source: LMDZ5/branches/LMDZ5-DOFOCO/libf/phylmd/phys_output_ctrlout_mod.F90 @ 2161

Last change on this file since 2161 was 1792, checked in by Ehouarn Millour, 11 years ago

Adding new version of phys_output_write and ctrlout_mod.
UG

File size: 73.6 KB
Line 
1MODULE phys_output_ctrlout_mod
2
3  USE phys_output_var_mod
4  USE indice_sol_mod
5  USE aero_mod, only : naero_spc,name_aero
6
7
8
9  IMPLICIT NONE
10      INTEGER, PRIVATE :: i
11
12!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13!! Definition pour chaque variable du niveau d ecriture dans chaque fichier,
14!! de son nom, de sa description, de son unité et du type d'écriture.
15!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/ histmth, histday, histhf, histins /),'!!!!!!!!!!!!
16!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17!  CHARACTER(len=20), dimension(nfiles) :: TEF = type_ecri_files
18
19!!! Comosantes de la coordonnee sigma-hybride
20!!! Ap et Bp
21  TYPE(ctrl_out), SAVE :: o_Ahyb = ctrl_out((/ 1, 1, 1, 1, 1, 1 /), &
22        'Ap', '', '', (/ ('', i=1, 6) /))
23  TYPE(ctrl_out), SAVE :: o_Bhyb = ctrl_out((/ 1, 1, 1, 1, 1, 1 /), &
24        'Bp', '', '', (/ ('', i=1, 6) /))
25  TYPE(ctrl_out), SAVE :: o_Alt = ctrl_out((/ 1, 1, 1, 1, 1, 1 /), &
26        'Alt', '', '', (/ ('', i=1, 6) /))
27
28!!! 1D
29  TYPE(ctrl_out), SAVE :: o_phis = ctrl_out((/ 1, 1, 10, 5, 1, 1 /), &
30        'phis', 'Surface geop.height', 'm2/s2', (/ ('', i=1, 6) /))
31  TYPE(ctrl_out), SAVE :: o_aire = ctrl_out((/ 1, 1, 10,  10, 1, 1 /), &
32        'aire', 'Grid area', '-', (/ 'once', 'once', 'once', 'once', 'once', 'once' /))
33  TYPE(ctrl_out), SAVE :: o_contfracATM = ctrl_out((/ 10, 1,  1, 10, 10, 10 /), &
34        'contfracATM', '% sfce ter+lic', '-', &
35      (/ "once", "once", "once", "once", "once", "once" /))
36  TYPE(ctrl_out), SAVE :: o_contfracOR = ctrl_out((/ 10, 1,  1, 10, 10, 10 /), &
37        'contfracOR', '% sfce terre OR', '-', (/ ('', i=1, 6) /))
38  TYPE(ctrl_out), SAVE :: o_aireTER = ctrl_out((/ 10, 10, 1, 10, 10, 10 /), &
39        'aireTER', 'Grid area CONT', '-', (/ ('', i=1, 6) /))
40
41!!! 2D
42  TYPE(ctrl_out), SAVE :: o_flat = ctrl_out((/ 5, 1, 10, 10, 5, 10 /), &
43        'flat', 'Latent heat flux', 'W/m2', (/ ('', i=1, 6) /))
44  TYPE(ctrl_out), SAVE :: o_slp = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
45        'slp', 'Sea Level Pressure', 'Pa', (/ ('', i=1, 6) /))
46  TYPE(ctrl_out), SAVE :: o_tsol = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
47        'tsol', 'Surface Temperature', 'K', (/ ('', i=1, 6) /))
48  TYPE(ctrl_out), SAVE :: o_t2m = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
49        't2m', 'Temperature 2m', 'K', (/ ('', i=1, 6) /))
50  TYPE(ctrl_out), SAVE :: o_t2m_min = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
51        't2m_min', 'Temp 2m min', 'K', &
52      (/ "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)", "t_min(X)" /))
53  TYPE(ctrl_out), SAVE :: o_t2m_max = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
54        't2m_max', 'Temp 2m max', 'K', &
55      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /))
56
57  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_t2m_srf = (/ &
58      ctrl_out((/ 10, 6, 10, 10, 10, 10 /), &
59        't2m_ter', "Temp 2m "//clnsurf(1), "K", (/ ('', i=1, 6) /)), &
60      ctrl_out((/ 10, 6, 10, 10, 10, 10 /), &
61        't2m_lic', "Temp 2m "//clnsurf(2), "K", (/ ('', i=1, 6) /)), &
62      ctrl_out((/ 10, 6, 10, 10, 10, 10 /), &
63        't2m_oce', "Temp 2m "//clnsurf(3), "K", (/ ('', i=1, 6) /)), &
64      ctrl_out((/ 10, 6, 10, 10, 10, 10 /), &
65        't2m_sic', "Temp 2m "//clnsurf(4), "K", (/ ('', i=1, 6) /)) /)
66
67  TYPE(ctrl_out), SAVE :: o_wind10m = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
68        'wind10m', '10-m wind speed', 'm/s', (/ ('', i=1, 6) /))
69  TYPE(ctrl_out), SAVE :: o_wind10max = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
70        'wind10max', '10m wind speed max', 'm/s', (/ ('', i=1, 6) /))
71  TYPE(ctrl_out), SAVE :: o_sicf = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
72        'sicf', 'Sea-ice fraction', '-', (/ ('', i=1, 6) /))
73  TYPE(ctrl_out), SAVE :: o_q2m = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
74        'q2m', 'Specific humidity 2m', 'kg/kg', (/ ('', i=1, 6) /))
75  TYPE(ctrl_out), SAVE :: o_ustar = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
76        'ustar', 'Friction velocity', 'm/s', (/ ('', i=1, 6) /))
77  TYPE(ctrl_out), SAVE :: o_u10m = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
78        'u10m', 'Vent zonal 10m', 'm/s', (/ ('', i=1, 6) /))
79  TYPE(ctrl_out), SAVE :: o_v10m = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
80        'v10m', 'Vent meridien 10m', 'm/s', (/ ('', i=1, 6) /))
81  TYPE(ctrl_out), SAVE :: o_psol = ctrl_out((/ 1, 1, 1, 5, 10, 10 /), &
82        'psol', 'Surface Pressure', 'Pa', (/ ('', i=1, 6) /))
83  TYPE(ctrl_out), SAVE :: o_qsurf = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
84        'qsurf', 'Surface Air humidity', 'kg/kg', (/ ('', i=1, 6) /))
85
86  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ustar_srf     = (/ &
87      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'ustar_ter', &
88      "Friction velocity "//clnsurf(1),"m/s", (/ ('', i=1, 6) /)), &
89      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'ustar_lic', &
90      "Friction velocity "//clnsurf(2),"m/s", (/ ('', i=1, 6) /)), &
91      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'ustar_oce', &
92      "Friction velocity "//clnsurf(3),"m/s", (/ ('', i=1, 6) /)), &
93      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'ustar_sic', &
94      "Friction velocity "//clnsurf(4),"m/s", (/ ('', i=1, 6) /)) /)
95
96  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10m_srf     = (/ &
97      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'u10m_ter', &
98      "Vent Zonal 10m "//clnsurf(1),"m/s", (/ ('', i=1, 6) /)), &
99      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'u10m_lic', &
100      "Vent Zonal 10m "//clnsurf(2),"m/s", (/ ('', i=1, 6) /)), &
101      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'u10m_oce', &
102      "Vent Zonal 10m "//clnsurf(3),"m/s", (/ ('', i=1, 6) /)), &
103      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'u10m_sic', &
104      "Vent Zonal 10m "//clnsurf(4),"m/s", (/ ('', i=1, 6) /)) /)
105
106  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10m_srf     = (/ &
107      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'v10m_ter', &
108      "Vent meredien 10m "//clnsurf(1),"m/s", (/ ('', i=1, 6) /)), &
109      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'v10m_lic', &
110      "Vent meredien 10m "//clnsurf(2),"m/s", (/ ('', i=1, 6) /)), &
111      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'v10m_oce', &
112      "Vent meredien 10m "//clnsurf(3),"m/s", (/ ('', i=1, 6) /)), &
113      ctrl_out((/ 10, 6, 10, 10, 10, 10 /),'v10m_sic', &
114      "Vent meredien 10m "//clnsurf(4),"m/s", (/ ('', i=1, 6) /)) /)
115
116  TYPE(ctrl_out), SAVE :: o_qsol = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
117        'qsol', 'Soil watter content', 'mm', (/ ('', i=1, 6) /))
118  TYPE(ctrl_out), SAVE :: o_ndayrain = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
119        'ndayrain', 'Number of dayrain(liq+sol)', '-', &
120      (/ "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)", "inst(X)" /))
121  TYPE(ctrl_out), SAVE :: o_precip = ctrl_out((/ 1, 1, 1, 10, 5, 10 /), &
122        'precip', 'Precip Totale liq+sol', 'kg/(s*m2)', (/ ('', i=1, 6) /))
123  TYPE(ctrl_out), SAVE :: o_plul = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
124        'plul', 'Large-scale Precip.', 'kg/(s*m2)', (/ ('', i=1, 6) /))
125  TYPE(ctrl_out), SAVE :: o_pluc = ctrl_out((/ 1, 1, 1, 10, 5, 10 /), &
126        'pluc', 'Convective Precip.', 'kg/(s*m2)', (/ ('', i=1, 6) /))
127  TYPE(ctrl_out), SAVE :: o_snow = ctrl_out((/ 1, 1, 10, 10, 5, 10 /), &
128        'snow', 'Snow fall', 'kg/(s*m2)', (/ ('', i=1, 6) /))
129  TYPE(ctrl_out), SAVE :: o_evap = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
130        'evap', 'Evaporat', 'kg/(s*m2)', (/ ('', i=1, 6) /))
131
132  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evap_srf     = (/ &
133      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'evap_ter', &
134      "evaporation at surface "//clnsurf(1),"kg/(s*m2)", (/ ('', i=1, 6) /)), &
135      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'evap_lic', &
136      "evaporation at surface "//clnsurf(2),"kg/(s*m2)", (/ ('', i=1, 6) /)), &
137      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'evap_oce', &
138      "evaporation at surface "//clnsurf(3),"kg/(s*m2)", (/ ('', i=1, 6) /)), &
139      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'evap_sic', &
140      "evaporation at surface "//clnsurf(4),"kg/(s*m2)", (/ ('', i=1, 6) /)) /)
141
142  TYPE(ctrl_out), SAVE :: o_msnow = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
143        'msnow', 'Surface snow amount', 'kg/m2', (/ ('', i=1, 6) /))
144  TYPE(ctrl_out), SAVE :: o_fsnow = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
145        'fsnow', 'Surface snow area fraction', '-', (/ ('', i=1, 6) /))
146  TYPE(ctrl_out), SAVE :: o_tops = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
147        'tops', 'Solar rad. at TOA', 'W/m2', (/ ('', i=1, 6) /))
148  TYPE(ctrl_out), SAVE :: o_tops0 = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
149        'tops0', 'CS Solar rad. at TOA', 'W/m2', (/ ('', i=1, 6) /))
150  TYPE(ctrl_out), SAVE :: o_topl = ctrl_out((/ 1, 1, 10, 5, 10, 10 /), &
151        'topl', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 6) /))
152  TYPE(ctrl_out), SAVE :: o_topl0 = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
153        'topl0', 'IR rad. at TOA', 'W/m2', (/ ('', i=1, 6) /))
154  TYPE(ctrl_out), SAVE :: o_SWupTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10 /), &
155        'SWupTOA', 'SWup at TOA', 'W/m2', (/ ('', i=1, 6) /))
156  TYPE(ctrl_out), SAVE :: o_SWupTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10 /), &
157        'SWupTOAclr', 'SWup clear sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
158  TYPE(ctrl_out), SAVE :: o_SWdnTOA = ctrl_out((/ 1, 4, 10, 10, 10, 10 /), &
159        'SWdnTOA', 'SWdn at TOA', 'W/m2', (/ ('', i=1, 6) /))
160  TYPE(ctrl_out), SAVE :: o_SWdnTOAclr = ctrl_out((/ 1, 4, 10, 10, 10, 10 /), &
161        'SWdnTOAclr', 'SWdn clear sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
162  TYPE(ctrl_out), SAVE :: o_nettop = ctrl_out((/ 1, 4, 10, 10, 10, 10 /), &
