*RG) |
---|
791 | !! zmax(ig)=pphi(ig,lmax(ig))/rg |
---|
792 | !! if ( (.not.ok_lcl(ig)) .or. (zlcl(ig).gt.zmax(ig)) ) zlcl(ig)=zmax(ig) ! Si zclc > zmax alors on pose zlcl = zmax |
---|
793 | !! enddo |
---|
794 | do ig =1,ngrid |
---|
795 | zmax(ig)=pphi(ig,lmax(ig))/rg |
---|
796 | if (ok_lcl(ig)) then |
---|
797 | rhobarz0(ig)=rhobarz(ig,klcl(ig))+(rhobarz(ig,klcl(ig)+1) & |
---|
798 | & -rhobarz(ig,klcl(ig)))*interp(ig) |
---|
799 | zlcl(ig)=(pplev(ig,1)-pcon(ig))/(rhobarz0(ig)*RG) |
---|
800 | zlcl(ig)=min(zlcl(ig),zmax(ig)) ! Si zlcl > zmax alors on pose zlcl = zmax |
---|
801 | else |
---|
802 | rhobarz0(ig)=0. |
---|
803 | zlcl(ig)=zmax(ig) |
---|
804 | endif |
---|
805 | enddo |
---|
806 | !!jyg fin |
---|
807 | |
---|
808 | !------------Calcul des propriétés du thermique au LCL |
---|
809 | IF ( (iflag_trig_bl.ge.1) .or. (iflag_clos_bl.ge.1) ) THEN |
---|
810 | |
---|
811 | !-----Initialisation de la TKE moyenne |
---|
812 | do l=1,nlay |
---|
813 | do ig=1,ngrid |
---|
814 | pbl_tke_max(ig,l)=0. |
---|
815 | enddo |
---|
816 | enddo |
---|
817 | |
---|
818 | !-----Calcul de la TKE moyenne |
---|
819 | do nsrf=1,nbsrf |
---|
820 | do l=1,nlay |
---|
821 | do ig=1,ngrid |
---|
822 | pbl_tke_max(ig,l)=pctsrf(ig,nsrf)*pbl_tke(ig,l,nsrf)+pbl_tke_max(ig,l) |
---|
823 | enddo |
---|
824 | enddo |
---|
825 | enddo |
---|
826 | |
---|
827 | !-----Initialisations des TKE dans et hors des thermiques |
---|
828 | do l=1,nlay |
---|
829 | do ig=1,ngrid |
---|
830 | therm_tke_max(ig,l)=pbl_tke_max(ig,l) |
---|
831 | env_tke_max(ig,l)=pbl_tke_max(ig,l) |
---|
832 | enddo |
---|
833 | enddo |
---|
834 | |
---|
835 | !-----Calcul de la TKE transportée par les thermiques : therm_tke_max |
---|
836 | call thermcell_tke_transport(ngrid,nlay,ptimestep,fm0,entr0, & |
---|
837 | & rg,pplev,therm_tke_max) |
---|
838 | ! print *,' thermcell_tke_transport -> ' !!jyg |
---|
839 | |
---|
840 | !-----Calcul des profils verticaux de TKE hors thermiques : env_tke_max, et de la vitesse verticale grande échelle : W_ls |
---|
841 | do l=1,nlay |
---|
842 | do ig=1,ngrid |
---|
843 | pbl_tke_max(ig,l)=fraca(ig,l)*therm_tke_max(ig,l)+(1.-fraca(ig,l))*env_tke_max(ig,l) ! Recalcul de TKE moyenne aprés transport de TKE_TH |
---|
844 | env_tke_max(ig,l)=(pbl_tke_max(ig,l)-fraca(ig,l)*therm_tke_max(ig,l))/(1.-fraca(ig,l)) ! Recalcul de TKE dans l'environnement aprés transport de TKE_TH |
---|
845 | w_ls(ig,l)=-1.*omega(ig,l)/(RG*rhobarz(ig,l)) ! Vitesse verticale de grande échelle |
---|
846 | enddo |
---|
847 | enddo |
---|
848 | ! print *,' apres w_ls = ' !!jyg |
---|
849 | |
---|
850 | do ig=1,ngrid |
---|
851 | if (ok_lcl(ig)) then |
---|
852 | fraca0(ig)=fraca(ig,klcl(ig))+(fraca(ig,klcl(ig)+1) & |
---|
853 | & -fraca(ig,klcl(ig)))*interp(ig) |
---|
854 | w0(ig)=zw2(ig,klcl(ig))+(zw2(ig,klcl(ig)+1) & |
---|
855 | & -zw2(ig,klcl(ig)))*interp(ig) |
---|
856 | w_conv(ig)=w_ls(ig,klcl(ig))+(w_ls(ig,klcl(ig)+1) & |
---|
857 | & -w_ls(ig,klcl(ig)))*interp(ig) |
---|
858 | therm_tke_max0(ig)=therm_tke_max(ig,klcl(ig)) & |
