1 | ! |
---|
2 | ! $Id: wake.F 1861 2013-09-10 09:55:26Z fairhead $ |
---|
3 | ! |
---|
4 | Subroutine WAKE (p,ph,pi,dtime,sigd_con |
---|
5 | : ,te0,qe0,omgb |
---|
6 | : ,dtdwn,dqdwn,amdwn,amup,dta,dqa |
---|
7 | : ,wdtPBL,wdqPBL,udtPBL,udqPBL |
---|
8 | o ,deltatw,deltaqw,dth,hw,sigmaw,wape,fip,gfl |
---|
9 | o ,dtls,dqls |
---|
10 | o ,ktopw,omgbdth,dp_omgb,wdens |
---|
11 | o ,tu,qu |
---|
12 | o ,dtKE,dqKE |
---|
13 | o ,dtPBL,dqPBL |
---|
14 | o ,omg,dp_deltomg,spread |
---|
15 | o ,Cstar,d_deltat_gw |
---|
16 | o ,d_deltatw2,d_deltaqw2) |
---|
17 | |
---|
18 | |
---|
19 | *************************************************************** |
---|
20 | * * |
---|
21 | * WAKE * |
---|
22 | * retour a un Pupper fixe * |
---|
23 | * * |
---|
24 | * written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
25 | * modified by : ROEHRIG Romain 01/29/2007 * |
---|
26 | *************************************************************** |
---|
27 | c |
---|
28 | use dimphy |
---|
29 | IMPLICIT none |
---|
30 | c============================================================================ |
---|
31 | C |
---|
32 | C |
---|
33 | C But : Decrire le comportement des poches froides apparaissant dans les |
---|
34 | C grands systemes convectifs, et fournir l'energie disponible pour |
---|
35 | C le declenchement de nouvelles colonnes convectives. |
---|
36 | C |
---|
37 | C Variables d'etat : deltatw : ecart de temperature wake-undisturbed area |
---|
38 | C deltaqw : ecart d'humidite wake-undisturbed area |
---|
39 | C sigmaw : fraction d'aire occupee par la poche. |
---|
40 | C |
---|
41 | C Variable de sortie : |
---|
42 | c |
---|
43 | c wape : WAke Potential Energy |
---|
44 | c fip : Front Incident Power (W/m2) - ALP |
---|
45 | c gfl : Gust Front Length per unit area (m-1) |
---|
46 | C dtls : large scale temperature tendency due to wake |
---|
47 | C dqls : large scale humidity tendency due to wake |
---|
48 | C hw : hauteur de la poche |
---|
49 | C dp_omgb : vertical gradient of large scale omega |
---|
50 | C wdens : densite de poches |
---|
51 | C omgbdth: flux of Delta_Theta transported by LS omega |
---|
52 | C dtKE : differential heating (wake - unpertubed) |
---|
53 | C dqKE : differential moistening (wake - unpertubed) |
---|
54 | C omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
55 | C dp_deltomg : vertical gradient of omg (s-1) |
---|
56 | C spread : spreading term in dt_wake and dq_wake |
---|
57 | C deltatw : updated temperature difference (T_w-T_u). |
---|
58 | C deltaqw : updated humidity difference (q_w-q_u). |
---|
59 | C sigmaw : updated wake fractional area. |
---|
60 | C d_deltat_gw : delta T tendency due to GW |
---|
61 | c |
---|
62 | C Variables d'entree : |
---|
63 | c |
---|
64 | c aire : aire de la maille |
---|
65 | c te0 : temperature dans l'environnement (K) |
---|
66 | C qe0 : humidite dans l'environnement (kg/kg) |
---|
67 | C omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
68 | C dtdwn: source de chaleur due aux descentes (K/s) |
---|
69 | C dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
70 | C dta : source de chaleur due courants satures et detrain (K/s) |
---|
71 | C dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
72 | C amdwn: flux de masse total des descentes, par unite de |
---|
73 | C surface de la maille (kg/m2/s) |
---|
74 | C amup : flux de masse total des ascendances, par unite de |
---|
75 | C surface de la maille (kg/m2/s) |
---|
76 | C p : pressions aux milieux des couches (Pa) |
---|
77 | C ph : pressions aux interfaces (Pa) |
---|
78 | C pi : (p/p_0)**kapa (adim) |
---|
79 | C dtime: increment temporel (s) |
---|
80 | c |
---|
81 | C Variables internes : |
---|
82 | c |
---|
83 | c rhow : masse volumique de la poche froide |
---|
84 | C rho : environment density at P levels |
---|
85 | C rhoh : environment density at Ph levels |
---|
86 | C te : environment temperature | may change within |
---|
87 | C qe : environment humidity | sub-time-stepping |
---|
88 | C the : environment potential temperature |
---|
89 | C thu : potential temperature in undisturbed area |
---|
90 | C tu : temperature in undisturbed area |
---|
91 | C qu : humidity in undisturbed area |
---|
92 | C dp_omgb: vertical gradient og LS omega |
---|
93 | C omgbw : wake average vertical omega |
---|
94 | C dp_omgbw: vertical gradient of omgbw |
---|
95 | C omgbdq : flux of Delta_q transported by LS omega |
---|
96 | C dth : potential temperature diff. wake-undist. |
---|
97 | C th1 : first pot. temp. for vertical advection (=thu) |
---|
98 | C th2 : second pot. temp. for vertical advection (=thw) |
---|
99 | C q1 : first humidity for vertical advection |
---|
100 | C q2 : second humidity for vertical advection |
---|
101 | C d_deltatw : terme de redistribution pour deltatw |
---|
102 | C d_deltaqw : terme de redistribution pour deltaqw |
---|
103 | C deltatw0 : deltatw initial |
---|
104 | C deltaqw0 : deltaqw initial |
---|
105 | C hw0 : hw initial |
---|
106 | C sigmaw0: sigmaw initial |
---|
107 | C amflux : horizontal mass flux through wake boundary |
---|
108 | C wdens_ref: initial number of wakes per unit area (3D) or per |
---|
109 | C unit length (2D), at the beginning of each time step |
---|
110 | C Tgw : 1 sur la période de onde de gravité |
---|
111 | c Cgw : vitesse de propagation de onde de gravité |
---|
112 | c LL : distance entre 2 poches |
---|
113 | |
---|
114 | c------------------------------------------------------------------------- |
---|
115 | c Déclaration de variables |
---|
116 | c------------------------------------------------------------------------- |
---|
117 | |
---|
118 | include "dimensions.h" |
---|
119 | include "YOMCST.h" |
---|
120 | include "cvthermo.h" |
---|
121 | include "iniprint.h" |
---|
122 | |
---|
123 | c Arguments en entree |
---|
124 | c-------------------- |
---|
125 | |
---|
126 | REAL, dimension(klon,klev) :: p, pi |
---|
127 | REAL, dimension(klon,klev+1) :: ph, omgb |
---|
128 | REAL dtime |
---|
129 | REAL, dimension(klon,klev) :: te0,qe0 |
---|
130 | REAL, dimension(klon,klev) :: dtdwn, dqdwn |
---|
131 | REAL, dimension(klon,klev) :: wdtPBL,wdqPBL |
---|
132 | REAL, dimension(klon,klev) :: udtPBL,udqPBL |
---|
133 | REAL, dimension(klon,klev) :: amdwn, amup |
---|
134 | REAL, dimension(klon,klev) :: dta, dqa |
---|
135 | REAL, dimension(klon) :: sigd_con |
---|
136 | |
---|
137 | c Sorties |
---|
138 | c-------- |
---|
139 | |
---|
140 | REAL, dimension(klon,klev) :: deltatw, deltaqw, dth |
---|
141 | REAL, dimension(klon,klev) :: tu, qu |
---|
142 | REAL, dimension(klon,klev) :: dtls, dqls |
---|
143 | REAL, dimension(klon,klev) :: dtKE, dqKE |
---|
144 | REAL, dimension(klon,klev) :: dtPBL, dqPBL |
---|
145 | REAL, dimension(klon,klev) :: spread |
---|
146 | REAL, dimension(klon,klev) :: d_deltatgw |
---|
147 | REAL, dimension(klon,klev) :: d_deltatw2, d_deltaqw2 |
---|
148 | REAL, dimension(klon,klev+1) :: omgbdth, omg |
---|
149 | REAL, dimension(klon,klev) :: dp_omgb, dp_deltomg |
---|
150 | REAL, dimension(klon,klev) :: d_deltat_gw |
---|
151 | REAL, dimension(klon) :: hw, sigmaw, wape, fip, gfl, Cstar |
---|
152 | REAL, dimension(klon) :: wdens |
---|
153 | INTEGER, dimension(klon) :: ktopw |
---|
154 | |
---|
155 | c Variables internes |
---|
156 | c------------------- |
---|
157 | |
---|
158 | c Variables à fixer |
---|
159 | REAL ALON |
---|
160 | REAL coefgw |
---|
161 | REAL :: wdens_ref |
---|
162 | REAL stark |
---|
163 | REAL alpk |
---|
164 | REAL delta_t_min |
---|
165 | INTEGER nsub |
---|
166 | REAL dtimesub |
---|
167 | REAL sigmad, hwmin,wapecut |
---|
168 | REAL :: sigmaw_max |
---|
169 | REAL :: dens_rate |
---|
170 | REAL wdens0 |
---|
171 | cIM 080208 |
---|
172 | LOGICAL, dimension(klon) :: gwake |
---|
173 | |
---|
174 | c Variables de sauvegarde |
---|
175 | REAL, dimension(klon,klev) :: deltatw0 |
---|
176 | REAL, dimension(klon,klev) :: deltaqw0 |
---|
177 | REAL, dimension(klon,klev) :: te, qe |
---|
178 | REAL, dimension(klon) :: sigmaw0, sigmaw1 |
---|
179 | |
---|
180 | c Variables pour les GW |
---|
181 | REAL, DIMENSION(klon) :: LL |
---|
182 | REAL, dimension(klon,klev) :: N2 |
---|
183 | REAL, dimension(klon,klev) :: Cgw |
---|
184 | REAL, dimension(klon,klev) :: Tgw |
---|
185 | |
---|
186 | c Variables liées au calcul de hw |
---|
187 | REAL, DIMENSION(klon) :: ptop_provis, ptop, ptop_new |
---|
188 | REAL, DIMENSION(klon) :: sum_dth |
---|
189 | REAL, DIMENSION(klon) :: dthmin |
---|
190 | REAL, DIMENSION(klon) :: z, dz, hw0 |
---|
191 | INTEGER, DIMENSION(klon) :: ktop, kupper |
---|
192 | |
---|
193 | c Sub-timestep tendencies and related variables |
---|
194 | REAL d_deltatw(klon,klev),d_deltaqw(klon,klev) |
---|
195 | REAL d_te(klon,klev),d_qe(klon,klev) |
---|
196 | REAL d_sigmaw(klon),alpha(klon) |
---|
197 | REAL q0_min(klon),q1_min(klon) |
---|
198 | LOGICAL wk_adv(klon), OK_qx_qw(klon) |
---|
199 | REAL epsilon |
---|
200 | DATA epsilon/1.e-15/ |
---|
201 | |
---|
202 | c Autres variables internes |
---|
203 | INTEGER isubstep, k, i |
---|
204 | |
---|
205 | REAL, DIMENSION(klon) :: sum_thu, sum_tu, sum_qu,sum_thvu |
---|
206 | REAL, DIMENSION(klon) :: sum_dq, sum_rho |
---|
207 | REAL, DIMENSION(klon) :: sum_dtdwn, sum_dqdwn |
---|
208 | REAL, DIMENSION(klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
209 | REAL, DIMENSION(klon) :: av_dth, av_dq, av_rho |
---|
210 | REAL, DIMENSION(klon) :: av_dtdwn, av_dqdwn |
---|
211 | |
---|
212 | REAL, DIMENSION(klon,klev) :: rho, rhow |
---|
213 | REAL, DIMENSION(klon,klev+1) :: rhoh |
---|
214 | REAL, DIMENSION(klon,klev) :: rhow_moyen |
---|
215 | REAL, DIMENSION(klon,klev) :: zh |
---|
216 | REAL, DIMENSION(klon,klev+1) :: zhh |
---|
217 | REAL, DIMENSION(klon,klev) :: epaisseur1, epaisseur2 |
---|
218 | |
---|
219 | REAL, DIMENSION(klon,klev) :: the, thu |
---|
220 | |
---|
221 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
222 | |
---|
223 | REAL, DIMENSION(klon,klev+1) :: omgbw |
---|
224 | REAL, DIMENSION(klon) :: pupper |
---|