163        'nettop', 'Net dn radiatif flux at TOA', 'W/m2', (/ ('', i=1, 6) /))
164  TYPE(ctrl_out), SAVE :: o_SWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
165        'SWup200', 'SWup at 200mb', 'W/m2', (/ ('', i=1, 6) /))
166  TYPE(ctrl_out), SAVE :: o_SWup200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
167        'SWup200clr', 'SWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 6) /))
168  TYPE(ctrl_out), SAVE :: o_SWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
169        'SWdn200', 'SWdn at 200mb', 'W/m2', (/ ('', i=1, 6) /))
170  TYPE(ctrl_out), SAVE :: o_SWdn200clr = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
171        'SWdn200clr', 'SWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 6) /))
172
173  ! arajouter
174  !  type(ctrl_out),save :: o_LWupTOA     = ctrl_out((/ 1, 4, 10, 10, 10, 10 /),'LWupTOA', &
175  !     (/ ('', i=1, 6) /))
176  !  type(ctrl_out),save :: o_LWupTOAclr  = ctrl_out((/ 1, 4, 10, 10, 10, 10 /),'LWupTOAclr', &
177  !     (/ ('', i=1, 6) /))
178  !  type(ctrl_out),save :: o_LWdnTOA     = ctrl_out((/ 1, 4, 10, 10, 10, 10 /),'LWdnTOA', &
179  !     (/ ('', i=1, 6) /))
180  !  type(ctrl_out),save :: o_LWdnTOAclr  = ctrl_out((/ 1, 4, 10, 10, 10, 10 /),'LWdnTOAclr', &
181  !     (/ ('', i=1, 6) /))
182  TYPE(ctrl_out), SAVE :: o_LWup200 = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
183        'LWup200', 'LWup at 200mb', 'W/m2', (/ ('', i=1, 6) /))
184  TYPE(ctrl_out), SAVE :: o_LWup200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
185        'LWup200clr', 'LWup clear sky at 200mb', 'W/m2', (/ ('', i=1, 6) /))
186  TYPE(ctrl_out), SAVE :: o_LWdn200 = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
187        'LWdn200', 'LWdn at 200mb', 'W/m2', (/ ('', i=1, 6) /))
188  TYPE(ctrl_out), SAVE :: o_LWdn200clr = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
189        'LWdn200clr', 'LWdn clear sky at 200mb', 'W/m2', (/ ('', i=1, 6) /))
190  TYPE(ctrl_out), SAVE :: o_sols = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
191        'sols', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 6) /))
192  TYPE(ctrl_out), SAVE :: o_sols0 = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
193        'sols0', 'Solar rad. at surf.', 'W/m2', (/ ('', i=1, 6) /))
194  TYPE(ctrl_out), SAVE :: o_soll = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
195        'soll', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
196  TYPE(ctrl_out), SAVE :: o_soll0 = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
197        'soll0', 'IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
198  TYPE(ctrl_out), SAVE :: o_radsol = ctrl_out((/ 1, 7, 10, 10, 10, 10 /), &
199        'radsol', 'Rayonnement au sol', 'W/m2', (/ ('', i=1, 6) /))
200  TYPE(ctrl_out), SAVE :: o_SWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
201        'SWupSFC', 'SWup at surface', 'W/m2', (/ ('', i=1, 6) /))
202  TYPE(ctrl_out), SAVE :: o_SWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
203        'SWupSFCclr', 'SWup clear sky at surface', 'W/m2', (/ ('', i=1, 6) /))
204  TYPE(ctrl_out), SAVE :: o_SWdnSFC = ctrl_out((/ 1, 1, 10, 10, 5, 10 /), &
205        'SWdnSFC', 'SWdn at surface', 'W/m2', (/ ('', i=1, 6) /))
206  TYPE(ctrl_out), SAVE :: o_SWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
207        'SWdnSFCclr', 'SWdn clear sky at surface', 'W/m2', (/ ('', i=1, 6) /))
208  TYPE(ctrl_out), SAVE :: o_LWupSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
209        'LWupSFC', 'Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
210  TYPE(ctrl_out), SAVE :: o_LWupSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
211        'LWupSFCclr', 'CS Upwd. IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
212  TYPE(ctrl_out), SAVE :: o_LWdnSFC = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
213        'LWdnSFC', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
214  TYPE(ctrl_out), SAVE :: o_LWdnSFCclr = ctrl_out((/ 1, 4, 10, 10, 5, 10 /), &
215        'LWdnSFCclr', 'Down. CS IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
216  TYPE(ctrl_out), SAVE :: o_bils = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
217        'bils', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
218  TYPE(ctrl_out), SAVE :: o_bils_tke = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
219        'bils_tke', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
220  TYPE(ctrl_out), SAVE :: o_bils_diss = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
221        'bils_diss', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
222  TYPE(ctrl_out), SAVE :: o_bils_ec = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
223        'bils_ec', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
224  TYPE(ctrl_out), SAVE :: o_bils_kinetic = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
225        'bils_kinetic', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
226  TYPE(ctrl_out), SAVE :: o_bils_enthalp = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
227        'bils_enthalp', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
228  TYPE(ctrl_out), SAVE :: o_bils_latent = ctrl_out((/ 1, 2, 10, 5, 10, 10 /), &
229        'bils_latent', 'Surf. total heat flux', 'W/m2', (/ ('', i=1, 6) /))
230  TYPE(ctrl_out), SAVE :: o_sens = ctrl_out((/ 1, 1, 10, 10, 5, 10 /), &
231        'sens', 'Sensible heat flux', 'W/m2', (/ ('', i=1, 6) /))
232  TYPE(ctrl_out), SAVE :: o_fder = ctrl_out((/ 1, 2, 10, 10, 10, 10 /), &
233        'fder', 'Heat flux derivation', 'W/m2', (/ ('', i=1, 6) /))
234  TYPE(ctrl_out), SAVE :: o_ffonte = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
235        'ffonte', 'Thermal flux for snow melting', 'W/m2', (/ ('', i=1, 6) /))
236  TYPE(ctrl_out), SAVE :: o_fqcalving = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
237        'fqcalving', 'Ice Calving', 'kg/m2/s', (/ ('', i=1, 6) /))
238  TYPE(ctrl_out), SAVE :: o_fqfonte = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
239        'fqfonte', 'Land ice melt', 'kg/m2/s', (/ ('', i=1, 6) /))
240  TYPE(ctrl_out), SAVE :: o_taux = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
241        'taux', 'Zonal wind stress', 'Pa', (/ ('', i=1, 6) /))
242  TYPE(ctrl_out), SAVE :: o_tauy = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
243        'tauy', 'Meridional wind stress', 'Pa', (/ ('', i=1, 6) /))
244
245  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_taux_srf = (/           &
246      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'taux_ter',             &
247      "Zonal wind stress"//clnsurf(1), "Pa", (/ ('', i=1, 6) /)), &
248      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'taux_lic',             &
249      "Zonal wind stress"//clnsurf(2), "Pa", (/ ('', i=1, 6) /)), &
250      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'taux_oce',             &
251      "Zonal wind stress"//clnsurf(3), "Pa", (/ ('', i=1, 6) /)), &
252      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'taux_sic',             &
253      "Zonal wind stress"//clnsurf(4), "Pa", (/ ('', i=1, 6) /)) /)
254
255  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tauy_srf     = (/             &
256      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tauy_ter',                   &
257      "Meridional wind stress "//clnsurf(1),"Pa", (/ ('', i=1, 6) /)),  &
258      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tauy_lic',                   &
259      "Meridional wind stress "//clnsurf(2),"Pa", (/ ('', i=1, 6) /)),  &
260      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tauy_oce',                   &
261      "Meridional wind stress "//clnsurf(3),"Pa", (/ ('', i=1, 6) /)),  &
262      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tauy_sic',                   &
263      "Meridional wind stress "//clnsurf(4),"Pa", (/ ('', i=1, 6) /)) /)
264
265  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_pourc_srf    = (/ &
266      ctrl_out((/ 1, 7, 10, 10, 10, 10 /),'pourc_ter',      &
267      "% "//clnsurf(1),"%", (/ ('', i=1, 6) /)),            &
268      ctrl_out((/ 1, 7, 10, 10, 10, 10 /),'pourc_lic',      &
269      "% "//clnsurf(2),"%", (/ ('', i=1, 6) /)),            &
270      ctrl_out((/ 1, 7, 10, 10, 10, 10 /),'pourc_oce',      &
271      "% "//clnsurf(3),"%", (/ ('', i=1, 6) /)),            &
272      ctrl_out((/ 1, 7, 10, 10, 10, 10 /),'pourc_sic',      &
273      "% "//clnsurf(4),"%", (/ ('', i=1, 6) /)) /)
274
275  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fract_srf    = (/ &
276      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'fract_ter',      &
277      "Fraction "//clnsurf(1),"1", (/ ('', i=1, 6) /)),     &
278      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'fract_lic',      &
279      "Fraction "//clnsurf(2),"1", (/ ('', i=1, 6) /)),     &
280      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'fract_oce',      &
281      "Fraction "//clnsurf(3),"1", (/ ('', i=1, 6) /)),     &
282      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'fract_sic',      &
283      "Fraction "//clnsurf(4),"1", (/ ('', i=1, 6) /)) /)
284
285  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tsol_srf     = (/ &
286      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tsol_ter',       &
287      "Temperature "//clnsurf(1),"K", (/ ('', i=1, 6) /)),  &
288      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tsol_lic',       &
289      "Temperature "//clnsurf(2),"K", (/ ('', i=1, 6) /)),  &
290      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tsol_oce',       &
291      "Temperature "//clnsurf(3),"K", (/ ('', i=1, 6) /)),  &
292      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'tsol_sic',       &
293      "Temperature "//clnsurf(4),"K", (/ ('', i=1, 6) /)) /)
294
295  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_evappot_srf  = (/ &
296      ctrl_out((/ 1, 6, 10, 10, 10, 10 /),'evappot_ter',    &
297      "Temperature"//clnsurf(1),"K", (/ ('', i=1, 6) /)),   &
298      ctrl_out((/ 4, 6, 10, 10, 10, 10 /),'evappot_lic',    &
299      "Temperature"//clnsurf(2),"K", (/ ('', i=1, 6) /)),   &
300      ctrl_out((/ 4, 6, 10, 10, 10, 10 /),'evappot_oce',    &
301      "Temperature"//clnsurf(3),"K", (/ ('', i=1, 6) /)),   &
302      ctrl_out((/ 4, 6, 10, 10, 10, 10 /),'evappot_sic',    &
303      "Temperature"//clnsurf(4),"K", (/ ('', i=1, 6) /)) /)
304
305  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_sens_srf     = (/          &
306      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'sens_ter',                 &
307      "Sensible heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 6) /)), &