---|
859 | & +(therm_tke_max(ig,klcl(ig)+1)-therm_tke_max(ig,klcl(ig)))*interp(ig) |
---|
860 | env_tke_max0(ig)=env_tke_max(ig,klcl(ig))+(env_tke_max(ig,klcl(ig)+1) & |
---|
861 | & -env_tke_max(ig,klcl(ig)))*interp(ig) |
---|
862 | pbl_tke_max0(ig)=pbl_tke_max(ig,klcl(ig))+(pbl_tke_max(ig,klcl(ig)+1) & |
---|
863 | & -pbl_tke_max(ig,klcl(ig)))*interp(ig) |
---|
864 | if (therm_tke_max0(ig).ge.20.) therm_tke_max0(ig)=20. |
---|
865 | if (env_tke_max0(ig).ge.20.) env_tke_max0(ig)=20. |
---|
866 | if (pbl_tke_max0(ig).ge.20.) pbl_tke_max0(ig)=20. |
---|
867 | else |
---|
868 | fraca0(ig)=0. |
---|
869 | w0(ig)=0. |
---|
870 | !!jyg le 27/04/2012 |
---|
871 | !! zlcl(ig)=0. |
---|
872 | !! |
---|
873 | endif |
---|
874 | enddo |
---|
875 | |
---|
876 | ENDIF ! IF ( (iflag_trig_bl.ge.1) .or. (iflag_clos_bl.ge.1) ) |
---|
877 | ! print *,'ENDIF ( (iflag_trig_bl.ge.1) .or. (iflag_clos_bl.ge.1) ) ' !!jyg |
---|
878 | |
---|
879 | !------------Triggering------------------ |
---|
880 | IF (iflag_trig_bl.ge.1) THEN |
---|
881 | |
---|
882 | !-----Initialisations |
---|
883 | depth(:)=0. |
---|
884 | n2(:)=0. |
---|
885 | s2(:)=0. |
---|
886 | s_max(:)=0. |
---|
887 | |
---|
888 | !-----Epaisseur du nuage (depth) et détermination de la queue du spectre de panaches (n2,s2) et du panache le plus gros (s_max) |
---|
889 | do ig=1,ngrid |
---|
890 | zmax_moy(ig)=zlcl(ig)+zmax_moy_coef*(zmax(ig)-zlcl(ig)) |
---|
891 | depth(ig)=zmax_moy(ig)-zlcl(ig) |
---|
892 | hmin(ig)=hmincoef*zlcl(ig) |
---|
893 | if (depth(ig).ge.10.) then |
---|
894 | s2(ig)=(hcoef*depth(ig)+hmin(ig))**2 |
---|
895 | n2(ig)=(1.-eps1)*fraca0(ig)*airephy(ig)/s2(ig) |
---|
896 | !! |
---|
897 | !!jyg le 27/04/2012 |
---|
898 | !! s_max(ig)=s2(ig)*log(n2(ig)) |
---|
899 | !! if (n2(ig) .lt. 1) s_max(ig)=0. |
---|
900 | s_max(ig)=s2(ig)*log(max(n2(ig),1.)) |
---|
901 | !!fin jyg |
---|
902 | else |
---|
903 | s2(ig)=0. |
---|
904 | n2(ig)=0. |
---|
905 | s_max(ig)=0. |
---|
906 | endif |
---|
907 | enddo |
---|
908 | ! print *,'avant Calcul de Wmax ' !!jyg |
---|
909 | |
---|
910 | !-----Calcul de Wmax et ALE_BL_STAT associée |
---|
911 | !!jyg le 30/04/2012 |
---|
912 | !! do ig=1,ngrid |
---|
913 | !! if ( (depth(ig).ge.10.) .and. (s_max(ig).gt.1.) ) then |
---|
914 | !! w_max(ig)=w0(ig)*(1.+sqrt(2.*log(s_max(ig)/su)-log(2.*3.14)-log(2.*log(s_max(ig)/su)-log(2.*3.14)))) |
---|
915 | !! ale_bl_stat(ig)=0.5*w_max(ig)**2 |
---|
916 | !! else |
---|
917 | !! w_max(ig)=0. |
---|
918 | !! ale_bl_stat(ig)=0. |
---|
919 | !! endif |
---|
920 | !! enddo |
---|
921 | susqr2pi=su*sqrt(2.*Rpi) |
---|
922 | Reuler=exp(1.) |
---|
923 | do ig=1,ngrid |
---|
924 | if ( (depth(ig).ge.10.) .and. (s_max(ig).gt.susqr2pi*Reuler) ) then |
---|
925 | w_max(ig)=w0(ig)*(1.+sqrt(2.*log(s_max(ig)/susqr2pi)-log(2.*log(s_max(ig)/susqr2pi)))) |
---|
926 | ale_bl_stat(ig)=0.5*w_max(ig)**2 |
---|
927 | else |
---|
928 | w_max(ig)=0. |
---|
929 | ale_bl_stat(ig)=0. |
---|
930 | endif |
---|
931 | enddo |
---|
932 | |
---|