225 | REAL, DIMENSION(klon) :: omgtop |
---|
226 | REAL, DIMENSION(klon,klev) :: dp_omgbw |
---|
227 | REAL, DIMENSION(klon) :: ztop, dztop |
---|
228 | REAL, DIMENSION(klon,klev) :: alpha_up |
---|
229 | |
---|
230 | REAL, dimension(klon) :: RRe1, RRe2 |
---|
231 | REAL :: RRd1, RRd2 |
---|
232 | REAL, DIMENSION(klon,klev) :: Th1, Th2, q1, q2 |
---|
233 | REAL, DIMENSION(klon,klev) :: D_Th1, D_Th2, D_dth |
---|
234 | REAL, DIMENSION(klon,klev) :: D_q1, D_q2, D_dq |
---|
235 | REAL, DIMENSION(klon,klev) :: omgbdq |
---|
236 | |
---|
237 | REAL, dimension(klon) :: ff, gg |
---|
238 | REAL, dimension(klon) :: wape2, Cstar2, heff |
---|
239 | |
---|
240 | REAL, DIMENSION(klon,klev) :: Crep |
---|
241 | REAL Crep_upper, Crep_sol |
---|
242 | |
---|
243 | REAL, DIMENSION(klon,klev) :: ppi |
---|
244 | |
---|
245 | ccc nrlmd |
---|
246 | real, dimension(klon) :: death_rate,nat_rate |
---|
247 | real, dimension(klon,klev) :: entr |
---|
248 | real, dimension(klon,klev) :: detr |
---|
249 | |
---|
250 | C------------------------------------------------------------------------- |
---|
251 | c Initialisations |
---|
252 | c------------------------------------------------------------------------- |
---|
253 | |
---|
254 | c print*, 'wake initialisations' |
---|
255 | |
---|
256 | c Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
257 | c------------------------------------------------------------------------- |
---|
258 | |
---|
259 | DATA wapecut,sigmad, hwmin /5.,.02,10./ |
---|
260 | ccc nrlmd |
---|
261 | DATA sigmaw_max /0.4/ |
---|
262 | DATA dens_rate /0.1/ |
---|
263 | ccc |
---|
264 | C Longueur de maille (en m) |
---|
265 | c------------------------------------------------------------------------- |
---|
266 | |
---|
267 | c ALON = 3.e5 |
---|
268 | ALON = 1.e6 |
---|
269 | |
---|
270 | |
---|
271 | C Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
272 | c |
---|
273 | c coefgw : Coefficient pour les ondes de gravité |
---|
274 | c stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
275 | c wdens : Densité de poche froide par maille |
---|
276 | c------------------------------------------------------------------------- |
---|
277 | |
---|
278 | ccc nrlmd coefgw=10 |
---|
279 | c coefgw=1 |
---|
280 | c wdens0 = 1.0/(alon**2) |
---|
281 | ccc nrlmd wdens = 1.0/(alon**2) |
---|
282 | ccc nrlmd stark = 0.50 |
---|
283 | cCRtest |
---|
284 | ccc nrlmd alpk=0.1 |
---|
285 | c alpk = 1.0 |
---|
286 | c alpk = 0.5 |
---|
287 | c alpk = 0.05 |
---|
288 | c |
---|
289 | stark = 0.33 |
---|
290 | Alpk = 0.25 |
---|
291 | wdens_ref = 8.e-12 |
---|
292 | coefgw = 4. |
---|
293 | Crep_upper=0.9 |
---|
294 | Crep_sol=1.0 |
---|
295 | |
---|
296 | ccc nrlmd Lecture du fichier wake_param.data |
---|
297 | OPEN(99,file='wake_param.data',status='old', |
---|
298 | $ form='formatted',err=9999) |
---|
299 | READ(99,*,end=9998) stark |
---|
300 | READ(99,*,end=9998) Alpk |
---|
301 | READ(99,*,end=9998) wdens_ref |
---|
302 | READ(99,*,end=9998) coefgw |
---|
303 | 9998 Continue |
---|
304 | CLOSE(99) |
---|
305 | 9999 Continue |
---|
306 | c |
---|
307 | c Initialisation de toutes des densites a wdens_ref. |
---|
308 | c Les densites peuvent evoluer si les poches debordent |
---|
309 | c (voir au tout debut de la boucle sur les substeps) |
---|
310 | wdens = wdens_ref |
---|
311 | c |
---|
312 | c print*,'stark',stark |
---|
313 | c print*,'alpk',alpk |
---|
314 | c print*,'wdens',wdens |
---|
315 | c print*,'coefgw',coefgw |
---|
316 | ccc |
---|
317 | C Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
318 | c------------------------------------------------------------------------- |
---|
319 | |
---|
320 | delta_t_min = 0.2 |
---|
321 | |
---|
322 | C 1. - Save initial values and initialize tendencies |
---|
323 | C -------------------------------------------------- |
---|
324 | |
---|
325 | DO k=1,klev |
---|
326 | DO i=1, klon |
---|
327 | ppi(i,k)=pi(i,k) |
---|
328 | deltatw0(i,k) = deltatw(i,k) |
---|
329 | deltaqw0(i,k)= deltaqw(i,k) |
---|
330 | te(i,k) = te0(i,k) |
---|
331 | qe(i,k) = qe0(i,k) |
---|
332 | dtls(i,k) = 0. |
---|
333 | dqls(i,k) = 0. |
---|
334 | d_deltat_gw(i,k)=0. |
---|
335 | d_te(i,k) = 0. |
---|
336 | d_qe(i,k) = 0. |
---|
337 | d_deltatw(i,k) = 0. |
---|
338 | d_deltaqw(i,k) = 0. |
---|
339 | !IM 060508 beg |
---|
340 | d_deltatw2(i,k)=0. |
---|
341 | d_deltaqw2(i,k)=0. |
---|
342 | !IM 060508 end |
---|
343 | ENDDO |
---|
344 | ENDDO |
---|
345 | c sigmaw1=sigmaw |
---|
346 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
347 | c print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
348 | c ENDIF |
---|
349 | DO i=1, klon |
---|
350 | cc sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
351 | sigmaw(i) = amax1(sigmaw(i),sigmad) |
---|
352 | sigmaw(i) = amin1(sigmaw(i),0.99) |
---|
353 | sigmaw0(i) = sigmaw(i) |
---|
354 | wape(i) = 0. |
---|
355 | wape2(i) = 0. |
---|
356 | d_sigmaw(i) = 0. |
---|
357 | ktopw(i) = 0 |
---|
358 | ENDDO |
---|
359 | C |
---|
360 | C |
---|
361 | C 2. - Prognostic part |
---|
362 | C -------------------- |
---|
363 | C |
---|
364 | C |
---|
365 | C 2.1 - Undisturbed area and Wake integrals |
---|
366 | C --------------------------------------------------------- |
---|
367 | |
---|
368 | DO i=1, klon |
---|
369 | z(i) = 0. |
---|
370 | ktop(i)=0 |
---|
371 | kupper(i) = 0 |
---|
372 | sum_thu(i) = 0. |
---|
373 | sum_tu(i) = 0. |
---|
374 | sum_qu(i) = 0. |
---|
375 | sum_thvu(i) = 0. |
---|
376 | sum_dth(i) = 0. |
---|
377 | sum_dq(i) = 0. |
---|
378 | sum_rho(i) = 0. |
---|
379 | sum_dtdwn(i) = 0. |
---|
380 | sum_dqdwn(i) = 0. |
---|
381 | |
---|
382 | av_thu(i) = 0. |
---|
383 | av_tu(i) =0. |
---|
384 | av_qu(i) =0. |
---|
385 | av_thvu(i) = 0. |
---|
386 | av_dth(i) = 0. |
---|
387 | av_dq(i) = 0. |
---|
388 | av_rho(i) =0. |
---|
389 | av_dtdwn(i) =0. |
---|
390 | av_dqdwn(i) = 0. |
---|
391 | ENDDO |
---|
392 | c |
---|
393 | c Distance between wakes |
---|
394 | DO i = 1,klon |
---|
395 | LL(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
396 | ENDDO |
---|
397 | C Potential temperatures and humidity |
---|
398 | c---------------------------------------------------------- |
---|
399 | DO k =1,klev |
---|
400 | DO i=1, klon |
---|
401 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
402 | rho(i,k) = p(i,k)/(rd*te(i,k)) |
---|
403 | ! write(*,*)'wake 2',rho(i,k) |
---|
404 | IF(k .eq. 1) THEN |
---|
405 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
406 | rhoh(i,k) = ph(i,k)/(rd*te(i,k)) |
---|
407 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
408 | zhh(i,k)=0 |
---|
409 | ELSE |
---|
410 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
411 | rhoh(i,k) = ph(i,k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
412 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
413 | zhh(i,k)=(ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
414 | ENDIF |
---|
415 | ! write(*,*)'wake 7',ppi(i,k) |
---|
416 | the(i,k) = te(i,k)/ppi(i,k) |
---|
417 | thu(i,k) = (te(i,k) - deltatw(i,k)*sigmaw(i))/ppi(i,k) |
---|
418 | tu(i,k) = te(i,k) - deltatw(i,k)*sigmaw(i) |
---|
419 | qu(i,k) = qe(i,k) - deltaqw(i,k)*sigmaw(i) |
---|
420 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
421 | rhow(i,k) = p(i,k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
422 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
423 | ENDDO |
---|
424 | ENDDO |
---|
425 | |
---|
426 | DO k = 1, klev-1 |
---|
427 | DO i=1, klon |
---|
428 | IF(k.eq.1) THEN |
---|
429 | N2(i,k)=0 |
---|
430 | ELSE |
---|
431 | N2(i,k)=amax1(0.,-RG**2/the(i,k)*rho(i,k)*(the(i,k+1)- |
---|
432 | $ the(i,k-1))/(p(i,k+1)-p(i,k-1))) |
---|
433 | ENDIF |
---|
434 | ZH(i,k)=(zhh(i,k)+zhh(i,k+1))/2 |
---|
435 | |
---|
436 | Cgw(i,k)=sqrt(N2(i,k))*ZH(i,k) |
---|
437 | Tgw(i,k)=coefgw*Cgw(i,k)/LL(i) |
---|
438 | ENDDO |
---|
439 | ENDDO |
---|
440 | |
---|
441 | DO i=1, klon |
---|
442 | N2(i,klev)=0 |
---|
443 | ZH(i,klev)=0 |
---|
444 | Cgw(i,klev)=0 |
---|
445 | Tgw(i,klev)=0 |
---|
446 | ENDDO |
---|
447 | |
---|
448 | c Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
449 | c----------------------------------------------------------------- |
---|
450 | |
---|
451 | DO k=1,klev |
---|
452 | DO i=1, klon |
---|
453 | epaisseur1(i,k)=0. |
---|
454 | epaisseur2(i,k)=0. |
---|
455 | ENDDO |
---|
456 | ENDDO |
---|
457 | |
---|
458 | DO i=1, klon |
---|
459 | epaisseur1(i,1)= -(ph(i,2)-ph(i,1))/(rho(i,1)*rg)+1. |
---|
460 | epaisseur2(i,1)= -(ph(i,2)-ph(i,1))/(rho(i,1)*rg)+1. |
---|
461 | rhow_moyen(i,1) = rhow(i,1) |
---|
462 | ENDDO |
---|
463 | |
---|
464 | DO k = 2, klev |
---|
465 | DO i=1, klon |
---|
466 | epaisseur1(i,k)= -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) +1. |
---|
467 | epaisseur2(i,k)=epaisseur2(i,k-1)+epaisseur1(i,k) |
---|
468 | rhow_moyen(i,k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+ |
---|
469 | $ rhow(i,k)*epaisseur1(i,k))/epaisseur2(i,k) |
---|
470 | ENDDO |
---|
471 | ENDDO |
---|
472 | |
---|
473 | C |
---|
474 | C Choose an integration bound well above wake top |
---|
475 | c----------------------------------------------------------------- |
---|
476 | c |
---|
477 | C Pupper = 50000. ! melting level |
---|
478 | c Pupper = 60000. |
---|
479 | c Pupper = 80000. ! essais pour case_e |
---|
480 | DO i = 1,klon |
---|
481 | Pupper(i) = 0.6*ph(i,1) |
---|
482 | Pupper(i) = max(Pupper(i), 45000.) |
---|
483 | ccc Pupper(i) = 60000. |
---|
484 | ENDDO |
---|
485 | |
---|
486 | C |
---|
487 | C Determine Wake top pressure (Ptop) from buoyancy integral |
---|
488 | C -------------------------------------------------------- |
---|
489 | c |
---|
490 | c-1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
491 | |
---|
492 | DO i=1,klon |
---|
493 | ptop_provis(i)=ph(i,1) |
---|
494 | ENDDO |
---|
495 | DO k= 2,klev |
---|
496 | DO i=1,klon |
---|
497 | c |
---|
498 | cIM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
499 | c |
---|
500 | IF (dth(i,k) .GT. -delta_t_min .and. |
---|
501 | $ dth(i,k-1).LT. -delta_t_min .and. |
---|