308      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'sens_lic',                 &
309      "Sensible heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 6) /)), &
310      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'sens_oce',                 &
311      "Sensible heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 6) /)), &
312      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'sens_sic',                 &
313      "Sensible heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 6) /)) /)
314
315  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_lat_srf      = (/        &
316      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'lat_ter',                &
317      "Latent heat flux "//clnsurf(1),"W/m2", (/ ('', i=1, 6) /)), &
318      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'lat_lic',                &
319      "Latent heat flux "//clnsurf(2),"W/m2", (/ ('', i=1, 6) /)), &
320      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'lat_oce',                &
321      "Latent heat flux "//clnsurf(3),"W/m2", (/ ('', i=1, 6) /)), &
322      ctrl_out((/ 1, 6, 10, 7, 10, 10 /),'lat_sic',                &
323      "Latent heat flux "//clnsurf(4),"W/m2", (/ ('', i=1, 6) /)) /)
324
325  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_flw_srf      = (/ &
326      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'flw_ter',       &
327      "LW "//clnsurf(1),"W/m2", (/ ('', i=1, 6) /)),        &
328      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'flw_lic',       &
329      "LW "//clnsurf(2),"W/m2", (/ ('', i=1, 6) /)),        &
330      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'flw_oce',       &
331      "LW "//clnsurf(3),"W/m2", (/ ('', i=1, 6) /)),        &
332      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'flw_sic',       &
333      "LW "//clnsurf(4),"W/m2", (/ ('', i=1, 6) /)) /)
334
335  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_fsw_srf      = (/ &
336      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'fsw_ter',       &
337      "SW "//clnsurf(1),"W/m2", (/ ('', i=1, 6) /)),        &
338      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'fsw_lic',       &
339      "SW "//clnsurf(2),"W/m2", (/ ('', i=1, 6) /)),        &
340      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'fsw_oce',       &
341      "SW "//clnsurf(3),"W/m2", (/ ('', i=1, 6) /)),        &
342      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'fsw_sic',       &
343      "SW "//clnsurf(4),"W/m2", (/ ('', i=1, 6) /)) /)
344
345  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbils_srf    = (/ &
346      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbils_ter',     &
347      "Bilan sol "//clnsurf(1),"W/m2", (/ ('', i=1, 6) /)), &
348      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbils_lic',     &
349      "Bilan sol "//clnsurf(2),"W/m2", (/ ('', i=1, 6) /)), &
350      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbils_oce',     &
351      "Bilan sol "//clnsurf(3),"W/m2", (/ ('', i=1, 6) /)), &
352      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbils_sic',     &
353      "Bilan sol "//clnsurf(4),"W/m2", (/ ('', i=1, 6) /)) /)
354
355  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_wbilo_srf    = (/      &
356      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbilo_ter',          &
357      "Bilan eau "//clnsurf(1),"kg/(m2*s)", (/ ('', i=1, 6) /)), &
358      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbilo_lic',          &
359      "Bilan eau "//clnsurf(2),"kg/(m2*s)", (/ ('', i=1, 6) /)), &
360      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbilo_oce',          &
361      "Bilan eau "//clnsurf(3),"kg/(m2*s)", (/ ('', i=1, 6) /)), &
362      ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'wbilo_sic',          &
363      "Bilan eau "//clnsurf(4),"kg/(m2*s)", (/ ('', i=1, 6) /)) /)
364
365  TYPE(ctrl_out), SAVE :: o_cdrm = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
366        'cdrm', 'Momentum drag coef.', '-', (/ ('', i=1, 6) /))
367  TYPE(ctrl_out), SAVE :: o_cdrh = ctrl_out((/ 1, 10, 10, 7, 10, 10 /), &
368        'cdrh', 'Heat drag coef.', '-', (/ ('', i=1, 6) /))
369  TYPE(ctrl_out), SAVE :: o_cldl = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
370        'cldl', 'Low-level cloudiness', '-', (/ ('', i=1, 6) /))
371  TYPE(ctrl_out), SAVE :: o_cldm = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
372        'cldm', 'Mid-level cloudiness', '-', (/ ('', i=1, 6) /))
373  TYPE(ctrl_out), SAVE :: o_cldh = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
374        'cldh', 'High-level cloudiness', '-', (/ ('', i=1, 6) /))
375  TYPE(ctrl_out), SAVE :: o_cldt = ctrl_out((/ 1, 1, 2, 10, 5, 10 /), &
376        'cldt', 'Total cloudiness', '-', (/ ('', i=1, 6) /))
377  TYPE(ctrl_out), SAVE :: o_cldq = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
378        'cldq', 'Cloud liquid water path', 'kg/m2', (/ ('', i=1, 6) /))
379  TYPE(ctrl_out), SAVE :: o_lwp = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
380        'lwp', 'Cloud water path', 'kg/m2', (/ ('', i=1, 6) /))
381  TYPE(ctrl_out), SAVE :: o_iwp = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
382        'iwp', 'Cloud ice water path', 'kg/m2', (/ ('', i=1, 6) /))
383  TYPE(ctrl_out), SAVE :: o_ue = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
384        'ue', 'Zonal energy transport', '-', (/ ('', i=1, 6) /))
385  TYPE(ctrl_out), SAVE :: o_ve = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
386        've', 'Merid energy transport', '-', (/ ('', i=1, 6) /))
387  TYPE(ctrl_out), SAVE :: o_uq = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
388        'uq', 'Zonal humidity transport', '-', (/ ('', i=1, 6) /))
389  TYPE(ctrl_out), SAVE :: o_vq = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
390        'vq', 'Merid humidity transport', '-', (/ ('', i=1, 6) /))
391  TYPE(ctrl_out), SAVE :: o_cape = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
392        'cape', 'Conv avlbl pot ener', 'J/kg', (/ ('', i=1, 6) /))
393  TYPE(ctrl_out), SAVE :: o_pbase = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
394        'pbase', 'Cld base pressure', 'Pa', (/ ('', i=1, 6) /))
395  TYPE(ctrl_out), SAVE :: o_ptop = ctrl_out((/ 1, 5, 10, 10, 10, 10 /), &
396        'ptop', 'Cld top pressure', 'Pa', (/ ('', i=1, 6) /))
397  TYPE(ctrl_out), SAVE :: o_fbase = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
398        'fbase', 'Cld base mass flux', 'kg/m2/s', (/ ('', i=1, 6) /))
399  TYPE(ctrl_out), SAVE :: o_plcl = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
400        'plcl', 'Lifting Condensation Level', 'hPa', (/ ('', i=1, 6) /))
401  TYPE(ctrl_out), SAVE :: o_plfc = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
402        'plfc', 'Level of Free Convection', 'hPa', (/ ('', i=1, 6) /))
403  TYPE(ctrl_out), SAVE :: o_wbeff = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
404        'wbeff', 'Conv. updraft velocity at LFC (<100)', 'm/s', (/ ('', i=1, 6) /))
405  TYPE(ctrl_out), SAVE :: o_prw = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
406        'prw', 'Precipitable water', 'kg/m2', (/ ('', i=1, 6) /))
407  TYPE(ctrl_out), SAVE :: o_s_pblh = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
408        's_pblh', 'Boundary Layer Height', 'm', (/ ('', i=1, 6) /))
409  TYPE(ctrl_out), SAVE :: o_s_pblt = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
410        's_pblt', 't at Boundary Layer Height', 'K', (/ ('', i=1, 6) /))
411  TYPE(ctrl_out), SAVE :: o_s_lcl = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
412        's_lcl', 'Condensation level', 'm', (/ ('', i=1, 6) /))
413  TYPE(ctrl_out), SAVE :: o_s_therm = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
414        's_therm', 'Exces du thermique', 'K', (/ ('', i=1, 6) /))
415  !IM : Les champs suivants (s_capCL, s_oliqCL, s_cteiCL, s_trmb1, s_trmb2, s_trmb3) ne sont pas definis dans HBTM.F
416  ! type(ctrl_out),save :: o_s_capCL      = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_capCL', &
417!       (/ ('', i=1, 6) /))
418  ! type(ctrl_out),save :: o_s_oliqCL     = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_oliqCL', &
419!       (/ ('', i=1, 6) /))
420  ! type(ctrl_out),save :: o_s_cteiCL     = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_cteiCL', &
421!       (/ ('', i=1, 6) /))
422  ! type(ctrl_out),save :: o_s_trmb1      = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_trmb1', &
423!       (/ ('', i=1, 6) /))
424  ! type(ctrl_out),save :: o_s_trmb2      = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_trmb2', &
425!       (/ ('', i=1, 6) /))
426  ! type(ctrl_out),save :: o_s_trmb3      = ctrl_out((/ 1, 10, 10, 10, 10, 10 /),'s_trmb3', &
427        !(/ ('', i=1, 6) /))
428  TYPE(ctrl_out), SAVE :: o_slab_bils = ctrl_out((/ 1, 1, 10, 10, 10, 10 /), &
429        'slab_bils_oce', 'Bilan au sol sur ocean slab', 'W/m2', (/ ('', i=1, 6) /))
430  TYPE(ctrl_out), SAVE :: o_ale_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
431        'ale_bl', 'ALE BL', 'm2/s2', (/ ('', i=1, 6) /))
432  TYPE(ctrl_out), SAVE :: o_alp_bl = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
433        'alp_bl', 'ALP BL', 'm2/s2', (/ ('', i=1, 6) /))
434  TYPE(ctrl_out), SAVE :: o_ale_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
435        'ale_wk', 'ALE WK', 'm2/s2', (/ ('', i=1, 6) /))
436  TYPE(ctrl_out), SAVE :: o_alp_wk = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
437        'alp_wk', 'ALP WK', 'm2/s2', (/ ('', i=1, 6) /))
438  TYPE(ctrl_out), SAVE :: o_ale = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
439        'ale', 'ALE', 'm2/s2', (/ ('', i=1, 6) /))
440  TYPE(ctrl_out), SAVE :: o_alp = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
441        'alp', 'ALP', 'W/m2', (/ ('', i=1, 6) /))
442  TYPE(ctrl_out), SAVE :: o_cin = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
443        'cin', 'Convective INhibition', 'm2/s2', (/ ('', i=1, 6) /))
444  TYPE(ctrl_out), SAVE :: o_wape = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
445        'wape', '', '', (/ ('', i=1, 6) /))
446
447!!! nrlmd le 10/04/2012
448
449!-------Spectre de thermiques de type 2 au LCL
450  TYPE(ctrl_out), SAVE :: o_n2 = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
451        'n2', 'Nombre de panaches de type 2', ' ', (/ ('', i=1, 6) /))
452  TYPE(ctrl_out), SAVE :: o_s2 = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
453        's2', 'Surface moyenne des panaches de type 2', 'm2', (/ ('', i=1, 6) /))
454                                                                             