933 | ENDIF ! iflag_trig_bl |
---|
934 | ! print *,'ENDIF iflag_trig_bl' !!jyg |
---|
935 | |
---|
936 | !------------Closure------------------ |
---|
937 | |
---|
938 | IF (iflag_clos_bl.ge.1) THEN |
---|
939 | |
---|
940 | !-----Calcul de ALP_BL_STAT |
---|
941 | do ig=1,ngrid |
---|
942 | alp_bl_det(ig)=0.5*coef_m*rhobarz0(ig)*(w0(ig)**3)*fraca0(ig)*(1.-2.*fraca0(ig))/((1.-fraca0(ig))**2) |
---|
943 | alp_bl_fluct_m(ig)=1.5*rhobarz0(ig)*fraca0(ig)*(w_conv(ig)+coef_m*w0(ig))* & |
---|
944 | & (w0(ig)**2) |
---|
945 | alp_bl_fluct_tke(ig)=3.*coef_m*rhobarz0(ig)*w0(ig)*fraca0(ig)*(therm_tke_max0(ig)-env_tke_max0(ig)) & |
---|
946 | & +3.*rhobarz0(ig)*w_conv(ig)*pbl_tke_max0(ig) |
---|
947 | if (iflag_clos_bl.ge.2) then |
---|
948 | alp_bl_conv(ig)=1.5*coef_m*rhobarz0(ig)*fraca0(ig)*(fraca0(ig)/(1.-fraca0(ig)))*w_conv(ig)* & |
---|
949 | & (w0(ig)**2) |
---|
950 | else |
---|
951 | alp_bl_conv(ig)=0. |
---|
952 | endif |
---|
953 | alp_bl_stat(ig)=alp_bl_det(ig)+alp_bl_fluct_m(ig)+alp_bl_fluct_tke(ig)+alp_bl_conv(ig) |
---|
954 | enddo |
---|
955 | |
---|
956 | !-----Sécurité ALP infinie |
---|
957 | do ig=1,ngrid |
---|
958 | if (fraca0(ig).gt.0.98) alp_bl_stat(ig)=2. |
---|
959 | enddo |
---|
960 | |
---|
961 | ENDIF ! (iflag_clos_bl.ge.1) |
---|
962 | |
---|
963 | !!! fin nrlmd le 10/04/2012 |
---|
964 | |
---|
965 | if (prt_level.ge.10) then |
---|
966 | ig=igout |
---|
967 | do l=1,nlay |
---|
968 | print*,'14f OK convect8 ig,l,zha zh zpspsk ',ig,l,zha(ig,l),zh(ig,l),zpspsk(ig,l) |
---|
969 | print*,'14g OK convect8 ig,l,po',ig,l,po(ig,l) |
---|
970 | enddo |
---|
971 | endif |
---|
972 | |
---|
973 | ! print*,'avant calcul ale et alp' |
---|
974 | !calcul de ALE et ALP pour la convection |
---|
975 | Alp_bl(:)=0. |
---|
976 | Ale_bl(:)=0. |
---|
977 | ! print*,'ALE,ALP ,l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig)' |
---|
978 | do l=1,nlay |
---|
979 | do ig=1,ngrid |
---|
980 | Alp_bl(ig)=max(Alp_bl(ig),0.5*rhobarz(ig,l)*wth3(ig,l) ) |
---|
981 | Ale_bl(ig)=max(Ale_bl(ig),0.5*zw2(ig,l)**2) |
---|
982 | ! print*,'ALE,ALP',l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig) |
---|
983 | enddo |
---|
984 | enddo |
---|
985 | |
---|
986 | !test:calcul de la ponderation des couches pour KE |
---|
987 | !initialisations |
---|
988 | |
---|
989 | fm_tot(:)=0. |
---|
990 | wght_th(:,:)=1. |
---|
991 | lalim_conv(:)=lalim(:) |
---|
992 | |
---|
993 | do k=1,klev |
---|
994 | do ig=1,ngrid |
---|
995 | if (k<=lalim_conv(ig)) fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
996 | enddo |
---|
997 | enddo |
---|
998 | |
---|
999 | ! assez bizarre car, si on est dans la couche d'alim et que alim_star et |
---|
1000 | ! plus petit que 1.e-10, on prend wght_th=1. |
---|
1001 | do k=1,klev |
---|
1002 | do ig=1,ngrid |
---|
1003 | if (k<=lalim_conv(ig).and.alim_star(ig,k)>1.e-10) then |
---|
1004 | wght_th(ig,k)=alim_star(ig,k) |
---|
1005 | endif |
---|
1006 | enddo |
---|
1007 | enddo |
---|
1008 | |
---|
1009 | ! print*,'apres wght_th' |
---|