502 | $ ptop_provis(i).EQ. ph(i,1)) THEN |
---|
503 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
504 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) / |
---|
505 | $ (dth(i,k) - dth(i,k-1)) |
---|
506 | ENDIF |
---|
507 | ENDDO |
---|
508 | ENDDO |
---|
509 | |
---|
510 | c-2/ dth integral |
---|
511 | |
---|
512 | DO i=1,klon |
---|
513 | sum_dth(i) = 0. |
---|
514 | dthmin(i) = -delta_t_min |
---|
515 | z(i) = 0. |
---|
516 | ENDDO |
---|
517 | |
---|
518 | DO k = 1,klev |
---|
519 | DO i=1,klon |
---|
520 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-Ph(i,k))/(rho(i,k)*rg) |
---|
521 | IF (dz(i) .gt. 0) THEN |
---|
522 | z(i) = z(i)+dz(i) |
---|
523 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
524 | dthmin(i) = amin1(dthmin(i),dth(i,k)) |
---|
525 | ENDIF |
---|
526 | ENDDO |
---|
527 | ENDDO |
---|
528 | |
---|
529 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
530 | |
---|
531 | DO i=1,klon |
---|
532 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i),-0.5) |
---|
533 | hw0(i) = amax1(hwmin,hw0(i)) |
---|
534 | ENDDO |
---|
535 | |
---|
536 | c-4/ now, get Ptop |
---|
537 | |
---|
538 | DO i=1,klon |
---|
539 | z(i) = 0. |
---|
540 | ptop(i) = ph(i,1) |
---|
541 | ENDDO |
---|
542 | |
---|
543 | DO k = 1,klev |
---|
544 | DO i=1,klon |
---|
545 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg),hw0(i)-z(i)) |
---|
546 | IF (dz(i) .gt. 0) THEN |
---|
547 | z(i) = z(i)+dz(i) |
---|
548 | ptop(i) = ph(i,k)-rho(i,k)*rg*dz(i) |
---|
549 | ENDIF |
---|
550 | ENDDO |
---|
551 | ENDDO |
---|
552 | |
---|
553 | |
---|
554 | C-5/ Determination de ktop et kupper |
---|
555 | |
---|
556 | DO k=klev,1,-1 |
---|
557 | DO i=1,klon |
---|
558 | IF (ph(i,k+1) .lt. ptop(i)) ktop(i)=k |
---|
559 | IF (ph(i,k+1) .lt. pupper(i)) kupper(i)=k |
---|
560 | ENDDO |
---|
561 | ENDDO |
---|
562 | |
---|
563 | c On evite kupper = 1 et kupper = klev |
---|
564 | DO i=1,klon |
---|
565 | kupper(i) = max(kupper(i),2) |
---|
566 | kupper(i) = min(kupper(i),klev-1) |
---|
567 | ENDDO |
---|
568 | |
---|
569 | |
---|
570 | c-6/ Correct ktop and ptop |
---|
571 | |
---|
572 | DO i = 1,klon |
---|
573 | ptop_new(i)=ptop(i) |
---|
574 | ENDDO |
---|
575 | DO k= klev,2,-1 |
---|
576 | DO i=1,klon |
---|
577 | IF (k .LE. ktop(i) .and. |
---|
578 | $ ptop_new(i) .EQ. ptop(i) .and. |
---|
579 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
580 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
581 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
582 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) / |
---|
583 | $ (dth(i,k) - dth(i,k-1)) |
---|
584 | ENDIF |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | |
---|
588 | DO i=1,klon |
---|
589 | ptop(i) = ptop_new(i) |
---|
590 | ENDDO |
---|
591 | |
---|
592 | DO k=klev,1,-1 |
---|
593 | DO i=1,klon |
---|
594 | IF (ph(i,k+1) .lt. ptop(i)) ktop(i)=k |
---|
595 | ENDDO |
---|
596 | ENDDO |
---|
597 | c |
---|
598 | c-5/ Set deltatw & deltaqw to 0 above kupper |
---|
599 | c |
---|
600 | DO k = 1,klev |
---|
601 | DO i=1,klon |
---|
602 | IF (k.GE. kupper(i)) THEN |
---|
603 | deltatw(i,k) = 0. |
---|
604 | deltaqw(i,k) = 0. |
---|
605 | ENDIF |
---|
606 | ENDDO |
---|
607 | ENDDO |
---|
608 | c |
---|
609 | C |
---|
610 | C Vertical gradient of LS omega |
---|
611 | C |
---|
612 | DO k = 1,klev |
---|
613 | DO i=1,klon |
---|
614 | IF (k.LE. kupper(i)) THEN |
---|
615 | dp_omgb(i,k) = (omgb(i,k+1) - omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
616 | ENDIF |
---|
617 | ENDDO |
---|
618 | ENDDO |
---|
619 | C |
---|
620 | C Integrals (and wake top level number) |
---|
621 | C -------------------------------------- |
---|
622 | C |
---|
623 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
624 | |
---|
625 | DO i=1,klon |
---|
626 | z(i) = 1. |
---|
627 | dz(i) = 1. |
---|
628 | sum_thvu(i) = thu(i,1)*(1.+eps*qu(i,1))*dz(i) |
---|
629 | sum_dth(i) = 0. |
---|
630 | ENDDO |
---|
631 | |
---|
632 | DO k = 1,klev |
---|
633 | DO i=1,klon |
---|
634 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
635 | IF (dz(i) .GT. 0) THEN |
---|
636 | z(i) = z(i)+dz(i) |
---|
637 | sum_thu(i) = sum_thu(i) + thu(i,k)*dz(i) |
---|
638 | sum_tu(i) = sum_tu(i) + tu(i,k)*dz(i) |
---|
639 | sum_qu(i) = sum_qu(i) + qu(i,k)*dz(i) |
---|
640 | sum_thvu(i) = sum_thvu(i) + thu(i,k)*(1.+eps*qu(i,k))*dz(i) |
---|
641 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
642 | sum_dq(i) = sum_dq(i) + deltaqw(i,k)*dz(i) |
---|
643 | sum_rho(i) = sum_rho(i) + rhow(i,k)*dz(i) |
---|
644 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i,k)*dz(i) |
---|
645 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i,k)*dz(i) |
---|
646 | ENDIF |
---|
647 | ENDDO |
---|
648 | ENDDO |
---|
649 | c |
---|
650 | DO i=1,klon |
---|
651 | hw0(i) = z(i) |
---|
652 | ENDDO |
---|
653 | c |
---|
654 | C |
---|
655 | C 2.1 - WAPE and mean forcing computation |
---|
656 | C --------------------------------------- |
---|
657 | C |
---|
658 | C --------------------------------------- |
---|
659 | C |
---|
660 | C Means |
---|
661 | |
---|
662 | DO i=1,klon |
---|
663 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
664 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
665 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
666 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
667 | c av_thve = sum_thve/hw0 |
---|
668 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
669 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
670 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
671 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
672 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
673 | |
---|
674 | wape(i) = - rg*hw0(i)*(av_dth(i) |
---|
675 | $ + eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)* |
---|
676 | $ av_dq(i) ))/av_thvu(i) |
---|
677 | ENDDO |
---|
678 | C |
---|
679 | C 2.2 Prognostic variable update |
---|
680 | C ------------------------------ |
---|
681 | C |
---|
682 | C Filter out bad wakes |
---|
683 | |
---|
684 | DO k = 1,klev |
---|
685 | DO i=1,klon |
---|
686 | IF ( wape(i) .LT. 0.) THEN |
---|
687 | deltatw(i,k) = 0. |
---|
688 | deltaqw(i,k) = 0. |
---|
689 | dth(i,k) = 0. |
---|
690 | ENDIF |
---|
691 | ENDDO |
---|
692 | ENDDO |
---|
693 | c |
---|
694 | DO i=1,klon |
---|
695 | IF ( wape(i) .LT. 0.) THEN |
---|
696 | wape(i) = 0. |
---|
697 | Cstar(i) = 0. |
---|
698 | hw(i) = hwmin |
---|
699 | sigmaw(i) = amax1(sigmad,sigd_con(i)) |
---|
700 | fip(i) = 0. |
---|
701 | gwake(i) = .FALSE. |
---|
702 | ELSE |
---|
703 | Cstar(i) = stark*sqrt(2.*wape(i)) |
---|
704 | gwake(i) = .TRUE. |
---|
705 | ENDIF |
---|
706 | ENDDO |
---|
707 | |
---|
708 | c |
---|
709 | c Check qx and qw positivity |
---|
710 | c -------------------------- |
---|
711 | DO i = 1,klon |
---|
712 | q0_min(i)=min( (qe(i,1)-sigmaw(i)*deltaqw(i,1)), |
---|
713 | $ (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1)) ) |
---|
714 | ENDDO |
---|
715 | DO k = 2,klev |
---|
716 | DO i = 1,klon |
---|
717 | q1_min(i)=min( (qe(i,k)-sigmaw(i)*deltaqw(i,k)), |
---|
718 | $ (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k)) ) |
---|
719 | IF (q1_min(i).le.q0_min(i)) THEN |
---|
720 | q0_min(i)=q1_min(i) |
---|
721 | ENDIF |
---|
722 | ENDDO |
---|
723 | ENDDO |
---|
724 | c |
---|
725 | DO i = 1,klon |
---|
726 | OK_qx_qw(i) = q0_min(i) .GE. 0. |
---|
727 | alpha(i) = 1. |
---|
728 | ENDDO |
---|
729 | c |
---|
730 | CC ----------------------------------------------------------------- |
---|
731 | C Sub-time-stepping |
---|
732 | C ----------------- |
---|
733 | C |
---|
734 | nsub=10 |
---|
735 | dtimesub=dtime/nsub |
---|
736 | c |
---|
737 | c------------------------------------------------------------ |
---|
738 | DO isubstep = 1,nsub |
---|
739 | c------------------------------------------------------------ |
---|
740 | c |
---|
741 | c wk_adv is the logical flag enabling wake evolution in the time advance loop |
---|
742 | DO i = 1,klon |
---|
743 | wk_adv(i) = OK_qx_qw(i) .AND. alpha(i) .GE. 1. |
---|
744 | ENDDO |
---|
745 | c |
---|
746 | ccc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement négatif de ktop à kupper -------- |
---|
747 | ccc On calcule pour cela une densité wdens0 pour laquelle on aurait un entrainement nul --- |
---|
748 | DO i=1,klon |
---|
749 | cc print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
750 | cc $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
751 | IF (wk_adv(i) .AND. cstar(i).GT.0.01) THEN |
---|
752 | omg(i,kupper(i)+1) = - Rg*amdwn(i,kupper(i)+1)/sigmaw(i) |
---|
753 | $ + Rg*amup(i,kupper(i)+1)/(1.-sigmaw(i)) |
---|
754 | wdens0 = ( sigmaw(i) / (4.*3.14) ) * |
---|
755 | $ ( (1.-sigmaw(i)) * omg(i,kupper(i)+1) / |
---|
756 | $ ( (ph(i,1)-pupper(i)) * cstar(i) ) ) **(2) |
---|
757 | IF ( wdens(i) .LE. wdens0*1.1 ) THEN |
---|
758 | wdens(i) = wdens0 |
---|
759 | ENDIF |
---|
760 | cc print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
761 | cc $ ,ph(i,1)-pupper(i)', |
---|
762 | cc $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
763 | cc $ ,ph(i,1)-pupper(i) |
---|
764 | ENDIF |
---|
765 | ENDDO |
---|
766 | |
---|
767 | ccc nrlmd |
---|
768 | |
---|
769 | DO i=1,klon |
---|
770 | IF (wk_adv(i)) THEN |
---|
771 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
772 | sigmaw(i)=amin1(sigmaw(i),sigmaw_max) |
---|
773 | ENDIF |
---|
774 | ENDDO |
---|
775 | DO i=1,klon |
---|
776 | IF (wk_adv(i)) THEN |
---|
777 | ccc nrlmd Introduction du taux de mortalité des poches et test sur sigmaw_max=0.4 |
---|
778 | ccc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
779 | IF (sigmaw(i).ge.sigmaw_max) THEN |
---|
780 | death_rate(i)=gfl(i)*Cstar(i)/sigmaw(i) |
---|
781 | ELSE |
---|
782 | death_rate(i)=0. |
---|
783 | END IF |
---|
784 | d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
785 | $ - death_rate(i)*sigmaw(i)*dtimesub |
---|
786 | c $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
787 | cc print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