455!-------Déclenchement stochastique                                           
456  TYPE(ctrl_out), SAVE :: o_proba_notrig = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
457        'proba_notrig', &
458                         'Probabilité de non-déclenchement', ' ', (/ ('', i=1, 6) /))
459  TYPE(ctrl_out), SAVE :: o_random_notrig = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
460        'random_notrig', &
461                         'Tirage aléatoire de non-déclenchement', ' ', (/ ('', i=1, 6) /))
462  TYPE(ctrl_out), SAVE :: o_ale_bl_stat = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
463        'ale_bl_stat', &
464       'ALE_BL_STAT', 'm2/s2', (/ ('', i=1, 6) /))
465  TYPE(ctrl_out), SAVE :: o_ale_bl_trig = ctrl_out((/ 1, 1, 1, 6, 10, 10 /), &
466        'ale_bl_trig', &
467       'ALE_BL_STAT + Condition P>Pseuil', 'm2/s2', (/ ('', i=1, 6) /))
468
469!-------Fermeture statistique
470  TYPE(ctrl_out), SAVE :: o_alp_bl_det = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
471        'alp_bl_det', 'ALP_BL_DET', 'W/m2', (/ ('', i=1, 6) /))
472  TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_m = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
473        'alp_bl_fluct_m', 'ALP_BL_FLUCT_M', 'W/m2', (/ ('', i=1, 6) /))
474  TYPE(ctrl_out), SAVE :: o_alp_bl_fluct_tke = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
475        'alp_bl_fluct_tke', 'ALP_BL_FLUCT_TKE', 'W/m2', (/ ('', i=1, 6) /))
476  TYPE(ctrl_out), SAVE :: o_alp_bl_conv = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
477        'alp_bl_conv', 'ALP_BL_CONV', 'W/m2', (/ ('', i=1, 6) /))
478  TYPE(ctrl_out), SAVE :: o_alp_bl_stat = ctrl_out((/ 1, 1, 1, 10, 10, 10 /), &
479        'alp_bl_stat', 'ALP_BL_STAT', 'W/m2', (/ ('', i=1, 6) /))
480
481!!! fin nrlmd le 10/04/2012
482
483  ! Champs interpolles sur des niveaux de pression ??? a faire correctement
484
485  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_uSTDlevs     = (/                    &
486      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u850', "Zonal wind 1hPa", "m/s",     &
487      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
488      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u700', "Zonal wind 2hPa", "m/s",     &
489      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
490      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u500', "Zonal wind 3hPa", "m/s",     &
491      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
492      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u200', "Zonal wind 4hPa", "m/s",     &
493      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
494      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u100', "Zonal wind 5hPa", "m/s",     &
495      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
496      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u50', "Zonal wind 6hPa", "m/s",     &
497      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
498      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'u10', "Zonal wind 7hPa", "m/s",     &
499      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
500
501  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_vSTDlevs     = (/                     &
502      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v850', "Meridional wind 1hPa", "m/s", &
503      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
504      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v700', "Meridional wind 2hPa", "m/s", &
505      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
506      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v500', "Meridional wind 3hPa", "m/s", &
507      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
508      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v200', "Meridional wind 4hPa", "m/s", &
509      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
510      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v100', "Meridional wind 5hPa", "m/s", &
511      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
512      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v50', "Meridional wind 6hPa", "m/s",  &
513      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)),  &
514      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'v10', "Meridional wind 7hPa", "m/s",  &
515      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
516
517  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_wSTDlevs     = (/                    &
518      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w850', "Vertical wind 1hPa", "Pa/s", &
519      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
520      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w700', "Vertical wind 2hPa", "Pa/s", &
521      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
522      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w500', "Vertical wind 3hPa", "Pa/s", &
523      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
524      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w200', "Vertical wind 4hPa", "Pa/s", &
525      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
526      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w100', "Vertical wind 5hPa", "Pa/s", &
527      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
528      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w50', "Vertical wind 6hPa", "Pa/s",  &
529      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
530      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'w10', "Vertical wind 7hPa", "Pa/s",  &
531      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
532
533  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_tSTDlevs     = (/                    &
534      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t850', "Temperature 1hPa", "K",      &
535      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
536      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t700', "Temperature 2hPa", "K",      &
537      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
538      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t500', "Temperature 3hPa", "K",      &
539      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
540      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t200', "Temperature 4hPa", "K",      &
541      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
542      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t100', "Temperature 5hPa", "K",      &
543      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
544      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t50',  "Temperature 6hPa", "K",      &
545      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
546      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'t10',  "Temperature 7hPa", "K",      &
547      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
548
549  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_qSTDlevs     = (/                             &
550      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q850', "Specific humidity 1hPa",              &
551      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
552      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q700', "Specific humidity 2hPa",              &
553      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
554      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q500', "Specific humidity 3hPa",              &
555      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
556      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q200', "Specific humidity 4hPa",              &
557      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
558      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q100', "Specific humidity 5hPa",              &
559      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
560      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q50', "Specific humidity 6hPa",               &
561      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
562      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'q10', "Specific humidity 7hPa",               &
563      "kg/kg", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
564
565  TYPE(ctrl_out), SAVE, DIMENSION(7) :: o_zSTDlevs   = (/                           &
566      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z850', "Geopotential height 1hPa",        &
567      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
568      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z700', "Geopotential height 2hPa",        &
569      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
570      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z500', "Geopotential height 3hPa",        &
571      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
572      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z200', "Geopotential height 4hPa",        &
573      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
574      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z100', "Geopotential height 5hPa",        &
575      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
576      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z50', "Geopotential height 6hPa",         &
577      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)), &
578      ctrl_out((/ 1, 7, 7, 10, 10, 10 /),'z10', "Geopotential height 7hPa",         &
579      "m", (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /)) /)
580
581  TYPE(ctrl_out), SAVE :: o_t_oce_sic = ctrl_out((/ 1, 10, 10, 10, 10, 10 /), &
582        't_oce_sic', 'Temp mixte oce-sic', 'K', (/ ('', i=1, 6) /))
583  TYPE(ctrl_out), SAVE :: o_weakinv = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
584        'weakinv', 'Weak inversion', '-', (/ ('', i=1, 6) /))
585  TYPE(ctrl_out), SAVE :: o_dthmin = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
586        'dthmin', 'dTheta mini', 'K/m', (/ ('', i=1, 6) /))
587
588  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_u10_srf      = (/ &
589      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'u10_ter', "", "", (/ ('', i=1, 6) /)), &
590      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'u10_lic', "", "", (/ ('', i=1, 6) /)), &
591      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'u10_oce', "", "", (/ ('', i=1, 6) /)), &
592      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'u10_sic', "", "", (/ ('', i=1, 6) /)) /)
593
594  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_v10_srf      = (/ &
595      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'v10_ter', "", "", (/ ('', i=1, 6) /)), &
596      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'v10_lic', "", "", (/ ('', i=1, 6) /)), &