1010 | !test pour prolonger la convection |
---|
1011 | do ig=1,ngrid |
---|
1012 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
1013 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
1014 | lalim_conv(ig)=1 |
---|
1015 | wght_th(ig,1)=1. |
---|
1016 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
1017 | endif |
---|
1018 | enddo |
---|
1019 | |
---|
1020 | !------------------------------------------------------------------------ |
---|
1021 | ! Modif CR/FH 20110310 : Alp integree sur la verticale. |
---|
1022 | ! Integrale verticale de ALP. |
---|
1023 | ! wth3 etant aux niveaux inter-couches, on utilise d play comme masse des |
---|
1024 | ! couches |
---|
1025 | !------------------------------------------------------------------------ |
---|
1026 | |
---|
1027 | alp_int(:)=0. |
---|
1028 | dp_int(:)=0. |
---|
1029 | do l=2,nlay |
---|
1030 | do ig=1,ngrid |
---|
1031 | if(l.LE.lmax(ig)) THEN |
---|
1032 | zdp=pplay(ig,l-1)-pplay(ig,l) |
---|
1033 | alp_int(ig)=alp_int(ig)+0.5*rhobarz(ig,l)*wth3(ig,l)*zdp |
---|
1034 | dp_int(ig)=dp_int(ig)+zdp |
---|
1035 | endif |
---|
1036 | enddo |
---|
1037 | enddo |
---|
1038 | |
---|
1039 | if (iflag_coupl>=3 .and. iflag_coupl<=5) then |
---|
1040 | do ig=1,ngrid |
---|
1041 | !valeur integree de alp_bl * 0.5: |
---|
1042 | if (dp_int(ig)>0.) then |
---|
1043 | Alp_bl(ig)=alp_int(ig)/dp_int(ig) |
---|
1044 | endif |
---|
1045 | enddo! |
---|
1046 | endif |
---|
1047 | |
---|
1048 | |
---|
1049 | ! Facteur multiplicatif sur Alp_bl |
---|
1050 | Alp_bl(:)=alp_bl_k*Alp_bl(:) |
---|
1051 | |
---|
1052 | !------------------------------------------------------------------------ |
---|
1053 | |
---|
1054 | |
---|
1055 | !calcul du ratqscdiff |
---|
1056 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
1057 | var=0. |
---|
1058 | vardiff=0. |
---|
1059 | ratqsdiff(:,:)=0. |
---|
1060 | |
---|
1061 | do l=1,klev |
---|
1062 | do ig=1,ngrid |
---|
1063 | if (l<=lalim(ig)) then |
---|
1064 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
1065 | endif |
---|
1066 | enddo |
---|
1067 | enddo |
---|
1068 | |
---|
1069 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
1070 | |
---|
1071 | do l=1,klev |
---|
1072 | do ig=1,ngrid |
---|
1073 | if (l<=lalim(ig)) then |
---|
1074 | zf=fraca(ig,l) |
---|
1075 | zf2=zf/(1.-zf) |
---|
1076 | vardiff=vardiff+alim_star(ig,l)*(zqta(ig,l)*1000.-var)**2 |
---|
1077 | endif |
---|
1078 | enddo |
---|
1079 | enddo |
---|
1080 | |
---|
1081 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
1082 | do l=1,nlay |
---|
1083 | do ig=1,ngrid |
---|
1084 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
1085 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
1086 | enddo |
---|
1087 | enddo |
---|
1088 | !-------------------------------------------------------------------- |
---|
1089 | ! |
---|
1090 | !ecriture des fichiers sortie |
---|
1091 | ! print*,'15 OK convect8 CCCCCCCCCCCCCCCCCCc' |
---|
1092 | |
---|
1093 | #ifdef wrgrads_thermcell |
---|
1094 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