788 | cc $ death_rate(i),ktop(i),kupper(i)', |
---|
789 | cc $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
790 | cc $ death_rate(i),ktop(i),kupper(i) |
---|
791 | |
---|
792 | c sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
793 | c sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
794 | c wdens = wdens0/(10.*sigmaw) |
---|
795 | c sigmaw =max(sigmaw,sigd_con) |
---|
796 | c sigmaw =max(sigmaw,sigmad) |
---|
797 | ENDIF |
---|
798 | ENDDO |
---|
799 | C |
---|
800 | C |
---|
801 | c calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
802 | cIM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
803 | cIM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
804 | cIM 060208 au niveau k=1..? |
---|
805 | DO k= 1,klev |
---|
806 | DO i = 1,klon |
---|
807 | if (wk_adv(i)) THEN !!! nrlmd |
---|
808 | dp_deltomg(i,k)=0. |
---|
809 | end if |
---|
810 | ENDDO |
---|
811 | ENDDO |
---|
812 | DO k= 1,klev+1 |
---|
813 | DO i = 1,klon |
---|
814 | if (wk_adv(i)) THEN !!! nrlmd |
---|
815 | omg(i,k)=0. |
---|
816 | end if |
---|
817 | ENDDO |
---|
818 | ENDDO |
---|
819 | c |
---|
820 | DO i=1,klon |
---|
821 | IF (wk_adv(i)) THEN |
---|
822 | z(i)= 0. |
---|
823 | omg(i,1) = 0. |
---|
824 | dp_deltomg(i,1) = -(gfl(i)*Cstar(i))/(sigmaw(i) * (1-sigmaw(i))) |
---|
825 | ENDIF |
---|
826 | ENDDO |
---|
827 | c |
---|
828 | DO k= 2,klev |
---|
829 | DO i = 1,klon |
---|
830 | IF( wk_adv(i) .AND. k .LE. ktop(i)) THEN |
---|
831 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
832 | z(i) = z(i)+dz(i) |
---|
833 | dp_deltomg(i,k)= dp_deltomg(i,1) |
---|
834 | omg(i,k)= dp_deltomg(i,1)*z(i) |
---|
835 | ENDIF |
---|
836 | ENDDO |
---|
837 | ENDDO |
---|
838 | c |
---|
839 | DO i = 1,klon |
---|
840 | IF (wk_adv(i)) THEN |
---|
841 | dztop(i)=-(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
842 | ztop(i) = z(i)+dztop(i) |
---|
843 | omgtop(i)=dp_deltomg(i,1)*ztop(i) |
---|
844 | ENDIF |
---|
845 | ENDDO |
---|
846 | c |
---|
847 | c ----------------- |
---|
848 | c From m/s to Pa/s |
---|
849 | c ----------------- |
---|
850 | c |
---|
851 | DO i=1,klon |
---|
852 | IF (wk_adv(i)) THEN |
---|
853 | omgtop(i) = -rho(i,ktop(i))*rg*omgtop(i) |
---|
854 | dp_deltomg(i,1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
855 | ENDIF |
---|
856 | ENDDO |
---|
857 | c |
---|
858 | DO k= 1,klev |
---|
859 | DO i = 1,klon |
---|
860 | IF( wk_adv(i) .AND. k .LE. ktop(i)) THEN |
---|
861 | omg(i,k) = - rho(i,k)*rg*omg(i,k) |
---|
862 | dp_deltomg(i,k) = dp_deltomg(i,1) |
---|
863 | ENDIF |
---|
864 | ENDDO |
---|
865 | ENDDO |
---|
866 | c |
---|
867 | c raccordement lineaire de omg de ptop a pupper |
---|
868 | |
---|
869 | DO i=1,klon |
---|
870 | IF ( wk_adv(i) .AND. kupper(i) .GT. ktop(i)) THEN |
---|
871 | omg(i,kupper(i)+1) = - Rg*amdwn(i,kupper(i)+1)/sigmaw(i) |
---|
872 | $ + Rg*amup(i,kupper(i)+1)/(1.-sigmaw(i)) |
---|
873 | dp_deltomg(i,kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ |
---|
874 | $ (ptop(i)-pupper(i)) |
---|
875 | ENDIF |
---|
876 | ENDDO |
---|
877 | c |
---|
878 | cc DO i=1,klon |
---|
879 | cc print*,'Pente entre 0 et kupper (référence)' |
---|
880 | cc $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
881 | cc print*,'Pente entre ktop et kupper' |
---|
882 | cc $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
883 | cc ENDDO |
---|
884 | cc |
---|
885 | DO k= 1,klev |
---|
886 | DO i = 1,klon |
---|
887 | IF( wk_adv(i) .AND. k .GT. ktop(i) .AND. k .LE. kupper(i)) THEN |
---|
888 | dp_deltomg(i,k) = dp_deltomg(i,kupper(i)) |
---|
889 | omg(i,k) = omgtop(i)+(ph(i,k)-ptop(i))*dp_deltomg(i,kupper(i)) |
---|
890 | ENDIF |
---|
891 | ENDDO |
---|
892 | ENDDO |
---|
893 | ccc nrlmd |
---|
894 | cc DO i=1,klon |
---|
895 | cc print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
896 | cc END DO |
---|
897 | ccc |
---|
898 | c |
---|
899 | c |
---|
900 | c-- Compute wake average vertical velocity omgbw |
---|
901 | c |
---|
902 | c |
---|
903 | DO k = 1,klev+1 |
---|
904 | DO i=1,klon |
---|
905 | IF ( wk_adv(i)) THEN |
---|
906 | omgbw(i,k) = omgb(i,k)+(1.-sigmaw(i))*omg(i,k) |
---|
907 | ENDIF |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | c-- and its vertical gradient dp_omgbw |
---|
911 | c |
---|
912 | DO k = 1,klev |
---|
913 | DO i=1,klon |
---|
914 | IF ( wk_adv(i)) THEN |
---|
915 | dp_omgbw(i,k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
916 | ENDIF |
---|
917 | ENDDO |
---|
918 | ENDDO |
---|
919 | C |
---|
920 | c-- Upstream coefficients for omgb velocity |
---|
921 | c-- (alpha_up(k) is the coefficient of the value at level k) |
---|
922 | c-- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
923 | DO k = 1,klev |
---|
924 | DO i=1,klon |
---|
925 | IF ( wk_adv(i)) THEN |
---|
926 | alpha_up(i,k) = 0. |
---|
927 | IF (omgb(i,k) .GT. 0.) alpha_up(i,k) = 1. |
---|
928 | ENDIF |
---|
929 | ENDDO |
---|
930 | ENDDO |
---|
931 | |
---|
932 | c Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
933 | |
---|
934 | DO i=1,klon |
---|
935 | IF ( wk_adv(i)) THEN |
---|
936 | RRe1(i) = 1.-sigmaw(i) |
---|
937 | RRe2(i) = sigmaw(i) |
---|
938 | ENDIF |
---|
939 | ENDDO |
---|
940 | RRd1 = -1. |
---|
941 | RRd2 = 1. |
---|
942 | c |
---|
943 | c-- Get [Th1,Th2], dth and [q1,q2] |
---|
944 | c |
---|
945 | DO k= 1,klev |
---|
946 | DO i = 1,klon |
---|
947 | IF( wk_adv(i) .AND. k .LE. kupper(i)+1) THEN |
---|
948 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
949 | Th1(i,k) = the(i,k) - sigmaw(i) *dth(i,k) ! undisturbed area |
---|
950 | Th2(i,k) = the(i,k) + (1.-sigmaw(i))*dth(i,k) ! wake |
---|
951 | q1(i,k) = qe(i,k) - sigmaw(i) *deltaqw(i,k) ! undisturbed area |
---|
952 | q2(i,k) = qe(i,k) + (1.-sigmaw(i))*deltaqw(i,k) ! wake |
---|
953 | ENDIF |
---|
954 | ENDDO |
---|
955 | ENDDO |
---|
956 | |
---|
957 | DO i=1,klon |
---|
958 | if (wk_adv(i)) then !!! nrlmd |
---|
959 | D_Th1(i,1) = 0. |
---|
960 | D_Th2(i,1) = 0. |
---|
961 | D_dth(i,1) = 0. |
---|
962 | D_q1(i,1) = 0. |
---|
963 | D_q2(i,1) = 0. |
---|
964 | D_dq(i,1) = 0. |
---|
965 | end if |
---|
966 | ENDDO |
---|
967 | |
---|
968 | DO k= 2,klev |
---|
969 | DO i = 1,klon |
---|
970 | IF( wk_adv(i) .AND. k .LE. kupper(i)+1) THEN |
---|
971 | D_Th1(i,k) = Th1(i,k-1)-Th1(i,k) |
---|
972 | D_Th2(i,k) = Th2(i,k-1)-Th2(i,k) |
---|
973 | D_dth(i,k) = dth(i,k-1)-dth(i,k) |
---|
974 | D_q1(i,k) = q1(i,k-1)-q1(i,k) |
---|
975 | D_q2(i,k) = q2(i,k-1)-q2(i,k) |
---|
976 | D_dq(i,k) = deltaqw(i,k-1)-deltaqw(i,k) |
---|
977 | ENDIF |
---|
978 | ENDDO |
---|
979 | ENDDO |
---|
980 | |
---|
981 | DO i=1,klon |
---|
982 | IF( wk_adv(i)) THEN |
---|
983 | omgbdth(i,1) = 0. |
---|
984 | omgbdq(i,1) = 0. |
---|
985 | ENDIF |
---|
986 | ENDDO |
---|
987 | |
---|
988 | DO k= 2,klev |
---|
989 | DO i = 1,klon |
---|
990 | IF( wk_adv(i) .AND. k .LE. kupper(i)+1) THEN ! loop on interfaces |
---|
991 | omgbdth(i,k) = omgb(i,k)*( dth(i,k-1) - dth(i,k)) |
---|
992 | omgbdq(i,k) = omgb(i,k)*(deltaqw(i,k-1) - deltaqw(i,k)) |
---|
993 | ENDIF |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | c |
---|
997 | c----------------------------------------------------------------- |
---|
998 | DO k= 1,klev |
---|
999 | DO i = 1,klon |
---|
1000 | IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1001 | c----------------------------------------------------------------- |
---|
1002 | c |
---|
1003 | c Compute redistribution (advective) term |
---|
1004 | c |
---|
1005 | d_deltatw(i,k) = |
---|
1006 | $ dtimesub/(Ph(i,k)-Ph(i,k+1))*( |
---|
1007 | $ RRd1*omg(i,k )*sigmaw(i) *D_Th1(i,k) |
---|
1008 | $ -RRd2*omg(i,k+1)*(1.-sigmaw(i))*D_Th2(i,k+1) |
---|
1009 | $ -(1.-alpha_up(i,k))*omgbdth(i,k) - alpha_up(i,k+1)* |
---|
1010 | $ omgbdth(i,k+1))*ppi(i,k) |
---|
1011 | c print*,'d_deltatw=',d_deltatw(i,k) |
---|
1012 | c |
---|
1013 | d_deltaqw(i,k) = |
---|
1014 | $ dtimesub/(Ph(i,k)-Ph(i,k+1))*( |
---|
1015 | $ RRd1*omg(i,k )*sigmaw(i) *D_q1(i,k) |
---|
1016 | $ -RRd2*omg(i,k+1)*(1.-sigmaw(i))*D_q2(i,k+1) |
---|
1017 | $ -(1.-alpha_up(i,k))*omgbdq(i,k) - alpha_up(i,k+1)* |
---|
1018 | $ omgbdq(i,k+1)) |
---|
1019 | c print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
1020 | c |
---|
1021 | c and increment large scale tendencies |
---|
1022 | c |
---|
1023 | |
---|
1024 | c |
---|
1025 | C |
---|
1026 | CC ----------------------------------------------------------------- |
---|
1027 | d_te(i,k) = dtimesub*( |
---|
1028 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_Th1(i,k) |
---|
1029 | $ -RRe2(i)*omg(i,k+1)*(1.-sigmaw(i))*D_Th2(i,k+1) ) |
---|
1030 | $ /(Ph(i,k)-Ph(i,k+1)) |
---|
1031 | ccc nrlmd $ -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
1032 | $ -sigmaw(i)*(1.-sigmaw(i))*dth(i,k) |
---|
1033 | $ *(omg(i,k)-omg(i,k+1))/(Ph(i,k)-Ph(i,k+1)) |
---|
1034 | ccc |
---|
1035 | $ )*ppi(i,k) |
---|
1036 | c |
---|
1037 | d_qe(i,k) = dtimesub*( |
---|
1038 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_q1(i,k) |
---|
1039 | $ -RRe2(i)*omg(i,k+1)*(1.-sigmaw(i))*D_q2(i,k+1) ) |
---|
1040 | $ /(Ph(i,k)-Ph(i,k+1)) |
---|
1041 | ccc nrlmd $ -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
1042 | $ -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k) |
---|
1043 | $ *(omg(i,k)-omg(i,k+1))/(Ph(i,k)-Ph(i,k+1)) |
---|
1044 | ccc |
---|
1045 | $ ) |
---|
1046 | ccc nrlmd |
---|
1047 | ELSE IF(wk_adv(i) .AND. k .EQ. kupper(i)) THEN |
---|
1048 | d_te(i,k) = dtimesub*( |
---|
1049 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_Th1(i,k) |
---|
1050 | $ /(Ph(i,k)-Ph(i,k+1))) |
---|
1051 | $ )*ppi(i,k) |
---|
1052 | |
---|
1053 | d_qe(i,k) = dtimesub*( |
---|
1054 | $ ( RRe1(i)*omg(i,k )*sigmaw(i) *D_q1(i,k) |
---|
1055 | $ /(Ph(i,k)-Ph(i,k+1))) |
---|
1056 | $ ) |
---|
1057 | |
---|
1058 | ENDIF |
---|
1059 | ccc |
---|
1060 | ENDDO |
---|
1061 | ENDDO |
---|
1062 | c------------------------------------------------------------------ |
---|
1063 | C |
---|
1064 | C Increment state variables |
---|
1065 | |
---|
1066 | DO k= 1,klev |
---|
1067 | DO i = 1,klon |
---|
1068 | ccc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