597      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'v10_oce', "", "", (/ ('', i=1, 6) /)), &
598      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'v10_sic', "", "", (/ ('', i=1, 6) /)) /)
599
600  TYPE(ctrl_out), SAVE :: o_cldtau = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
601        'cldtau', 'Cloud optical thickness', '1', (/ ('', i=1, 6) /))
602  TYPE(ctrl_out), SAVE :: o_cldemi = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
603        'cldemi', 'Cloud optical emissivity', '1', (/ ('', i=1, 6) /))
604  TYPE(ctrl_out), SAVE :: o_rh2m = ctrl_out((/ 5, 5, 10, 10, 10, 10 /), &
605        'rh2m', 'Relative humidity at 2m', '%', (/ ('', i=1, 6) /))
606  TYPE(ctrl_out), SAVE :: o_rh2m_min = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
607        'rh2m_min', 'Min Relative humidity at 2m', '%',                        &
608      (/ 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)', 't_min(X)' /))
609  TYPE(ctrl_out), SAVE :: o_rh2m_max = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
610        'rh2m_max', 'Max Relative humidity at 2m', '%',                        &
611      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /))
612  TYPE(ctrl_out), SAVE :: o_qsat2m = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
613        'qsat2m', 'Saturant humidity at 2m', '%', (/ ('', i=1, 6) /))
614  TYPE(ctrl_out), SAVE :: o_tpot = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
615        'tpot', 'Surface air potential temperature', 'K', (/ ('', i=1, 6) /))
616  TYPE(ctrl_out), SAVE :: o_tpote = ctrl_out((/ 10, 5, 10, 10, 10, 10 /), &
617        'tpote', &
618      'Surface air equivalent potential temperature', 'K', (/ ('', i=1, 6) /))
619  TYPE(ctrl_out), SAVE :: o_tke = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
620        'tke ', 'TKE', 'm2/s2', (/ ('', i=1, 6) /))
621  TYPE(ctrl_out), SAVE :: o_tke_max = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
622        'tke_max', 'TKE max', 'm2/s2',                                        &
623      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /))
624
625  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_srf      = (/             &
626      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_ter',                   &
627      "Max Turb. Kinetic Energy "//clnsurf(1),"-", (/ ('', i=1, 6) /)), &
628      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_lic',                   &
629      "Max Turb. Kinetic Energy "//clnsurf(2),"-", (/ ('', i=1, 6) /)), &
630      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_oce',                   &
631      "Max Turb. Kinetic Energy "//clnsurf(3),"-", (/ ('', i=1, 6) /)), &
632      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_sic',                   &
633      "Max Turb. Kinetic Energy "//clnsurf(4),"-", (/ ('', i=1, 6) /)) /)
634
635  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_tke_max_srf  = (/                                  &
636      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_max_ter',                                    &
637      "Max Turb. Kinetic Energy "//clnsurf(1),"-",                                           &
638      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
639      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_max_lic',                                    &
640      "Max Turb. Kinetic Energy "//clnsurf(2),"-",                                           &
641      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
642      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_max_oce',                                    &
643      "Max Turb. Kinetic Energy "//clnsurf(3),"-",                                           &
644      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)), &
645      ctrl_out((/ 10, 4, 10, 10, 10, 10 /),'tke_max_sic',                                    &
646      "Max Turb. Kinetic Energy "//clnsurf(4),"-",                                           &
647      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /)) /)
648
649  TYPE(ctrl_out), SAVE :: o_kz = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
650        'kz', 'Kz melange', 'm2/s', (/ ('', i=1, 6) /))
651  TYPE(ctrl_out), SAVE :: o_kz_max = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
652        'kz_max', 'Kz melange max', 'm2/s',                                  &
653      (/ 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)', 't_max(X)' /))
654  TYPE(ctrl_out), SAVE :: o_SWnetOR = ctrl_out((/ 10, 10, 2, 10, 10, 10 /), &
655        'SWnetOR', 'Sfce net SW radiation OR', 'W/m2', (/ ('', i=1, 6) /))
656  TYPE(ctrl_out), SAVE :: o_SWdownOR = ctrl_out((/ 10, 10, 2, 10, 10, 10 /), &
657        'SWdownOR', 'Sfce incident SW radiation OR', 'W/m2', (/ ('', i=1, 6) /))
658  TYPE(ctrl_out), SAVE :: o_LWdownOR = ctrl_out((/ 10, 10, 2, 10, 10, 10 /), &
659        'LWdownOR', 'Sfce incident LW radiation OR', 'W/m2', (/ ('', i=1, 6) /))
660  TYPE(ctrl_out), SAVE :: o_snowl = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
661        'snowl', 'Solid Large-scale Precip.', 'kg/(m2*s)', (/ ('', i=1, 6) /))
662  TYPE(ctrl_out), SAVE :: o_cape_max = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
663        'cape_max', 'CAPE max.', 'J/kg',                                       &
664      (/ "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)", "t_max(X)" /))
665  TYPE(ctrl_out), SAVE :: o_solldown = ctrl_out((/ 10, 1, 10, 10, 10, 10 /), &
666        'solldown', 'Down. IR rad. at surface', 'W/m2', (/ ('', i=1, 6) /))
667  TYPE(ctrl_out), SAVE :: o_dtsvdfo = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
668        'dtsvdfo', 'Boundary-layer dTs(o)', 'K/s', (/ ('', i=1, 6) /))
669  TYPE(ctrl_out), SAVE :: o_dtsvdft = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
670        'dtsvdft', 'Boundary-layer dTs(t)', 'K/s', (/ ('', i=1, 6) /))
671  TYPE(ctrl_out), SAVE :: o_dtsvdfg = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
672        'dtsvdfg', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 6) /))
673  TYPE(ctrl_out), SAVE :: o_dtsvdfi = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
674        'dtsvdfi', 'Boundary-layer dTs(g)', 'K/s', (/ ('', i=1, 6) /))
675  TYPE(ctrl_out), SAVE :: o_rugs = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
676        'rugs', 'rugosity', '-', (/ ('', i=1, 6) /))
677  TYPE(ctrl_out), SAVE :: o_topswad = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
678        'topswad', 'ADE at TOA', 'W/m2', (/ ('', i=1, 6) /))
679  TYPE(ctrl_out), SAVE :: o_topswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
680        'topswad0', 'ADE clear-sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
681  TYPE(ctrl_out), SAVE :: o_topswai = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
682        'topswai', 'AIE at TOA', 'W/m2', (/ ('', i=1, 6) /))
683  TYPE(ctrl_out), SAVE :: o_solswad = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
684        'solswad', 'ADE at SRF', 'W/m2', (/ ('', i=1, 6) /))
685  TYPE(ctrl_out), SAVE :: o_solswad0 = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
686        'solswad0', 'ADE clear-sky at SRF', 'W/m2', (/ ('', i=1, 6) /))
687  TYPE(ctrl_out), SAVE :: o_solswai = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
688        'solswai', 'AIE at SFR', 'W/m2', (/ ('', i=1, 6) /))
689
690!  type(ctrl_out),save,dimension(10) :: o_tausumaero  = (/ ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_ASBCM', &
691!       (/ ('', i=1, 6) /)), &
692  type(ctrl_out),save,dimension(11) :: o_tausumaero  =                           &
693    (/ ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_ASBCM',                        &
694      "Aerosol Optical depth at 550 nm "//name_aero(1),"1", (/ ('', i=1, 6) /)), &
695       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_ASPOMM',                       &
696      "Aerosol Optical depth at 550 nm "//name_aero(2),"1", (/ ('', i=1, 6) /)), &
697       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_ASSO4M',                       &
698      "Aerosol Optical depth at 550 nm "//name_aero(3),"1", (/ ('', i=1, 6) /)), &
699       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_CSSO4M',                       &
700      "Aerosol Optical depth at 550 nm "//name_aero(4),"1", (/ ('', i=1, 6) /)), &
701       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_SSSSM',                        &
702      "Aerosol Optical depth at 550 nm "//name_aero(5),"1", (/ ('', i=1, 6) /)), &
703       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_ASSSM',                        &
704      "Aerosol Optical depth at 550 nm "//name_aero(6),"1", (/ ('', i=1, 6) /)), &
705       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_CSSSM',                        &
706      "Aerosol Optical depth at 550 nm "//name_aero(7),"1", (/ ('', i=1, 6) /)), &
707       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_CIDUSTM',                      &
708      "Aerosol Optical depth at 550 nm "//name_aero(8),"1", (/ ('', i=1, 6) /)), &
709       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_AIBCM',                        &
710      "Aerosol Optical depth at 550 nm "//name_aero(9),"1", (/ ('', i=1, 6) /)), &
711       ctrl_out((/ 2, 6, 10, 10, 10, 10 /),'OD550_AIPOMM',                       &
712      "Aerosol Optical depth at 550 nm "//name_aero(10),"1", (/ ('', i=1, 6) /)),&
713       ctrl_out((/ 2, 2, 10, 10, 10, 10 /),'OD550_STRAT',                        &
714      "Aerosol Optical depth at 550 nm "//name_aero(11),"1", (/ ('', i=1, 6) /)) /)
715  TYPE(ctrl_out), SAVE :: o_od550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
716        'od550aer', 'Total aerosol optical depth at 550nm', '-', (/ ('', i=1, 6) /))
717  TYPE(ctrl_out), SAVE :: o_od865aer = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
718        'od865aer', 'Total aerosol optical depth at 870nm', '-', (/ ('', i=1, 6) /))
719  TYPE(ctrl_out), SAVE :: o_absvisaer = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
720        'absvisaer', 'Absorption aerosol visible optical depth', '-', (/ ('', i=1, 6) /))
721  TYPE(ctrl_out), SAVE :: o_od550lt1aer = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
722        'od550lt1aer', 'Fine mode optical depth', '-', (/ ('', i=1, 6) /))
723  TYPE(ctrl_out), SAVE :: o_sconcso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
724        'sconcso4', 'Surface Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 6) /))
725  TYPE(ctrl_out), SAVE :: o_sconcoa = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
726        'sconcoa', 'Surface Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 6) /))