1095 | #include "thermcell_out3d.h" |
---|
1096 | #endif |
---|
1097 | |
---|
1098 | endif |
---|
1099 | |
---|
1100 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
1101 | |
---|
1102 | return |
---|
1103 | end |
---|
1104 | |
---|
1105 | !----------------------------------------------------------------------------- |
---|
1106 | |
---|
1107 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
1108 | IMPLICIT NONE |
---|
1109 | #include "iniprint.h" |
---|
1110 | |
---|
1111 | integer i, k, klon,klev |
---|
1112 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
1113 | real ztv(klon,klev) |
---|
1114 | real po(klon,klev) |
---|
1115 | real ztva(klon,klev) |
---|
1116 | real zqla(klon,klev) |
---|
1117 | real f_star(klon,klev) |
---|
1118 | real zw2(klon,klev) |
---|
1119 | integer long(klon) |
---|
1120 | real seuil |
---|
1121 | character*21 comment |
---|
1122 | |
---|
1123 | if (prt_level.ge.1) THEN |
---|
1124 | print*,'WARNING !!! TEST ',comment |
---|
1125 | endif |
---|
1126 | return |
---|
1127 | |
---|
1128 | ! test sur la hauteur des thermiques ... |
---|
1129 | do i=1,klon |
---|
1130 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
1131 | if (prt_level.ge.10) then |
---|
1132 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
1133 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
1134 | do k=1,klev |
---|
1135 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
1136 | enddo |
---|
1137 | endif |
---|
1138 | enddo |
---|
1139 | |
---|
1140 | |
---|
1141 | return |
---|
1142 | end |
---|
1143 | |
---|
1144 | !!! nrlmd le 10/04/2012 Transport de la TKE par le thermique moyen pour la fermeture en ALP |
---|
1145 | ! On transporte pbl_tke pour donner therm_tke |
---|
1146 | ! Copie conforme de la subroutine DTKE dans physiq.F écrite par Frederic Hourdin |
---|
1147 | subroutine thermcell_tke_transport(ngrid,nlay,ptimestep,fm0,entr0, & |
---|
1148 | & rg,pplev,therm_tke_max) |
---|
1149 | implicit none |
---|
1150 | |
---|
1151 | #include "iniprint.h" |
---|
1152 | !======================================================================= |
---|
1153 | ! |
---|
1154 | ! Calcul du transport verticale dans la couche limite en presence |
---|
1155 | ! de "thermiques" explicitement representes |
---|
1156 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
1157 | ! |
---|
1158 | !======================================================================= |
---|
1159 | |
---|
1160 | integer ngrid,nlay,nsrf |
---|
1161 | |
---|
1162 | real ptimestep |
---|
1163 | real masse0(ngrid,nlay),fm0(ngrid,nlay+1),pplev(ngrid,nlay+1) |
---|
1164 | real entr0(ngrid,nlay),rg |
---|
1165 | real therm_tke_max(ngrid,nlay) |
---|
1166 | real detr0(ngrid,nlay) |
---|
1167 | |
---|
1168 | |
---|
1169 | real masse(ngrid,nlay),fm(ngrid,nlay+1) |
---|
1170 | real entr(ngrid,nlay) |
---|
1171 | real q(ngrid,nlay) |
---|
1172 | integer lev_out ! niveau pour les print |
---|
1173 | |
---|
1174 | real qa(ngrid,nlay),detr(ngrid,nlay),wqd(ngrid,nlay+1) |