1069 | IF( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1070 | ccc |
---|
1071 | |
---|
1072 | |
---|
1073 | c |
---|
1074 | c Coefficient de répartition |
---|
1075 | |
---|
1076 | Crep(i,k)=Crep_sol*(ph(i,kupper(i))-ph(i,k))/(ph(i,kupper(i)) |
---|
1077 | $ -ph(i,1)) |
---|
1078 | Crep(i,k)=Crep(i,k)+Crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)- |
---|
1079 | $ ph(i,kupper(i))) |
---|
1080 | |
---|
1081 | |
---|
1082 | c Reintroduce compensating subsidence term. |
---|
1083 | |
---|
1084 | c dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
1085 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
1086 | c . /(1-sigmaw) |
---|
1087 | c dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
1088 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
1089 | c . /(1-sigmaw) |
---|
1090 | c |
---|
1091 | c dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
1092 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
1093 | c . /(1-sigmaw) |
---|
1094 | c dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
1095 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
1096 | c . /(1-sigmaw) |
---|
1097 | |
---|
1098 | dtKE(i,k)=(dtdwn(i,k)/sigmaw(i) - dta(i,k)/(1.-sigmaw(i))) |
---|
1099 | dqKE(i,k)=(dqdwn(i,k)/sigmaw(i) - dqa(i,k)/(1.-sigmaw(i))) |
---|
1100 | c print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
1101 | c |
---|
1102 | dtPBL(i,k)=(wdtPBL(i,k)/sigmaw(i) - udtPBL(i,k)/(1.-sigmaw(i))) |
---|
1103 | dqPBL(i,k)=(wdqPBL(i,k)/sigmaw(i) - udqPBL(i,k)/(1.-sigmaw(i))) |
---|
1104 | c print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
1105 | c |
---|
1106 | ccc nrlmd Prise en compte du taux de mortalité |
---|
1107 | ccc Définitions de entr, detr |
---|
1108 | detr(i,k)=0. |
---|
1109 | |
---|
1110 | entr(i,k)=detr(i,k)+gfl(i)*cstar(i)+ |
---|
1111 | $ sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i,k) |
---|
1112 | |
---|
1113 | spread(i,k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
1114 | ccc spread(i,k) = (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
1115 | ccc $ sigmaw(i) |
---|
1116 | |
---|
1117 | |
---|
1118 | c ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU Jingmei |
---|
1119 | |
---|
1120 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
1121 | ! & Tgw(i,k),deltatw(i,k) |
---|
1122 | d_deltat_gw(i,k)=d_deltat_gw(i,k)-Tgw(i,k)*deltatw(i,k)* |
---|
1123 | $ dtimesub |
---|
1124 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
1125 | ff(i)=d_deltatw(i,k)/dtimesub |
---|
1126 | |
---|
1127 | c Sans GW |
---|
1128 | c |
---|
1129 | c deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
1130 | c |
---|
1131 | c GW formule 1 |
---|
1132 | c |
---|
1133 | c deltatw(k) = deltatw(k)+dtimesub* |
---|
1134 | c $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
1135 | c |
---|
1136 | c GW formule 2 |
---|
1137 | |
---|
1138 | IF (dtimesub*Tgw(i,k).lt.1.e-10) THEN |
---|
1139 | d_deltatw(i,k) = dtimesub* |
---|
1140 | $ (ff(i)+dtKE(i,k)+dtPBL(i,k) |
---|
1141 | ccc $ -spread(i,k)*deltatw(i,k) |
---|
1142 | $ - entr(i,k)*deltatw(i,k)/sigmaw(i) |
---|
1143 | $ - (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k) |
---|
1144 | $ / (1.-sigmaw(i)) |
---|
1145 | ccc |
---|
1146 | $ -Tgw(i,k)*deltatw(i,k)) |
---|
1147 | ELSE |
---|
1148 | d_deltatw(i,k) = 1/Tgw(i,k)*(1-exp(-dtimesub* |
---|
1149 | $ Tgw(i,k)))* |
---|
1150 | $ (ff(i)+dtKE(i,k)+dtPBL(i,k) |
---|
1151 | ccc $ -spread(i,k)*deltatw(i,k) |
---|
1152 | $ - entr(i,k)*deltatw(i,k)/sigmaw(i) |
---|
1153 | $ - (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k) |
---|
1154 | $ / (1.-sigmaw(i)) |
---|
1155 | ccc |
---|
1156 | $ -Tgw(i,k)*deltatw(i,k)) |
---|
1157 | ENDIF |
---|
1158 | |
---|
1159 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
1160 | |
---|
1161 | gg(i)=d_deltaqw(i,k)/dtimesub |
---|
1162 | |
---|
1163 | d_deltaqw(i,k) = dtimesub*(gg(i)+ dqKE(i,k)+dqPBL(i,k) |
---|
1164 | ccc $ -spread(i,k)*deltaqw(i,k)) |
---|
1165 | $ - entr(i,k)*deltaqw(i,k)/sigmaw(i) |
---|
1166 | $ - (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k) |
---|
1167 | $ /(1.-sigmaw(i))) |
---|
1168 | ccc |
---|
1169 | |
---|
1170 | ccc nrlmd |
---|
1171 | ccc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1172 | ccc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1173 | ccc |
---|
1174 | ENDIF |
---|
1175 | ENDDO |
---|
1176 | ENDDO |
---|
1177 | |
---|
1178 | C |
---|
1179 | C Scale tendencies so that water vapour remains positive in w and x. |
---|
1180 | C |
---|
1181 | call wake_vec_modulation(klon,klev,wk_adv,epsilon,qe,d_qe,deltaqw, |
---|
1182 | $ d_deltaqw,sigmaw,d_sigmaw,alpha) |
---|
1183 | c |
---|
1184 | ccc nrlmd |
---|
1185 | cc print*,'alpha' |
---|
1186 | cc do i=1,klon |
---|
1187 | cc print*,alpha(i) |
---|
1188 | cc end do |
---|
1189 | ccc |
---|
1190 | DO k = 1,klev |
---|
1191 | DO i = 1,klon |
---|
1192 | IF( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1193 | d_te(i,k)=alpha(i)*d_te(i,k) |
---|
1194 | d_qe(i,k)=alpha(i)*d_qe(i,k) |
---|
1195 | d_deltatw(i,k)=alpha(i)*d_deltatw(i,k) |
---|
1196 | d_deltaqw(i,k)=alpha(i)*d_deltaqw(i,k) |
---|
1197 | d_deltat_gw(i,k)=alpha(i)*d_deltat_gw(i,k) |
---|
1198 | ENDIF |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | DO i = 1,klon |
---|
1202 | IF( wk_adv(i)) THEN |
---|
1203 | d_sigmaw(i)=alpha(i)*d_sigmaw(i) |
---|
1204 | ENDIF |
---|
1205 | ENDDO |
---|
1206 | |
---|
1207 | C Update large scale variables and wake variables |
---|
1208 | cIM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
1209 | cIM 060208 DO k = 1,kupper(i) |
---|
1210 | DO k= 1,klev |
---|
1211 | DO i = 1,klon |
---|
1212 | IF( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1213 | dtls(i,k)=dtls(i,k)+d_te(i,k) |
---|
1214 | dqls(i,k)=dqls(i,k)+d_qe(i,k) |
---|
1215 | ccc nrlmd |
---|
1216 | d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
1217 | d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
1218 | ccc |
---|
1219 | ENDIF |
---|
1220 | ENDDO |
---|
1221 | ENDDO |
---|
1222 | DO k= 1,klev |
---|
1223 | DO i = 1,klon |
---|
1224 | IF( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1225 | te(i,k) = te0(i,k) + dtls(i,k) |
---|
1226 | qe(i,k) = qe0(i,k) + dqls(i,k) |
---|
1227 | the(i,k) = te(i,k)/ppi(i,k) |
---|
1228 | deltatw(i,k) = deltatw(i,k)+d_deltatw(i,k) |
---|
1229 | deltaqw(i,k) = deltaqw(i,k)+d_deltaqw(i,k) |
---|
1230 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
1231 | cc print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
1232 | cc $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
1233 | ENDIF |
---|
1234 | ENDDO |
---|
1235 | ENDDO |
---|
1236 | DO i = 1,klon |
---|
1237 | IF( wk_adv(i)) THEN |
---|
1238 | sigmaw(i) = sigmaw(i)+d_sigmaw(i) |
---|
1239 | ENDIF |
---|
1240 | ENDDO |
---|
1241 | c |
---|
1242 | C |
---|
1243 | c Determine Ptop from buoyancy integral |
---|
1244 | c --------------------------------------- |
---|
1245 | c |
---|
1246 | c- 1/ Pressure of the level where dth changes sign. |
---|
1247 | c |
---|
1248 | DO i=1,klon |
---|
1249 | IF ( wk_adv(i)) THEN |
---|
1250 | Ptop_provis(i)=ph(i,1) |
---|
1251 | ENDIF |
---|
1252 | ENDDO |
---|
1253 | c |
---|
1254 | DO k= 2,klev |
---|
1255 | DO i=1,klon |
---|
1256 | IF ( wk_adv(i) .AND. |
---|
1257 | $ Ptop_provis(i) .EQ. ph(i,1) .AND. |
---|
1258 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
1259 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
1260 | Ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
1261 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) /(dth(i,k) |
---|
1262 | $ - dth(i,k-1)) |
---|
1263 | ENDIF |
---|
1264 | ENDDO |
---|
1265 | ENDDO |
---|
1266 | c |
---|
1267 | c- 2/ dth integral |
---|
1268 | c |
---|
1269 | DO i=1,klon |
---|
1270 | if (wk_adv(i)) then !!! nrlmd |
---|
1271 | sum_dth(i) = 0. |
---|
1272 | dthmin(i) = -delta_t_min |
---|
1273 | z(i) = 0. |
---|
1274 | end if |
---|
1275 | ENDDO |
---|
1276 | |
---|
1277 | DO k = 1,klev |
---|
1278 | DO i=1,klon |
---|
1279 | IF ( wk_adv(i)) THEN |
---|
1280 | dz(i) = -(amax1(ph(i,k+1),Ptop_provis(i))-Ph(i,k))/(rho(i,k)*rg) |
---|
1281 | IF (dz(i) .gt. 0) THEN |
---|
1282 | z(i) = z(i)+dz(i) |
---|
1283 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
1284 | dthmin(i) = amin1(dthmin(i),dth(i,k)) |
---|
1285 | ENDIF |
---|
1286 | ENDIF |
---|
1287 | ENDDO |
---|
1288 | ENDDO |
---|
1289 | c |
---|
1290 | c- 3/ height of triangle with area= sum_dth and base = dthmin |
---|
1291 | |
---|
1292 | DO i=1,klon |
---|
1293 | IF ( wk_adv(i)) THEN |
---|
1294 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i),-0.5) |
---|
1295 | hw(i) = amax1(hwmin,hw(i)) |
---|
1296 | ENDIF |
---|
1297 | ENDDO |
---|
1298 | c |
---|
1299 | c- 4/ now, get Ptop |
---|
1300 | c |
---|
1301 | DO i=1,klon |
---|
1302 | if (wk_adv(i)) then !!! nrlmd |
---|
1303 | ktop(i) = 0 |
---|
1304 | z(i)=0. |
---|
1305 | end if |
---|
1306 | ENDDO |
---|
1307 | c |
---|
1308 | DO k = 1,klev |
---|
1309 | DO i=1,klon |
---|
1310 | IF ( wk_adv(i)) THEN |
---|
1311 | dz(i) = amin1(-(ph(i,k+1)-Ph(i,k))/(rho(i,k)*rg),hw(i)-z(i)) |
---|
1312 | IF (dz(i) .gt. 0) THEN |
---|
1313 | z(i) = z(i)+dz(i) |
---|
1314 | Ptop(i) = Ph(i,k)-rho(i,k)*rg*dz(i) |
---|
1315 | ktop(i) = k |
---|
1316 | ENDIF |
---|
1317 | ENDIF |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | c |
---|
1321 | c 4.5/Correct ktop and ptop |
---|
1322 | c |
---|
1323 | DO i=1,klon |
---|
1324 | IF ( wk_adv(i)) THEN |
---|
1325 | Ptop_new(i)=ptop(i) |
---|
1326 | ENDIF |
---|
1327 | ENDDO |
---|
1328 | c |
---|
1329 | DO k= klev,2,-1 |
---|
1330 | DO i=1,klon |
---|
1331 | cIM v3JYG; IF (k .GE. ktop(i) |
---|
1332 | IF ( wk_adv(i) .AND. |
---|
1333 | $ k .LE. ktop(i) .AND. |
---|
1334 | $ ptop_new(i) .EQ. ptop(i) .AND. |
---|
1335 | $ dth(i,k) .GT. -delta_t_min .and. |
---|
1336 | $ dth(i,k-1).LT. -delta_t_min) THEN |
---|
1337 | Ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) |
---|
1338 | $ - (dth(i,k-1)+delta_t_min)*p(i,k)) /(dth(i,k) |
---|
1339 | $ - dth(i,k-1)) |
---|