727  TYPE(ctrl_out), SAVE :: o_sconcbc = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
728        'sconcbc', 'Surface Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 6) /))
729  TYPE(ctrl_out), SAVE :: o_sconcss = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
730        'sconcss', 'Surface Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 6) /))
731  TYPE(ctrl_out), SAVE :: o_sconcdust = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
732        'sconcdust', 'Surface Concentration of Dust ', 'kg/m3', (/ ('', i=1, 6) /))
733  TYPE(ctrl_out), SAVE :: o_concso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
734        'concso4', 'Concentration of Sulfate ', 'kg/m3', (/ ('', i=1, 6) /))
735  TYPE(ctrl_out), SAVE :: o_concoa = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
736        'concoa', 'Concentration of Organic Aerosol ', 'kg/m3', (/ ('', i=1, 6) /))
737  TYPE(ctrl_out), SAVE :: o_concbc = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
738        'concbc', 'Concentration of Black Carbon ', 'kg/m3', (/ ('', i=1, 6) /))
739  TYPE(ctrl_out), SAVE :: o_concss = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
740        'concss', 'Concentration of Sea Salt ', 'kg/m3', (/ ('', i=1, 6) /))
741  TYPE(ctrl_out), SAVE :: o_concdust = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
742        'concdust', 'Concentration of Dust ', 'kg/m3', (/ ('', i=1, 6) /))
743  TYPE(ctrl_out), SAVE :: o_loadso4 = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
744        'loadso4', 'Column Load of Sulfate ', 'kg/m2', (/ ('', i=1, 6) /))
745  TYPE(ctrl_out), SAVE :: o_loadoa = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
746        'loadoa', 'Column Load of Organic Aerosol ', 'kg/m2', (/ ('', i=1, 6) /))
747  TYPE(ctrl_out), SAVE :: o_loadbc = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
748        'loadbc', 'Column Load of Black Carbon ', 'kg/m2', (/ ('', i=1, 6) /))
749  TYPE(ctrl_out), SAVE :: o_loadss = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
750        'loadss', 'Column Load of Sea Salt ', 'kg/m2', (/ ('', i=1, 6) /))
751  TYPE(ctrl_out), SAVE :: o_loaddust = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
752        'loaddust', 'Column Load of Dust ', 'kg/m2', (/ ('', i=1, 6) /))
753  TYPE(ctrl_out), SAVE :: o_swtoaas_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
754        'swtoaas_nat', 'Natural aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
755  TYPE(ctrl_out), SAVE :: o_swsrfas_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
756        'swsrfas_nat', 'Natural aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 6) /))
757  TYPE(ctrl_out), SAVE :: o_swtoacs_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
758        'swtoacs_nat', 'Natural aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
759  TYPE(ctrl_out), SAVE :: o_swsrfcs_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
760        'swsrfcs_nat', 'Natural aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 6) /))
761  TYPE(ctrl_out), SAVE :: o_swtoaas_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
762        'swtoaas_ant', 'Anthropogenic aerosol radiative forcing all-sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
763  TYPE(ctrl_out), SAVE :: o_swsrfas_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
764        'swsrfas_ant', 'Anthropogenic aerosol radiative forcing all-sky at SRF', 'W/m2', (/ ('', i=1, 6) /))
765  TYPE(ctrl_out), SAVE :: o_swtoacs_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
766        'swtoacs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at TOA', 'W/m2', (/ ('', i=1, 6) /))
767  TYPE(ctrl_out), SAVE :: o_swsrfcs_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
768        'swsrfcs_ant', 'Anthropogenic aerosol radiative forcing clear-sky at SRF', 'W/m2', (/ ('', i=1, 6) /))
769  TYPE(ctrl_out), SAVE :: o_swtoacf_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
770        'swtoacf_nat', 'Natural aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 6) /))
771  TYPE(ctrl_out), SAVE :: o_swsrfcf_nat = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
772        'swsrfcf_nat', 'Natural aerosol impact on cloud radiative forcing  at SRF', 'W/m2', (/ ('', i=1, 6) /))
773  TYPE(ctrl_out), SAVE :: o_swtoacf_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
774        'swtoacf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at TOA', 'W/m2', (/ ('', i=1, 6) /))
775  TYPE(ctrl_out), SAVE :: o_swsrfcf_ant = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
776        'swsrfcf_ant', 'Anthropogenic aerosol impact on cloud radiative forcing at SRF', 'W/m2', (/ ('', i=1, 6) /))
777  TYPE(ctrl_out), SAVE :: o_swtoacf_zero = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
778        'swtoacf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at TOA', 'W/m2', (/ ('', i=1, 6) /))
779  TYPE(ctrl_out), SAVE :: o_swsrfcf_zero = ctrl_out((/ 4, 6, 10, 10, 10, 10 /), &
780        'swsrfcf_zero', 'Cloud radiative forcing (allsky-clearsky fluxes) at SRF', 'W/m2', (/ ('', i=1, 6) /))
781  TYPE(ctrl_out), SAVE :: o_cldncl = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
782        'cldncl', 'CDNC at top of liquid water cloud', 'm-3', (/ ('', i=1, 6) /))
783  TYPE(ctrl_out), SAVE :: o_reffclwtop = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
784        'reffclwtop', 'Droplet effective radius at top of liquid water cloud', 'm', (/ ('', i=1, 6) /))
785  TYPE(ctrl_out), SAVE :: o_cldnvi = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
786        'cldnvi', 'Column Integrated Cloud Droplet Number', 'm-2', (/ ('', i=1, 6) /))
787  TYPE(ctrl_out), SAVE :: o_lcc = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
788        'lcc', 'Cloud liquid fraction at top of cloud', '1', (/ ('', i=1, 6) /))
789
790
791!!!!!!!!!!!!!!!!!!!!!! 3D !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
792  TYPE(ctrl_out), SAVE :: o_ec550aer = ctrl_out((/ 2, 6, 10, 10, 10, 10 /), &
793        'ec550aer', 'Extinction at 550nm', 'm^-1', (/ ('', i=1, 6) /))
794  TYPE(ctrl_out), SAVE :: o_lwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
795        'lwcon', 'Cloud liquid water content', 'kg/kg', (/ ('', i=1, 6) /))
796  TYPE(ctrl_out), SAVE :: o_iwcon = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
797        'iwcon', 'Cloud ice water content', 'kg/kg', (/ ('', i=1, 6) /))
798  TYPE(ctrl_out), SAVE :: o_temp = ctrl_out((/ 2, 3, 4, 10, 10, 10 /), &
799        'temp', 'Air temperature', 'K', (/ ('', i=1, 6) /))
800  TYPE(ctrl_out), SAVE :: o_theta = ctrl_out((/ 2, 3, 4, 10, 10, 10 /), &
801        'theta', 'Potential air temperature', 'K', (/ ('', i=1, 6) /))
802  TYPE(ctrl_out), SAVE :: o_ovap = ctrl_out((/ 2, 3, 4, 10, 10, 10 /), &
803        'ovap', 'Specific humidity', 'kg/kg', (/ ('', i=1, 6) /))
804  TYPE(ctrl_out), SAVE :: o_ovapinit = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
805        'ovapinit', 'Specific humidity (begin of timestep)', 'kg/kg', (/ ('', i=1, 6) /))
806  TYPE(ctrl_out), SAVE :: o_oliq = ctrl_out((/ 2, 3, 4, 10, 10, 10 /), &
807        'oliq', 'Condensed water', 'kg/kg', (/ ('', i=1, 6) /))
808  TYPE(ctrl_out), SAVE :: o_wvapp = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
809        'wvapp', '', '', (/ ('', i=1, 6) /))
810  TYPE(ctrl_out), SAVE :: o_geop = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
811        'geop', 'Geopotential height', 'm2/s2', (/ ('', i=1, 6) /))
812  TYPE(ctrl_out), SAVE :: o_vitu = ctrl_out((/ 2, 3, 4, 6, 10, 10 /), &
813        'vitu', 'Zonal wind', 'm/s', (/ ('', i=1, 6) /))
814  TYPE(ctrl_out), SAVE :: o_vitv = ctrl_out((/ 2, 3, 4, 6, 10, 10 /), &
815        'vitv', 'Meridional wind', 'm/s', (/ ('', i=1, 6) /))
816  TYPE(ctrl_out), SAVE :: o_vitw = ctrl_out((/ 2, 3, 10, 6, 10, 10 /), &
817        'vitw', 'Vertical wind', 'Pa/s', (/ ('', i=1, 6) /))
818  TYPE(ctrl_out), SAVE :: o_pres = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
819        'pres', 'Air pressure', 'Pa', (/ ('', i=1, 6) /))
820  TYPE(ctrl_out), SAVE :: o_paprs = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
821        'paprs', 'Air pressure Inter-Couches', 'Pa', (/ ('', i=1, 6) /))
822  TYPE(ctrl_out), SAVE :: o_mass = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
823        'mass', 'Masse Couches', 'kg/m2', (/ ('', i=1, 6) /))
824  TYPE(ctrl_out), SAVE :: o_zfull = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
825        'zfull', 'Altitude of full pressure levels', 'm', (/ ('', i=1, 6) /))
826  TYPE(ctrl_out), SAVE :: o_zhalf = ctrl_out((/ 2, 3, 10, 10, 10, 10 /), &
827        'zhalf', 'Altitude of half pressure levels', 'm', (/ ('', i=1, 6) /))
828  TYPE(ctrl_out), SAVE :: o_rneb = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
829        'rneb', 'Cloud fraction', '-', (/ ('', i=1, 6) /))
830  TYPE(ctrl_out), SAVE :: o_rnebcon = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
831        'rnebcon', 'Convective Cloud Fraction', '-', (/ ('', i=1, 6) /))
832  TYPE(ctrl_out), SAVE :: o_rnebls = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
833        'rnebls', 'LS Cloud fraction', '-', (/ ('', i=1, 6) /))
834  TYPE(ctrl_out), SAVE :: o_rhum = ctrl_out((/ 2, 5, 10, 10, 10, 10 /), &
835        'rhum', 'Relative humidity', '-', (/ ('', i=1, 6) /))
836  TYPE(ctrl_out), SAVE :: o_ozone = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
837        'ozone', 'Ozone mole fraction', '-', (/ ('', i=1, 6) /))
838  TYPE(ctrl_out), SAVE :: o_ozone_light = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
839        'ozone_daylight', 'Daylight ozone mole fraction', '-', (/ ('', i=1, 6) /))
840  TYPE(ctrl_out), SAVE :: o_upwd = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
841        'upwd', 'saturated updraft', 'kg/m2/s', (/ ('', i=1, 6) /))
842  TYPE(ctrl_out), SAVE :: o_dtphy = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
843        'dtphy', 'Physics dT', 'K/s', (/ ('', i=1, 6) /))
844  TYPE(ctrl_out), SAVE :: o_dqphy = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
845        'dqphy', 'Physics dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
846  TYPE(ctrl_out), SAVE :: o_pr_con_l = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
847        'pr_con_l', 'Convective precipitation lic', ' ', (/ ('', i=1, 6) /))
848  TYPE(ctrl_out), SAVE :: o_pr_con_i = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
849        'pr_con_i', 'Convective precipitation ice', ' ', (/ ('', i=1, 6) /))
850  TYPE(ctrl_out), SAVE :: o_pr_lsc_l = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
851        'pr_lsc_l', 'Large scale precipitation lic', ' ', (/ ('', i=1, 6) /))