---|
1175 | |
---|
1176 | real zzm |
---|
1177 | |
---|
1178 | integer ig,k |
---|
1179 | integer isrf |
---|
1180 | |
---|
1181 | |
---|
1182 | lev_out=0 |
---|
1183 | |
---|
1184 | |
---|
1185 | if (prt_level.ge.1) print*,'Q2 THERMCEL_DQ 0' |
---|
1186 | |
---|
1187 | ! calcul du detrainement |
---|
1188 | do k=1,nlay |
---|
1189 | detr0(:,k)=fm0(:,k)-fm0(:,k+1)+entr0(:,k) |
---|
1190 | masse0(:,k)=(pplev(:,k)-pplev(:,k+1))/RG |
---|
1191 | enddo |
---|
1192 | |
---|
1193 | |
---|
1194 | ! Decalage vertical des entrainements et detrainements. |
---|
1195 | masse(:,1)=0.5*masse0(:,1) |
---|
1196 | entr(:,1)=0.5*entr0(:,1) |
---|
1197 | detr(:,1)=0.5*detr0(:,1) |
---|
1198 | fm(:,1)=0. |
---|
1199 | do k=1,nlay-1 |
---|
1200 | masse(:,k+1)=0.5*(masse0(:,k)+masse0(:,k+1)) |
---|
1201 | entr(:,k+1)=0.5*(entr0(:,k)+entr0(:,k+1)) |
---|
1202 | detr(:,k+1)=0.5*(detr0(:,k)+detr0(:,k+1)) |
---|
1203 | fm(:,k+1)=fm(:,k)+entr(:,k)-detr(:,k) |
---|
1204 | enddo |
---|
1205 | fm(:,nlay+1)=0. |
---|
1206 | |
---|
1207 | !!! nrlmd le 16/09/2010 |
---|
1208 | ! calcul de la valeur dans les ascendances |
---|
1209 | ! do ig=1,ngrid |
---|
1210 | ! qa(ig,1)=q(ig,1) |
---|
1211 | ! enddo |
---|
1212 | !!! |
---|
1213 | |
---|
1214 | !do isrf=1,nsrf |
---|
1215 | |
---|
1216 | ! q(:,:)=therm_tke(:,:,isrf) |
---|
1217 | q(:,:)=therm_tke_max(:,:) |
---|
1218 | !!! nrlmd le 16/09/2010 |
---|
1219 | do ig=1,ngrid |
---|
1220 | qa(ig,1)=q(ig,1) |
---|
1221 | enddo |
---|
1222 | !!! |
---|
1223 | |
---|
1224 | if (1==1) then |
---|
1225 | do k=2,nlay |
---|
1226 | do ig=1,ngrid |
---|
1227 | if ((fm(ig,k+1)+detr(ig,k))*ptimestep.gt. & |
---|
1228 | & 1.e-5*masse(ig,k)) then |
---|
1229 | qa(ig,k)=(fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k)) & |
---|
1230 | & /(fm(ig,k+1)+detr(ig,k)) |
---|
1231 | else |
---|
1232 | qa(ig,k)=q(ig,k) |
---|
1233 | endif |
---|
1234 | if (qa(ig,k).lt.0.) then |
---|
1235 | ! print*,'qa<0!!!' |
---|
1236 | endif |
---|
1237 | if (q(ig,k).lt.0.) then |
---|
1238 | ! print*,'q<0!!!' |
---|
1239 | endif |
---|
1240 | enddo |
---|
1241 | enddo |
---|
1242 | |
---|
1243 | ! Calcul du flux subsident |
---|
1244 | |
---|
1245 | do k=2,nlay |
---|
1246 | do ig=1,ngrid |
---|
1247 | wqd(ig,k)=fm(ig,k)*q(ig,k) |
---|
1248 | if (wqd(ig,k).lt.0.) then |
---|
1249 | ! print*,'wqd<0!!!' |
---|
1250 | endif |
---|
1251 | enddo |
---|
1252 | enddo |
---|
1253 | do ig=1,ngrid |
---|
1254 | wqd(ig,1)=0. |
---|
1255 | wqd(ig,nlay+1)=0. |
---|
1256 | enddo |
---|
1257 | |
---|
1258 | ! Calcul des tendances |
---|
1259 | do k=1,nlay |
---|
1260 | do ig=1,ngrid |
---|
1261 | q(ig,k)=q(ig,k)+(detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k) & |
---|
1262 | & -wqd(ig,k)+wqd(ig,k+1)) & |
---|
1263 | & *ptimestep/masse(ig,k) |
---|
1264 | enddo |
---|
1265 | enddo |
---|
1266 | |
---|
1267 | endif |
---|
1268 | |
---|
1269 | therm_tke_max(:,:)=q(:,:) |
---|
1270 | |
---|
1271 | return |
---|
1272 | !!! fin nrlmd le 10/04/2012 |
---|
1273 | end |
---|
1274 | |
---|