1340 | ENDIF |
---|
1341 | ENDDO |
---|
1342 | ENDDO |
---|
1343 | c |
---|
1344 | c |
---|
1345 | DO i=1,klon |
---|
1346 | IF ( wk_adv(i)) THEN |
---|
1347 | ptop(i) = ptop_new(i) |
---|
1348 | ENDIF |
---|
1349 | ENDDO |
---|
1350 | |
---|
1351 | DO k=klev,1,-1 |
---|
1352 | DO i=1,klon |
---|
1353 | if (wk_adv(i)) then !!! nrlmd |
---|
1354 | IF (ph(i,k+1) .LT. ptop(i)) ktop(i)=k |
---|
1355 | end if |
---|
1356 | ENDDO |
---|
1357 | ENDDO |
---|
1358 | c |
---|
1359 | c 5/ Set deltatw & deltaqw to 0 above kupper |
---|
1360 | c |
---|
1361 | DO k = 1,klev |
---|
1362 | DO i=1,klon |
---|
1363 | IF ( wk_adv(i) .AND. k .GE. kupper(i)) THEN |
---|
1364 | deltatw(i,k) = 0. |
---|
1365 | deltaqw(i,k) = 0. |
---|
1366 | ENDIF |
---|
1367 | ENDDO |
---|
1368 | ENDDO |
---|
1369 | c |
---|
1370 | C |
---|
1371 | c-------------Cstar computation--------------------------------- |
---|
1372 | DO i=1, klon |
---|
1373 | if (wk_adv(i)) then !!! nrlmd |
---|
1374 | sum_thu(i) = 0. |
---|
1375 | sum_tu(i) = 0. |
---|
1376 | sum_qu(i) = 0. |
---|
1377 | sum_thvu(i) = 0. |
---|
1378 | sum_dth(i) = 0. |
---|
1379 | sum_dq(i) = 0. |
---|
1380 | sum_rho(i) = 0. |
---|
1381 | sum_dtdwn(i) = 0. |
---|
1382 | sum_dqdwn(i) = 0. |
---|
1383 | |
---|
1384 | av_thu(i) = 0. |
---|
1385 | av_tu(i) =0. |
---|
1386 | av_qu(i) =0. |
---|
1387 | av_thvu(i) = 0. |
---|
1388 | av_dth(i) = 0. |
---|
1389 | av_dq(i) = 0. |
---|
1390 | av_rho(i) =0. |
---|
1391 | av_dtdwn(i) =0. |
---|
1392 | av_dqdwn(i) = 0. |
---|
1393 | end if |
---|
1394 | ENDDO |
---|
1395 | C |
---|
1396 | C Integrals (and wake top level number) |
---|
1397 | C -------------------------------------- |
---|
1398 | C |
---|
1399 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1400 | |
---|
1401 | DO i=1,klon |
---|
1402 | if (wk_adv(i)) then !!! nrlmd |
---|
1403 | z(i) = 1. |
---|
1404 | dz(i) = 1. |
---|
1405 | sum_thvu(i) = thu(i,1)*(1.+eps*qu(i,1))*dz(i) |
---|
1406 | sum_dth(i) = 0. |
---|
1407 | end if |
---|
1408 | ENDDO |
---|
1409 | |
---|
1410 | DO k = 1,klev |
---|
1411 | DO i=1,klon |
---|
1412 | if (wk_adv(i)) then !!! nrlmd |
---|
1413 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1414 | IF (dz(i) .GT. 0) THEN |
---|
1415 | z(i) = z(i)+dz(i) |
---|
1416 | sum_thu(i) = sum_thu(i) + thu(i,k)*dz(i) |
---|
1417 | sum_tu(i) = sum_tu(i) + tu(i,k)*dz(i) |
---|
1418 | sum_qu(i) = sum_qu(i) + qu(i,k)*dz(i) |
---|
1419 | sum_thvu(i) = sum_thvu(i) + thu(i,k)*(1.+eps*qu(i,k))*dz(i) |
---|
1420 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
1421 | sum_dq(i) = sum_dq(i) + deltaqw(i,k)*dz(i) |
---|
1422 | sum_rho(i) = sum_rho(i) + rhow(i,k)*dz(i) |
---|
1423 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i,k)*dz(i) |
---|
1424 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i,k)*dz(i) |
---|
1425 | ENDIF |
---|
1426 | end if |
---|
1427 | ENDDO |
---|
1428 | ENDDO |
---|
1429 | c |
---|
1430 | DO i=1,klon |
---|
1431 | if (wk_adv(i)) then !!! nrlmd |
---|
1432 | hw0(i) = z(i) |
---|
1433 | end if |
---|
1434 | ENDDO |
---|
1435 | c |
---|
1436 | C |
---|
1437 | C - WAPE and mean forcing computation |
---|
1438 | C --------------------------------------- |
---|
1439 | C |
---|
1440 | C --------------------------------------- |
---|
1441 | C |
---|
1442 | C Means |
---|
1443 | |
---|
1444 | DO i=1,klon |
---|
1445 | if (wk_adv(i)) then !!! nrlmd |
---|
1446 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1447 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1448 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1449 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1450 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1451 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1452 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1453 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1454 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1455 | c |
---|
1456 | wape(i) = - rg*hw0(i)*(av_dth(i) |
---|
1457 | $ + eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)* |
---|
1458 | $ av_dq(i) ))/av_thvu(i) |
---|
1459 | end if |
---|
1460 | ENDDO |
---|
1461 | C |
---|
1462 | C Filter out bad wakes |
---|
1463 | |
---|
1464 | DO k = 1,klev |
---|
1465 | DO i=1,klon |
---|
1466 | if (wk_adv(i)) then !!! nrlmd |
---|
1467 | IF ( wape(i) .LT. 0.) THEN |
---|
1468 | deltatw(i,k) = 0. |
---|
1469 | deltaqw(i,k) = 0. |
---|
1470 | dth(i,k) = 0. |
---|
1471 | ENDIF |
---|
1472 | end if |
---|
1473 | ENDDO |
---|
1474 | ENDDO |
---|
1475 | c |
---|
1476 | DO i=1,klon |
---|
1477 | if (wk_adv(i)) then !!! nrlmd |
---|
1478 | IF ( wape(i) .LT. 0.) THEN |
---|
1479 | wape(i) = 0. |
---|
1480 | Cstar(i) = 0. |
---|
1481 | hw(i) = hwmin |
---|
1482 | sigmaw(i) = max(sigmad,sigd_con(i)) |
---|
1483 | fip(i) = 0. |
---|
1484 | gwake(i) = .FALSE. |
---|
1485 | ELSE |
---|
1486 | Cstar(i) = stark*sqrt(2.*wape(i)) |
---|
1487 | gwake(i) = .TRUE. |
---|
1488 | ENDIF |
---|
1489 | end if |
---|
1490 | ENDDO |
---|
1491 | |
---|
1492 | ENDDO ! end sub-timestep loop |
---|
1493 | C |
---|
1494 | C ----------------------------------------------------------------- |
---|
1495 | c Get back to tendencies per second |
---|
1496 | c |
---|
1497 | DO k = 1,klev |
---|
1498 | DO i=1,klon |
---|
1499 | |
---|
1500 | ccc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
1501 | IF ( OK_qx_qw(i) .AND. k .LE. kupper(i)) THEN |
---|
1502 | ccc |
---|
1503 | dtls(i,k) = dtls(i,k)/dtime |
---|
1504 | dqls(i,k) = dqls(i,k)/dtime |
---|
1505 | d_deltatw2(i,k)=d_deltatw2(i,k)/dtime |
---|
1506 | d_deltaqw2(i,k)=d_deltaqw2(i,k)/dtime |
---|
1507 | d_deltat_gw(i,k) = d_deltat_gw(i,k)/dtime |
---|
1508 | cc print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
1509 | cc $ ,death_rate(i)*sigmaw(i) |
---|
1510 | ENDIF |
---|
1511 | ENDDO |
---|
1512 | ENDDO |
---|
1513 | |
---|
1514 | c |
---|
1515 | c---------------------------------------------------------- |
---|
1516 | c Determine wake final state; recompute wape, cstar, ktop; |
---|
1517 | c filter out bad wakes. |
---|
1518 | c---------------------------------------------------------- |
---|
1519 | c |
---|
1520 | C 2.1 - Undisturbed area and Wake integrals |
---|
1521 | C --------------------------------------------------------- |
---|
1522 | |
---|
1523 | DO i=1,klon |
---|
1524 | ccc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
1525 | if (OK_qx_qw(i)) then |
---|
1526 | ccc |
---|
1527 | z(i) = 0. |
---|
1528 | sum_thu(i) = 0. |
---|
1529 | sum_tu(i) = 0. |
---|
1530 | sum_qu(i) = 0. |
---|
1531 | sum_thvu(i) = 0. |
---|
1532 | sum_dth(i) = 0. |
---|
1533 | sum_dq(i) = 0. |
---|
1534 | sum_rho(i) = 0. |
---|
1535 | sum_dtdwn(i) = 0. |
---|
1536 | sum_dqdwn(i) = 0. |
---|
1537 | |
---|
1538 | av_thu(i) = 0. |
---|
1539 | av_tu(i) =0. |
---|
1540 | av_qu(i) =0. |
---|
1541 | av_thvu(i) = 0. |
---|
1542 | av_dth(i) = 0. |
---|
1543 | av_dq(i) = 0. |
---|
1544 | av_rho(i) =0. |
---|
1545 | av_dtdwn(i) =0. |
---|
1546 | av_dqdwn(i) = 0. |
---|
1547 | end if |
---|
1548 | ENDDO |
---|
1549 | C Potential temperatures and humidity |
---|
1550 | c---------------------------------------------------------- |
---|
1551 | |
---|
1552 | DO k =1,klev |
---|
1553 | DO i=1,klon |
---|
1554 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1555 | if (OK_qx_qw(i)) then |
---|
1556 | ccc |
---|
1557 | rho(i,k) = p(i,k)/(rd*te(i,k)) |
---|
1558 | IF(k .eq. 1) THEN |
---|
1559 | rhoh(i,k) = ph(i,k)/(rd*te(i,k)) |
---|
1560 | zhh(i,k)=0 |
---|
1561 | ELSE |
---|
1562 | rhoh(i,k) = ph(i,k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
1563 | zhh(i,k)=(ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
1564 | ENDIF |
---|
1565 | the(i,k) = te(i,k)/ppi(i,k) |
---|
1566 | thu(i,k) = (te(i,k) - deltatw(i,k)*sigmaw(i))/ppi(i,k) |
---|
1567 | tu(i,k) = te(i,k) - deltatw(i,k)*sigmaw(i) |
---|
1568 | qu(i,k) = qe(i,k) - deltaqw(i,k)*sigmaw(i) |
---|
1569 | rhow(i,k) = p(i,k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
1570 | dth(i,k) = deltatw(i,k)/ppi(i,k) |
---|
1571 | ENDIF |
---|
1572 | ENDDO |
---|
1573 | ENDDO |
---|
1574 | |
---|
1575 | C Integrals (and wake top level number) |
---|
1576 | C ----------------------------------------------------------- |
---|
1577 | |
---|
1578 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
1579 | |
---|
1580 | DO i=1,klon |
---|
1581 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1582 | if (OK_qx_qw(i)) then |
---|
1583 | ccc |
---|
1584 | z(i) = 1. |
---|
1585 | dz(i) = 1. |
---|
1586 | sum_thvu(i) = thu(i,1)*(1.+eps*qu(i,1))*dz(i) |
---|
1587 | sum_dth(i) = 0. |
---|
1588 | ENDIF |
---|
1589 | ENDDO |
---|
1590 | |
---|
1591 | DO k = 1,klev |
---|
1592 | DO i=1,klon |
---|
1593 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1594 | if (OK_qx_qw(i)) then |
---|
1595 | ccc |
---|
1596 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
1597 | IF (dz(i) .GT. 0) THEN |
---|
1598 | z(i) = z(i)+dz(i) |
---|
1599 | sum_thu(i) = sum_thu(i) + thu(i,k)*dz(i) |
---|
1600 | sum_tu(i) = sum_tu(i) + tu(i,k)*dz(i) |
---|
1601 | sum_qu(i) = sum_qu(i) + qu(i,k)*dz(i) |
---|
1602 | sum_thvu(i) = sum_thvu(i) + thu(i,k)*(1.+eps*qu(i,k))*dz(i) |
---|
1603 | sum_dth(i) = sum_dth(i) + dth(i,k)*dz(i) |
---|
1604 | sum_dq(i) = sum_dq(i) + deltaqw(i,k)*dz(i) |
---|
1605 | sum_rho(i) = sum_rho(i) + rhow(i,k)*dz(i) |
---|
1606 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i,k)*dz(i) |
---|
1607 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i,k)*dz(i) |
---|
1608 | ENDIF |
---|
1609 | ENDIF |
---|
1610 | ENDDO |
---|
1611 | ENDDO |
---|
1612 | c |
---|
1613 | DO i=1,klon |
---|
1614 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1615 | if (OK_qx_qw(i)) then |
---|
1616 | ccc |
---|
1617 | hw0(i) = z(i) |
---|
1618 | ENDIF |
---|
1619 | ENDDO |
---|
1620 | c |
---|
1621 | C - WAPE and mean forcing computation |
---|
1622 | C------------------------------------------------------------- |
---|
1623 | |
---|
1624 | C Means |
---|
1625 | |
---|
1626 | DO i=1, klon |
---|