852  TYPE(ctrl_out), SAVE :: o_pr_lsc_i = ctrl_out((/ 2, 10, 10, 10, 10, 10 /), &
853        'pr_lsc_i', 'Large scale precipitation ice', ' ', (/ ('', i=1, 6) /))
854  TYPE(ctrl_out), SAVE :: o_re = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
855        're', 'Cloud droplet effective radius', 'um', (/ ('', i=1, 6) /))
856  TYPE(ctrl_out), SAVE :: o_fl = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
857        'fl', 'Denominator of Cloud droplet effective radius', ' ', (/ ('', i=1, 6) /))
858  TYPE(ctrl_out), SAVE :: o_scdnc = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
859        'scdnc', 'Cloud droplet number concentration', 'm-3', (/ ('', i=1, 6) /))
860  TYPE(ctrl_out), SAVE :: o_reffclws = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
861        'reffclws', 'Stratiform Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 6) /))
862  TYPE(ctrl_out), SAVE :: o_reffclwc = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
863        'reffclwc', 'Convective Cloud Droplet Effective Radius (aerosol diags.)', 'm', (/ ('', i=1, 6) /))
864  TYPE(ctrl_out), SAVE :: o_lcc3d = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
865        'lcc3d', 'Cloud liquid fraction', '1', (/ ('', i=1, 6) /))
866  TYPE(ctrl_out), SAVE :: o_lcc3dcon = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
867        'lcc3dcon', 'Convective cloud liquid fraction', '1', (/ ('', i=1, 6) /))
868  TYPE(ctrl_out), SAVE :: o_lcc3dstra = ctrl_out((/ 2,  6, 10, 10, 10, 10 /), &
869        'lcc3dstra', 'Stratiform cloud liquid fraction', '1', (/ ('', i=1, 6) /))
870!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
871
872  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_albe_srf     = (/ &
873      ctrl_out((/ 3, 7, 10, 7, 10, 10 /),'albe_ter', "Albedo VIS surf. "//clnsurf(1),"-", (/ ('', i=1, 6) /)), &
874      ctrl_out((/ 3, 7, 10, 7, 10, 10 /),'albe_lic', "Albedo VIS surf. "//clnsurf(2),"-", (/ ('', i=1, 6) /)), &
875      ctrl_out((/ 3, 7, 10, 7, 10, 10 /),'albe_oce', "Albedo VIS surf. "//clnsurf(3),"-", (/ ('', i=1, 6) /)), &
876      ctrl_out((/ 3, 7, 10, 7, 10, 10 /),'albe_sic', "Albedo VIS surf. "//clnsurf(4),"-", (/ ('', i=1, 6) /)) /)
877
878  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_ages_srf     = (/ &
879      ctrl_out((/ 10, 10, 10, 10, 10, 10 /),'ages_ter', "Snow age", "day", (/ ('', i=1, 6) /)), &
880      ctrl_out((/ 3, 10, 10, 10, 10, 10 /),'ages_lic', "Snow age", "day", (/ ('', i=1, 6) /)), &
881      ctrl_out((/ 10, 10, 10, 10, 10, 10 /),'ages_oce',"Snow age", "day", (/ ('', i=1, 6) /)), &
882      ctrl_out((/ 3, 10, 10, 10, 10, 10 /),'ages_sic',"Snow age", "day", (/ ('', i=1, 6) /)) /)
883
884  TYPE(ctrl_out), SAVE, DIMENSION(4) :: o_rugs_srf     = (/ &
885      ctrl_out((/ 3, 6, 10, 10, 10, 10 /),'rugs_ter', "Surface roughness "//clnsurf(1),"m", (/ ('', i=1, 6) /)), &
886      ctrl_out((/ 3, 6, 10, 10, 10, 10 /),'rugs_lic', "Surface roughness "//clnsurf(2),"m", (/ ('', i=1, 6) /)), &
887      ctrl_out((/ 3, 6, 10, 10, 10, 10 /),'rugs_oce', "Surface roughness "//clnsurf(3),"m", (/ ('', i=1, 6) /)), &
888      ctrl_out((/ 3, 6, 10, 10, 10, 10 /),'rugs_sic', "Surface roughness "//clnsurf(4),"m", (/ ('', i=1, 6) /)) /)
889
890  TYPE(ctrl_out), SAVE :: o_alb1 = ctrl_out((/ 3, 10, 10, 10, 10, 10 /), &
891        'alb1', 'Surface VIS albedo', '-', (/ ('', i=1, 6) /))
892  TYPE(ctrl_out), SAVE :: o_alb2 = ctrl_out((/ 3, 10, 10, 10, 10, 10 /), &
893        'alb2', 'Surface Near IR albedo', '-', (/ ('', i=1, 6) /))
894  TYPE(ctrl_out), SAVE :: o_clwcon = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
895        'clwcon', 'Convective Cloud Liquid water content', 'kg/kg', (/ ('', i=1, 6) /))
896  TYPE(ctrl_out), SAVE :: o_Ma = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
897        'Ma', 'undilute adiab updraft', 'kg/m2/s', (/ ('', i=1, 6) /))
898  TYPE(ctrl_out), SAVE :: o_dnwd = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
899        'dnwd', 'saturated downdraft', 'kg/m2/s', (/ ('', i=1, 6) /))
900  TYPE(ctrl_out), SAVE :: o_dnwd0 = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
901        'dnwd0', 'unsat. downdraft', 'kg/m2/s', (/ ('', i=1, 6) /))
902  TYPE(ctrl_out), SAVE :: o_mc = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
903        'mc', 'Convective mass flux', 'kg/m2/s', (/ ('', i=1, 6) /))
904  TYPE(ctrl_out), SAVE :: o_ftime_con = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
905        'ftime_con', 'Fraction of time convection Occurs', ' ',                 &
906      (/ 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)', 'inst(X)' /))
907  TYPE(ctrl_out), SAVE :: o_dtdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
908        'dtdyn', 'Dynamics dT', 'K/s', (/ ('', i=1, 6) /))
909  TYPE(ctrl_out), SAVE :: o_dqdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
910        'dqdyn', 'Dynamics dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
911  TYPE(ctrl_out), SAVE :: o_dudyn = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
912        'dudyn', 'Dynamics dU', 'm/s2', (/ ('', i=1, 6) /))
913  TYPE(ctrl_out), SAVE :: o_dvdyn = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
914        'dvdyn', 'Dynamics dV', 'm/s2', (/ ('', i=1, 6) /))
915  TYPE(ctrl_out), SAVE :: o_dtcon = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
916        'dtcon', 'Convection dT', 'K/s', (/ ('', i=1, 6) /))
917  TYPE(ctrl_out), SAVE :: o_ducon = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
918        'ducon', 'Convection du', 'm/s2', (/ ('', i=1, 6) /))
919  TYPE(ctrl_out), SAVE :: o_dvcon = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
920        'dvcon', 'Convection dv', 'm/s2', (/ ('', i=1, 6) /))
921  TYPE(ctrl_out), SAVE :: o_dqcon = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
922        'dqcon', 'Convection dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
923  TYPE(ctrl_out), SAVE :: o_dtwak = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
924        'dtwak', 'Wake dT', 'K/s', (/ ('', i=1, 6) /))
925  TYPE(ctrl_out), SAVE :: o_dqwak = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
926        'dqwak', 'Wake dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
927  TYPE(ctrl_out), SAVE :: o_wake_h = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
928        'wake_h', 'wake_h', '-', (/ ('', i=1, 6) /))
929  TYPE(ctrl_out), SAVE :: o_wake_s = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
930        'wake_s', 'wake_s', '-', (/ ('', i=1, 6) /))
931  TYPE(ctrl_out), SAVE :: o_wake_deltat = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
932        'wake_deltat', 'wake_deltat', ' ', (/ ('', i=1, 6) /))
933  TYPE(ctrl_out), SAVE :: o_wake_deltaq = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
934        'wake_deltaq', 'wake_deltaq', ' ', (/ ('', i=1, 6) /))
935  TYPE(ctrl_out), SAVE :: o_wake_omg = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
936        'wake_omg', 'wake_omg', ' ', (/ ('', i=1, 6) /))
937  TYPE(ctrl_out), SAVE :: o_wdtrainA = ctrl_out((/ 4, 1, 10,  4,  1, 10 /), &
938        'wdtrainA', 'precipitation from AA', '-', (/ ('', i=1, 6) /))
939  TYPE(ctrl_out), SAVE :: o_wdtrainM = ctrl_out((/ 4, 1, 10,  4,  1, 10 /), &
940        'wdtrainM', 'precipitation from mixture', '-', (/ ('', i=1, 6) /))
941  TYPE(ctrl_out), SAVE :: o_Vprecip = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
942        'Vprecip', 'precipitation vertical profile', '-', (/ ('', i=1, 6) /))
943  TYPE(ctrl_out), SAVE :: o_ftd = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
944        'ftd', 'tend temp due aux descentes precip', '-', (/ ('', i=1, 6) /))
945  TYPE(ctrl_out), SAVE :: o_fqd = ctrl_out((/ 4, 5, 10, 10, 10, 10 /), &
946        'fqd', 'tend vap eau due aux descentes precip', '-', (/ ('', i=1, 6) /))
947  TYPE(ctrl_out), SAVE :: o_dtlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
948        'dtlsc', 'Condensation dT', 'K/s', (/ ('', i=1, 6) /))
949  TYPE(ctrl_out), SAVE :: o_dtlschr = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
950        'dtlschr', 'Large-scale condensational heating rate', 'K/s', (/ ('', i=1, 6) /))
951  TYPE(ctrl_out), SAVE :: o_dqlsc = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
952        'dqlsc', 'Condensation dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
953  TYPE(ctrl_out), SAVE :: o_beta_prec = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
954        'beta_prec', 'LS Conversion rate to prec', '(kg/kg)/s', (/ ('', i=1, 6) /))
955  TYPE(ctrl_out), SAVE :: o_dtvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
956        'dtvdf', 'Boundary-layer dT', 'K/s', (/ ('', i=1, 6) /))
957  TYPE(ctrl_out), SAVE :: o_dtdis = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
958        'dtdis', 'TKE dissipation dT', 'K/s', (/ ('', i=1, 6) /))
959  TYPE(ctrl_out), SAVE :: o_dqvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
960        'dqvdf', 'Boundary-layer dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
961  TYPE(ctrl_out), SAVE :: o_dteva = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
962        'dteva', 'Reevaporation dT', 'K/s', (/ ('', i=1, 6) /))
963  TYPE(ctrl_out), SAVE :: o_dqeva = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
964        'dqeva', 'Reevaporation dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
965
966!!!!!!!!!!!!!!!! Specifique thermiques
967  TYPE(ctrl_out), SAVE :: o_dqlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
968        'dqlscth', 'dQ therm.', '(kg/kg)/s', (/ ('', i=1, 6) /))
969  TYPE(ctrl_out), SAVE :: o_dqlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
970        'dqlscst', 'dQ strat.', '(kg/kg)/s', (/ ('', i=1, 6) /))
971  TYPE(ctrl_out), SAVE :: o_dtlscth = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
972        'dtlscth', 'dQ therm.', 'K/s', (/ ('', i=1, 6) /))
973  TYPE(ctrl_out), SAVE :: o_dtlscst = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
974        'dtlscst', 'dQ strat.', 'K/s', (/ ('', i=1, 6) /))
975  TYPE(ctrl_out), SAVE :: o_plulth = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
976        'plulth', 'Rainfall therm.', 'K/s', (/ ('', i=1, 6) /))
977  TYPE(ctrl_out), SAVE :: o_plulst = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
978        'plulst', 'Rainfall strat.', 'K/s', (/ ('', i=1, 6) /))
979  TYPE(ctrl_out), SAVE :: o_lmaxth = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
980        'lmaxth', "Upper level thermals", "", (/ ('', i=1, 6) /))
981  TYPE(ctrl_out), SAVE :: o_ptconvth = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
982        'ptconvth', 'POINTS CONVECTIFS therm.', ' ', (/ ('', i=1, 6) /))
983!!!!!!!!!!!!!!!!!!!!!!!!
984  TYPE(ctrl_out), SAVE :: o_ptconv = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
985        'ptconv', 'POINTS CONVECTIFS', ' ', (/ ('', i=1, 6) /))
986  TYPE(ctrl_out), SAVE :: o_ratqs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
987        'ratqs', 'RATQS', ' ', (/ ('', i=1, 6) /))
988  TYPE(ctrl_out), SAVE :: o_dtthe = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
989        'dtthe', 'Thermal dT', 'K/s', (/ ('', i=1, 6) /))
990  TYPE(ctrl_out), SAVE :: o_f_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
991        'f_th', 'Thermal plume mass flux', 'kg/(m2*s)', (/ ('', i=1, 6) /))
992  TYPE(ctrl_out), SAVE :: o_e_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
993        'e_th', 'Thermal plume entrainment', 'K/s', (/ ('', i=1, 6) /))
994  TYPE(ctrl_out), SAVE :: o_w_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
995        'w_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 6) /))
996  TYPE(ctrl_out), SAVE :: o_lambda_th = ctrl_out((/ 10, 10, 10, 10, 10, 10 /), &
997        'lambda_th', 'Thermal plume vertical velocity', 'm/s', (/ ('', i=1, 6) /))
998  TYPE(ctrl_out), SAVE :: o_ftime_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
999        'ftime_th', 'Fraction of time Shallow convection occurs', ' ', (/ ('', i=1, 6) /))
1000  TYPE(ctrl_out), SAVE :: o_q_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1001        'q_th', 'Thermal plume total humidity', 'kg/kg', (/ ('', i=1, 6) /))
1002  TYPE(ctrl_out), SAVE :: o_a_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1003        'a_th', "Thermal plume fraction", "", (/ ('', i=1, 6) /))
1004  TYPE(ctrl_out), SAVE :: o_d_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1005        'd_th', 'Thermal plume detrainment', 'K/s', (/ ('', i=1, 6) /))
1006  TYPE(ctrl_out), SAVE :: o_f0_th = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1007        'f0_th', 'Thermal closure mass flux', 'K/s', (/ ('', i=1, 6) /))
1008  TYPE(ctrl_out), SAVE :: o_zmax_th = ctrl_out((/ 4,  4,  4,  5, 10, 10 /), &
1009        'zmax_th', 'Thermal plume height', 'K/s', (/ ('', i=1, 6) /))
1010  TYPE(ctrl_out), SAVE :: o_dqthe = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1011        'dqthe', 'Thermal dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
1012  TYPE(ctrl_out), SAVE :: o_dtajs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1013        'dtajs', 'Dry adjust. dT', 'K/s', (/ ('', i=1, 6) /))
1014  TYPE(ctrl_out), SAVE :: o_dqajs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1015        'dqajs', 'Dry adjust. dQ', '(kg/kg)/s', (/ ('', i=1, 6) /))
1016  TYPE(ctrl_out), SAVE :: o_dtswr = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1017        'dtswr', 'SW radiation dT', 'K/s', (/ ('', i=1, 6) /))
1018  TYPE(ctrl_out), SAVE :: o_dtsw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1019        'dtsw0', 'CS SW radiation dT', 'K/s', (/ ('', i=1, 6) /))
1020  TYPE(ctrl_out), SAVE :: o_dtlwr = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1021        'dtlwr', 'LW radiation dT', 'K/s', (/ ('', i=1, 6) /))
1022  TYPE(ctrl_out), SAVE :: o_dtlw0 = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1023        'dtlw0', 'CS LW radiation dT', 'K/s', (/ ('', i=1, 6) /))
1024  TYPE(ctrl_out), SAVE :: o_dtec = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1025        'dtec', 'Cinetic dissip dT', 'K/s', (/ ('', i=1, 6) /))
1026  TYPE(ctrl_out), SAVE :: o_duvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1027        'duvdf', 'Boundary-layer dU', 'm/s2', (/ ('', i=1, 6) /))
1028  TYPE(ctrl_out), SAVE :: o_dvvdf = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1029        'dvvdf', 'Boundary-layer dV', 'm/s2', (/ ('', i=1, 6) /))
1030  TYPE(ctrl_out), SAVE :: o_duoro = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1031        'duoro', 'Orography dU', 'm/s2', (/ ('', i=1, 6) /))
1032  TYPE(ctrl_out), SAVE :: o_dvoro = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1033        'dvoro', 'Orography dV', 'm/s2', (/ ('', i=1, 6) /))
1034  TYPE(ctrl_out), SAVE :: o_dulif = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1035        'dulif', 'Orography dU', 'm/s2', (/ ('', i=1, 6) /))
1036  TYPE(ctrl_out), SAVE :: o_dvlif = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1037        'dvlif', 'Orography dV', 'm/s2', (/ ('', i=1, 6) /))
1038  TYPE(ctrl_out), SAVE :: o_duhin = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1039        'duhin', 'Hines GWD dU', 'm/s2', (/ ('', i=1, 6) /))
1040  TYPE(ctrl_out), SAVE :: o_dvhin = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1041        'dvhin', 'Hines GWD dV', 'm/s2', (/ ('', i=1, 6) /))
1042  TYPE(ctrl_out), SAVE :: o_dtoro = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1043        'dtoro', 'Orography dT', 'K/s', (/ ('', i=1, 6) /))
1044  TYPE(ctrl_out), SAVE :: o_dtlif = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1045        'dtlif', 'Orography dT', 'K/s', (/ ('', i=1, 6) /))
1046  TYPE(ctrl_out), SAVE :: o_dthin = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1047        'dthin', 'Hines GWD dT', 'K/s', (/ ('', i=1, 6) /))
1048
1049  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac(:)
1050  TYPE(ctrl_out), SAVE, ALLOCATABLE :: o_trac_cum(:)
1051  TYPE(ctrl_out), SAVE :: o_rsu = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1052        'rsu', 'SW upward radiation', 'W m-2', (/ ('', i=1, 6) /))
1053  TYPE(ctrl_out), SAVE :: o_rsd = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1054        'rsd', 'SW downward radiation', 'W m-2', (/ ('', i=1, 6) /))
1055  TYPE(ctrl_out), SAVE :: o_rlu = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1056        'rlu', 'LW upward radiation', 'W m-2', (/ ('', i=1, 6) /))
1057  TYPE(ctrl_out), SAVE :: o_rld = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1058        'rld', 'LW downward radiation', 'W m-2', (/ ('', i=1, 6) /))
1059  TYPE(ctrl_out), SAVE :: o_rsucs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1060        'rsucs', 'SW CS upward radiation', 'W m-2', (/ ('', i=1, 6) /))
1061  TYPE(ctrl_out), SAVE :: o_rsdcs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1062        'rsdcs', 'SW CS downward radiation', 'W m-2', (/ ('', i=1, 6) /))
1063  TYPE(ctrl_out), SAVE :: o_rlucs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1064        'rlucs', 'LW CS upward radiation', 'W m-2', (/ ('', i=1, 6) /))
1065  TYPE(ctrl_out), SAVE :: o_rldcs = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1066        'rldcs', 'LW CS downward radiation', 'W m-2', (/ ('', i=1, 6) /))
1067  TYPE(ctrl_out), SAVE :: o_tnt = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1068        'tnt', 'Tendency of air temperature', 'K s-1', (/ ('', i=1, 6) /))
1069  TYPE(ctrl_out), SAVE :: o_tntc = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1070        'tntc', 'Tendency of air temperature due to Moist Convection', 'K s-1', (/ ('', i=1, 6) /))
1071  TYPE(ctrl_out), SAVE :: o_tntr = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1072        'tntr', 'Air temperature tendency due to Radiative heating', 'K s-1', (/ ('', i=1, 6) /))
1073  TYPE(ctrl_out), SAVE :: o_tntscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10 /),                  &
1074        'tntscpbl', 'Air temperature tendency due to St cloud and precipitation and BL mixing', &
1075      'K s-1', (/ ('', i=1, 6) /))
1076  TYPE(ctrl_out), SAVE :: o_tnhus = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1077        'tnhus', 'Tendency of specific humidity', 's-1', (/ ('', i=1, 6) /))
1078  TYPE(ctrl_out), SAVE :: o_tnhusc = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1079        'tnhusc', 'Tendency of specific humidity due to convection', 's-1', (/ ('', i=1, 6) /))
1080  TYPE(ctrl_out), SAVE :: o_tnhusscpbl = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1081        'tnhusscpbl', 'Tendency of Specific humidity due to ST cl, precip and BL mixing', 's-1', (/ ('', i=1, 6) /))
1082  TYPE(ctrl_out), SAVE :: o_evu = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1083        'evu', 'Eddy viscosity coefficient for Momentum Variables', 'm2 s-1', (/ ('', i=1, 6) /))
1084  TYPE(ctrl_out), SAVE :: o_h2o = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1085        'h2o', 'Mass Fraction of Water', '1', (/ ('', i=1, 6) /))
1086  TYPE(ctrl_out), SAVE :: o_mcd = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1087        'mcd', 'Downdraft COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 6) /))
1088  TYPE(ctrl_out), SAVE :: o_dmc = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1089        'dmc', 'Deep COnvective Mass Flux', 'kg/(m2*s)', (/ ('', i=1, 6) /))
1090  TYPE(ctrl_out), SAVE :: o_ref_liq = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1091        'ref_liq', 'Effective radius of convective cloud liquid water particle', 'm', (/ ('', i=1, 6) /))
1092  TYPE(ctrl_out), SAVE :: o_ref_ice = ctrl_out((/ 4, 10, 10, 10, 10, 10 /), &
1093        'ref_ice', 'Effective radius of startiform cloud ice particle', 'm', (/ ('', i=1, 6) /))
1094  TYPE(ctrl_out), SAVE :: o_rsut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1095        'rsut4co2', 'TOA Out SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1096  TYPE(ctrl_out), SAVE :: o_rlut4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1097        'rlut4co2', 'TOA Out LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1098  TYPE(ctrl_out), SAVE :: o_rsutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1099        'rsutcs4co2', 'TOA Out CS SW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1100  TYPE(ctrl_out), SAVE :: o_rlutcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1101        'rlutcs4co2', 'TOA Out CS LW in 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1102  TYPE(ctrl_out), SAVE :: o_rsu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1103        'rsu4co2', 'Upwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1104  TYPE(ctrl_out), SAVE :: o_rlu4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1105        'rlu4co2', 'Upwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1106  TYPE(ctrl_out), SAVE :: o_rsucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1107        'rsucs4co2', 'Upwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1108  TYPE(ctrl_out), SAVE :: o_rlucs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1109        'rlucs4co2', 'Upwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1110  TYPE(ctrl_out), SAVE :: o_rsd4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1111        'rsd4co2', 'Downwelling SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1112  TYPE(ctrl_out), SAVE :: o_rld4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1113        'rld4co2', 'Downwelling LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1114  TYPE(ctrl_out), SAVE :: o_rsdcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1115        'rsdcs4co2', 'Downwelling CS SW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1116  TYPE(ctrl_out), SAVE :: o_rldcs4co2 = ctrl_out((/ 5, 10, 10, 10, 10, 10 /), &
1117        'rldcs4co2', 'Downwelling CS LW 4xCO2 atmosphere', 'W/m2', (/ ('', i=1, 6) /))
1118
1119END MODULE phys_output_ctrlout_mod
Note: See TracBrowser for help on using the repository browser.