1627 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1628 | if (OK_qx_qw(i)) then |
---|
1629 | ccc |
---|
1630 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
1631 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
1632 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
1633 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
1634 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
1635 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
1636 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
1637 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
1638 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
1639 | |
---|
1640 | wape2(i) = - rg*hw0(i)*(av_dth(i) |
---|
1641 | $ + eps*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i) |
---|
1642 | $ + av_dth(i)*av_dq(i) ))/av_thvu(i) |
---|
1643 | ENDIF |
---|
1644 | ENDDO |
---|
1645 | |
---|
1646 | C Prognostic variable update |
---|
1647 | C ------------------------------------------------------------ |
---|
1648 | |
---|
1649 | C Filter out bad wakes |
---|
1650 | c |
---|
1651 | DO k = 1,klev |
---|
1652 | DO i=1,klon |
---|
1653 | ccc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
1654 | if (OK_qx_qw(i) .AND. wape2(i) .LT. 0.) then |
---|
1655 | ccc |
---|
1656 | deltatw(i,k) = 0. |
---|
1657 | deltaqw(i,k) = 0. |
---|
1658 | dth(i,k) = 0. |
---|
1659 | ENDIF |
---|
1660 | ENDDO |
---|
1661 | ENDDO |
---|
1662 | c |
---|
1663 | |
---|
1664 | DO i=1, klon |
---|
1665 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1666 | if (OK_qx_qw(i)) then |
---|
1667 | ccc |
---|
1668 | IF ( wape2(i) .LT. 0.) THEN |
---|
1669 | wape2(i) = 0. |
---|
1670 | Cstar2(i) = 0. |
---|
1671 | hw(i) = hwmin |
---|
1672 | sigmaw(i) = amax1(sigmad,sigd_con(i)) |
---|
1673 | fip(i) = 0. |
---|
1674 | gwake(i) = .FALSE. |
---|
1675 | ELSE |
---|
1676 | if(prt_level.ge.10) print*,'wape2>0' |
---|
1677 | Cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
1678 | gwake(i) = .TRUE. |
---|
1679 | ENDIF |
---|
1680 | ENDIF |
---|
1681 | ENDDO |
---|
1682 | c |
---|
1683 | DO i=1, klon |
---|
1684 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1685 | if (OK_qx_qw(i)) then |
---|
1686 | ccc |
---|
1687 | ktopw(i) = ktop(i) |
---|
1688 | ENDIF |
---|
1689 | ENDDO |
---|
1690 | c |
---|
1691 | DO i=1, klon |
---|
1692 | ccc nrlmd IF ( wk_adv(i)) THEN |
---|
1693 | if (OK_qx_qw(i)) then |
---|
1694 | ccc |
---|
1695 | IF (ktopw(i) .gt. 0 .and. gwake(i)) then |
---|
1696 | |
---|
1697 | Cjyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
1698 | ccc heff = 600. |
---|
1699 | C Utilisation de la hauteur hw |
---|
1700 | cc heff = 0.7*hw |
---|
1701 | heff(i) = hw(i) |
---|
1702 | |
---|
1703 | FIP(i) = 0.5*rho(i,ktopw(i))*Cstar2(i)**3*heff(i)*2* |
---|
1704 | $ sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
1705 | FIP(i) = alpk * FIP(i) |
---|
1706 | Cjyg2 |
---|
1707 | ELSE |
---|
1708 | FIP(i) = 0. |
---|
1709 | ENDIF |
---|
1710 | ENDIF |
---|
1711 | ENDDO |
---|
1712 | c |
---|
1713 | C Limitation de sigmaw |
---|
1714 | |
---|
1715 | ccc nrlmd |
---|
1716 | c DO i=1,klon |
---|
1717 | c IF (OK_qx_qw(i)) THEN |
---|
1718 | c IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
1719 | c ENDIF |
---|
1720 | c ENDDO |
---|
1721 | ccc |
---|
1722 | DO k = 1,klev |
---|
1723 | DO i=1, klon |
---|
1724 | |
---|
1725 | ccc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
1726 | ccc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
1727 | IF ( ((wape(i).ge.wape2(i)).and.(wape2(i).le.1.0)).or. |
---|
1728 | $ (ktopw(i).le.2) .OR. |
---|
1729 | $ .not. OK_qx_qw(i) ) THEN |
---|
1730 | ccc |
---|
1731 | dtls(i,k) = 0. |
---|
1732 | dqls(i,k) = 0. |
---|
1733 | deltatw(i,k) = 0. |
---|
1734 | deltaqw(i,k) = 0. |
---|
1735 | ENDIF |
---|
1736 | ENDDO |
---|
1737 | ENDDO |
---|
1738 | c |
---|
1739 | ccc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
1740 | DO i=1, klon |
---|
1741 | IF ( ((wape(i).ge.wape2(i)).and.(wape2(i).le.1.0)).or. |
---|
1742 | $ (ktopw(i).le.2) .OR. |
---|
1743 | $ .not. OK_qx_qw(i) ) THEN |
---|
1744 | wape(i) = 0. |
---|
1745 | cstar(i)=0. |
---|
1746 | hw(i) = hwmin |
---|
1747 | sigmaw(i) = sigmad |
---|
1748 | fip(i) = 0. |
---|
1749 | ELSE |
---|
1750 | wape(i) = wape2(i) |
---|
1751 | cstar(i)=cstar2(i) |
---|
1752 | ENDIF |
---|
1753 | cc print*,'wape wape2 ktopw OK_qx_qw =', |
---|
1754 | cc $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
1755 | ENDDO |
---|
1756 | c |
---|
1757 | c |
---|
1758 | RETURN |
---|
1759 | END |
---|
1760 | |
---|
1761 | SUBROUTINE wake_vec_modulation(nlon,nl,wk_adv,epsilon,qe,d_qe, |
---|
1762 | $ deltaqw,d_deltaqw,sigmaw,d_sigmaw,alpha) |
---|
1763 | c------------------------------------------------------ |
---|
1764 | cDtermination du coefficient alpha tel que les tendances |
---|
1765 | c corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
1766 | c a une humidite positive dans la zone (x) et dans la zone (w). |
---|
1767 | c------------------------------------------------------ |
---|
1768 | c |
---|
1769 | |
---|
1770 | c Input |
---|
1771 | REAL qe(nlon,nl),d_qe(nlon,nl) |
---|
1772 | REAL deltaqw(nlon,nl),d_deltaqw(nlon,nl) |
---|
1773 | REAL sigmaw(nlon),d_sigmaw(nlon) |
---|
1774 | LOGICAL wk_adv(nlon) |
---|
1775 | INTEGER nl,nlon |
---|
1776 | c Output |
---|
1777 | REAL alpha(nlon) |
---|
1778 | c Internal variables |
---|
1779 | REAL zeta(nlon,nl) |
---|
1780 | REAL alpha1(nlon) |
---|
1781 | REAL x,a,b,c,discrim |
---|
1782 | REAL epsilon |
---|
1783 | ! DATA epsilon/1.e-15/ |
---|
1784 | c |
---|
1785 | DO k=1,nl |
---|
1786 | DO i = 1,nlon |
---|
1787 | IF (wk_adv(i)) THEN |
---|
1788 | IF ((deltaqw(i,k)+d_deltaqw(i,k)).ge.0.) then |
---|
1789 | zeta(i,k)=0. |
---|
1790 | ELSE |
---|
1791 | zeta(i,k)=1. |
---|
1792 | END IF |
---|
1793 | ENDIF |
---|
1794 | ENDDO |
---|
1795 | DO i = 1,nlon |
---|
1796 | IF (wk_adv(i)) THEN |
---|
1797 | x = qe(i,k)+(zeta(i,k)-sigmaw(i))*deltaqw(i,k) |
---|
1798 | $ + d_qe(i,k)+(zeta(i,k)-sigmaw(i))*d_deltaqw(i,k) |
---|
1799 | $ - d_sigmaw(i)*(deltaqw(i,k)+d_deltaqw(i,k)) |
---|
1800 | a = -d_sigmaw(i)*d_deltaqw(i,k) |
---|
1801 | b = d_qe(i,k)+(zeta(i,k)-sigmaw(i))*d_deltaqw(i,k) |
---|
1802 | $ - deltaqw(i,k)*d_sigmaw(i) |
---|
1803 | c = qe(i,k)+(zeta(i,k)-sigmaw(i))*deltaqw(i,k)+epsilon |
---|
1804 | discrim = b*b-4.*a*c |
---|
1805 | c print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
1806 | IF (a+b .GE. 0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
1807 | alpha1(i)=1. |
---|
1808 | ELSE |
---|
1809 | IF (x .GE. 0.) THEN |
---|
1810 | alpha1(i)=1. |
---|
1811 | ELSE |
---|
1812 | IF (a .GT. 0.) THEN |
---|
1813 | alpha1(i)=0.9*min( (2.*c)/(-b+sqrt(discrim)), |
---|
1814 | $ (-b+sqrt(discrim))/(2.*a) ) |
---|
1815 | ELSE IF (a .eq. 0.) then |
---|
1816 | alpha1(i)=0.9*(-c/b) |
---|
1817 | ELSE |
---|
1818 | c print*,'a,b,c discrim',a,b,c discrim |
---|
1819 | alpha1(i)=0.9*max( (2.*c)/(-b+sqrt(discrim)), |
---|
1820 | $ (-b+sqrt(discrim))/(2.*a) ) |
---|
1821 | ENDIF |
---|
1822 | ENDIF |
---|
1823 | ENDIF |
---|
1824 | alpha(i) = min(alpha(i),alpha1(i)) |
---|
1825 | ENDIF |
---|
1826 | ENDDO |
---|
1827 | ENDDO |
---|
1828 | ! |
---|
1829 | return |
---|
1830 | end |
---|
1831 | |
---|
1832 | Subroutine WAKE_scal (p,ph,ppi,dtime,sigd_con |
---|
1833 | : ,te0,qe0,omgb |
---|
1834 | : ,dtdwn,dqdwn,amdwn,amup,dta,dqa |
---|
1835 | : ,wdtPBL,wdqPBL,udtPBL,udqPBL |
---|
1836 | o ,deltatw,deltaqw,dth,hw,sigmaw,wape,fip,gfl |
---|
1837 | o ,dtls,dqls |
---|
1838 | o ,ktopw,omgbdth,dp_omgb,wdens |
---|
1839 | o ,tu,qu |
---|
1840 | o ,dtKE,dqKE |
---|
1841 | o ,dtPBL,dqPBL |
---|
1842 | o ,omg,dp_deltomg,spread |
---|
1843 | o ,Cstar,d_deltat_gw |
---|
1844 | o ,d_deltatw2,d_deltaqw2) |
---|
1845 | |
---|
1846 | *************************************************************** |
---|
1847 | * * |
---|
1848 | * WAKE * |
---|
1849 | * retour a un Pupper fixe * |
---|
1850 | * * |
---|
1851 | * written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
1852 | * modified by : ROEHRIG Romain 01/29/2007 * |
---|
1853 | *************************************************************** |
---|
1854 | c |
---|
1855 | USE dimphy |
---|
1856 | IMPLICIT none |
---|
1857 | c============================================================================ |
---|
1858 | C |
---|
1859 | C |
---|
1860 | C But : Decrire le comportement des poches froides apparaissant dans les |
---|
1861 | C grands systemes convectifs, et fournir l'energie disponible pour |
---|
1862 | C le declenchement de nouvelles colonnes convectives. |
---|
1863 | C |
---|
1864 | C Variables d'etat : deltatw : ecart de temperature wake-undisturbed area |
---|
1865 | C deltaqw : ecart d'humidite wake-undisturbed area |
---|
1866 | C sigmaw : fraction d'aire occupee par la poche. |
---|
1867 | C |
---|
1868 | C Variable de sortie : |
---|
1869 | c |
---|
1870 | c wape : WAke Potential Energy |
---|
1871 | c fip : Front Incident Power (W/m2) - ALP |
---|
1872 | c gfl : Gust Front Length per unit area (m-1) |
---|
1873 | C dtls : large scale temperature tendency due to wake |
---|
1874 | C dqls : large scale humidity tendency due to wake |
---|
1875 | C hw : hauteur de la poche |
---|
1876 | C dp_omgb : vertical gradient of large scale omega |
---|
1877 | C omgbdth: flux of Delta_Theta transported by LS omega |
---|
1878 | C dtKE : differential heating (wake - unpertubed) |
---|
1879 | C dqKE : differential moistening (wake - unpertubed) |
---|
1880 | C omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
1881 | C dp_deltomg : vertical gradient of omg (s-1) |
---|
1882 | C spread : spreading term in dt_wake and dq_wake |
---|
1883 | C deltatw : updated temperature difference (T_w-T_u). |
---|
1884 | C deltaqw : updated humidity difference (q_w-q_u). |
---|
1885 | C sigmaw : updated wake fractional area. |
---|
1886 | C d_deltat_gw : delta T tendency due to GW |
---|
1887 | c |
---|
1888 | C Variables d'entree : |
---|
1889 | c |
---|
1890 | c aire : aire de la maille |
---|
1891 | c te0 : temperature dans l'environnement (K) |
---|
1892 | C qe0 : humidite dans l'environnement (kg/kg) |
---|
1893 | C omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
1894 | C dtdwn: source de chaleur due aux descentes (K/s) |
---|
1895 | C dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
1896 | C dta : source de chaleur due courants satures et detrain (K/s) |
---|
1897 | C dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
1898 | C amdwn: flux de masse total des descentes, par unite de |
---|
1899 | C surface de la maille (kg/m2/s) |
---|
1900 | C amup : flux de masse total des ascendances, par unite de |
---|
1901 | C surface de la maille (kg/m2/s) |
---|
1902 | C p : pressions aux milieux des couches (Pa) |
---|
1903 | C ph : pressions aux interfaces (Pa) |
---|
1904 | C ppi : (p/p_0)**kapa (adim) |
---|
1905 | C dtime: increment temporel (s) |
---|
1906 | c |
---|
1907 | C Variables internes : |
---|
1908 | c |
---|
1909 | c rhow : masse volumique de la poche froide |
---|
1910 | C rho : environment density at P levels |
---|
1911 | C rhoh : environment density at Ph levels |
---|
1912 | C te : environment temperature | may change within |
---|
1913 | C qe : environment humidity | sub-time-stepping |
---|
1914 | C the : environment potential temperature |
---|
1915 | C thu : potential temperature in undisturbed area |
---|
1916 | C tu : temperature in undisturbed area |
---|
1917 | C qu : humidity in undisturbed area |
---|
1918 | C dp_omgb: vertical gradient og LS omega |
---|
1919 | C omgbw : wake average vertical omega |
---|
1920 | C dp_omgbw: vertical gradient of omgbw |
---|
1921 | C omgbdq : flux of Delta_q transported by LS omega |
---|
1922 | C dth : potential temperature diff. wake-undist. |
---|
1923 | C th1 : first pot. temp. for vertical advection (=thu) |
---|
1924 | C th2 : second pot. temp. for vertical advection (=thw) |
---|
1925 | C q1 : first humidity for vertical advection |
---|
1926 | C q2 : second humidity for vertical advection |
---|
1927 | C d_deltatw : terme de redistribution pour deltatw |
---|
1928 | C d_deltaqw : terme de redistribution pour deltaqw |
---|
1929 | C deltatw0 : deltatw initial |
---|
1930 | C deltaqw0 : deltaqw initial |
---|
1931 | C hw0 : hw initial |
---|
1932 | C sigmaw0: sigmaw initial |
---|
1933 | C amflux : horizontal mass flux through wake boundary |
---|
1934 | C wdens : number of wakes per unit area (3D) or per |
---|
1935 | C unit length (2D) |
---|
1936 | C Tgw : 1 sur la période de onde de gravité |
---|
1937 | c Cgw : vitesse de propagation de onde de gravité |
---|
1938 | c LL : distance entre 2 poches |
---|
1939 | |
---|
1940 | c------------------------------------------------------------------------- |
---|
1941 | c Déclaration de variables |
---|
1942 | c------------------------------------------------------------------------- |
---|
1943 | |
---|
1944 | include "dimensions.h" |
---|
1945 | cccc include "dimphy.h" |
---|
1946 | include "YOMCST.h" |
---|
1947 | include "cvthermo.h" |
---|
1948 | include "iniprint.h" |
---|
1949 | |
---|
1950 | c Arguments en entree |
---|
1951 | c-------------------- |
---|
1952 | |
---|
1953 | REAL p(klev),ph(klev+1),ppi(klev) |
---|
1954 | REAL dtime |
---|
1955 | REAL te0(klev),qe0(klev) |
---|
1956 | REAL omgb(klev+1) |
---|
1957 | REAL dtdwn(klev), dqdwn(klev) |
---|
1958 | REAL wdtPBL(klev),wdqPBL(klev) |
---|
1959 | REAL udtPBL(klev),udqPBL(klev) |
---|
1960 | REAL amdwn(klev), amup(klev) |
---|
1961 | REAL dta(klev), dqa(klev) |
---|
1962 | REAL sigd_con |
---|
1963 | |
---|
1964 | c Sorties |
---|
1965 | c-------- |
---|
1966 | |
---|
1967 | REAL deltatw(klev), deltaqw(klev), dth(klev) |
---|
1968 | REAL tu(klev), qu(klev) |
---|
1969 | REAL dtls(klev), dqls(klev) |
---|
1970 | REAL dtKE(klev), dqKE(klev) |
---|
1971 | REAL dtPBL(klev), dqPBL(klev) |
---|
1972 | REAL spread(klev) |
---|
1973 | REAL d_deltatgw(klev) |
---|
1974 | REAL d_deltatw2(klev), d_deltaqw2(klev) |
---|
1975 | REAL omgbdth(klev+1), omg(klev+1) |
---|
1976 | REAL dp_omgb(klev), dp_deltomg(klev) |
---|
1977 | REAL d_deltat_gw(klev) |
---|
1978 | REAL hw, sigmaw, wape, fip, gfl, Cstar |
---|
1979 | INTEGER ktopw |
---|
1980 | |
---|
1981 | c Variables internes |
---|
1982 | c------------------- |
---|
1983 | |
---|
1984 | c Variables à fixer |
---|
1985 | REAL ALON |
---|
1986 | REAL coefgw |
---|
1987 | REAL wdens0, wdens |
---|
1988 | REAL stark |
---|
1989 | REAL alpk |
---|
1990 | REAL delta_t_min |
---|
1991 | REAL Pupper |
---|
1992 | INTEGER nsub |
---|
1993 | REAL dtimesub |
---|
1994 | REAL sigmad, hwmin |
---|
1995 | |
---|
1996 | c Variables de sauvegarde |
---|
1997 | REAL deltatw0(klev) |
---|
1998 | REAL deltaqw0(klev) |
---|
1999 | REAL te(klev), qe(klev) |
---|
2000 | REAL sigmaw0, sigmaw1 |
---|
2001 | |
---|
2002 | c Variables pour les GW |
---|
2003 | REAL LL |
---|
2004 | REAL N2(klev) |
---|
2005 | REAL Cgw(klev) |
---|
2006 | REAL Tgw(klev) |
---|
2007 | |
---|
2008 | c Variables liées au calcul de hw |
---|
2009 | REAL ptop_provis, ptop, ptop_new |
---|
2010 | REAL sum_dth |
---|
2011 | REAL dthmin |
---|
2012 | REAL z, dz, hw0 |
---|
2013 | INTEGER ktop, kupper |
---|
2014 | |
---|
2015 | c Autres variables internes |
---|
2016 | INTEGER isubstep, k |
---|
2017 | |
---|
2018 | REAL sum_thu, sum_tu, sum_qu,sum_thvu |
---|
2019 | REAL sum_dq, sum_rho |
---|
2020 | REAL sum_dtdwn, sum_dqdwn |
---|
2021 | REAL av_thu, av_tu, av_qu, av_thvu |
---|
2022 | REAL av_dth, av_dq, av_rho |
---|
2023 | REAL av_dtdwn, av_dqdwn |
---|
2024 | |
---|
2025 | REAL rho(klev), rhoh(klev+1), rhow(klev) |
---|
2026 | REAL rhow_moyen(klev) |
---|
2027 | REAL zh(klev), zhh(klev+1) |
---|
2028 | REAL epaisseur1(klev), epaisseur2(klev) |
---|
2029 | |
---|
2030 | REAL the(klev), thu(klev) |
---|
2031 | |
---|
2032 | REAL d_deltatw(klev), d_deltaqw(klev) |
---|
2033 | |
---|
2034 | REAL omgbw(klev+1), omgtop |
---|
2035 | REAL dp_omgbw(klev) |
---|
2036 | REAL ztop, dztop |
---|
2037 | REAL alpha_up(klev) |
---|
2038 | |
---|
2039 | REAL RRe1, RRe2, RRd1, RRd2 |
---|
2040 | REAL Th1(klev), Th2(klev), q1(klev), q2(klev) |
---|
2041 | REAL D_Th1(klev), D_Th2(klev), D_dth(klev) |
---|
2042 | REAL D_q1(klev), D_q2(klev), D_dq(klev) |
---|
2043 | REAL omgbdq(klev) |
---|
2044 | |
---|
2045 | REAL ff, gg |
---|
2046 | REAL wape2, Cstar2, heff |
---|
2047 | |
---|
2048 | REAL Crep(klev) |
---|
2049 | REAL Crep_upper, Crep_sol |
---|
2050 | |
---|
2051 | C------------------------------------------------------------------------- |
---|
2052 | c Initialisations |
---|
2053 | c------------------------------------------------------------------------- |
---|
2054 | |
---|
2055 | c print*, 'wake initialisations' |
---|
2056 | |
---|
2057 | c Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
2058 | c------------------------------------------------------------------------- |
---|
2059 | |
---|
2060 | DATA sigmad, hwmin /.02,10./ |
---|
2061 | |
---|
2062 | C Longueur de maille (en m) |
---|
2063 | c------------------------------------------------------------------------- |
---|
2064 | |
---|
2065 | c ALON = 3.e5 |
---|
2066 | ALON = 1.e6 |
---|
2067 | |
---|
2068 | |
---|
2069 | C Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
2070 | c |
---|
2071 | c coefgw : Coefficient pour les ondes de gravité |
---|
2072 | c stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
2073 | c wdens : Densité de poche froide par maille |
---|
2074 | c------------------------------------------------------------------------- |
---|
2075 | |
---|
2076 | coefgw=10 |
---|
2077 | c coefgw=1 |
---|
2078 | c wdens0 = 1.0/(alon**2) |
---|
2079 | wdens = 1.0/(alon**2) |
---|
2080 | stark = 0.50 |
---|
2081 | cCRtest |
---|
2082 | alpk=0.1 |
---|
2083 | c alpk = 1.0 |
---|
2084 | c alpk = 0.5 |
---|
2085 | c alpk = 0.05 |
---|
2086 | Crep_upper=0.9 |
---|
2087 | Crep_sol=1.0 |
---|
2088 | |
---|
2089 | |
---|
2090 | C Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
2091 | c------------------------------------------------------------------------- |
---|
2092 | |
---|
2093 | delta_t_min = 0.2 |
---|
2094 | |
---|
2095 | |
---|
2096 | C 1. - Save initial values and initialize tendencies |
---|
2097 | C -------------------------------------------------- |
---|
2098 | |
---|
2099 | DO k=1,klev |
---|
2100 | deltatw0(k) = deltatw(k) |
---|
2101 | deltaqw0(k)= deltaqw(k) |
---|
2102 | te(k) = te0(k) |
---|
2103 | qe(k) = qe0(k) |
---|
2104 | dtls(k) = 0. |
---|
2105 | dqls(k) = 0. |
---|
2106 | d_deltat_gw(k)=0. |
---|
2107 | d_deltatw2(k)=0. |
---|
2108 | d_deltaqw2(k)=0. |
---|
2109 | ENDDO |
---|
2110 | c sigmaw1=sigmaw |
---|
2111 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
2112 | c print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
2113 | c ENDIF |
---|
2114 | sigmaw = max(sigmaw,sigd_con) |
---|
2115 | sigmaw = max(sigmaw,sigmad) |
---|
2116 | sigmaw = min(sigmaw,0.99) |
---|
2117 | sigmaw0 = sigmaw |
---|
2118 | c wdens=wdens0/(10.*sigmaw) |
---|
2119 | c IF (sigd_con.GT.sigmaw1) THEN |
---|
2120 | c print*, 'sigmaw1,sigd1', sigmaw, sigd_con |
---|
2121 | c ENDIF |
---|
2122 | |
---|
2123 | C 2. - Prognostic part |
---|
2124 | C ========================================================= |
---|
2125 | |
---|
2126 | c print *, 'prognostic wake computation' |
---|
2127 | |
---|
2128 | |
---|
2129 | C 2.1 - Undisturbed area and Wake integrals |
---|
2130 | C --------------------------------------------------------- |
---|
2131 | |
---|
2132 | z = 0. |
---|
2133 | ktop=0 |
---|
2134 | kupper = 0 |
---|
2135 | sum_thu = 0. |
---|
2136 | sum_tu = 0. |
---|
2137 | sum_qu = 0. |
---|
2138 | sum_thvu = 0. |
---|
2139 | sum_dth = 0. |
---|
2140 | sum_dq = 0. |
---|
2141 | sum_rho = 0. |
---|
2142 | sum_dtdwn = 0. |
---|
2143 | sum_dqdwn = 0. |
---|
2144 | |
---|
2145 | av_thu = 0. |
---|
2146 | av_tu =0. |
---|
2147 | av_qu =0. |
---|
2148 | av_thvu = 0. |
---|
2149 | av_dth = 0. |
---|
2150 | av_dq = 0. |
---|
2151 | av_rho =0. |
---|
2152 | av_dtdwn =0. |
---|
2153 | av_dqdwn = 0. |
---|
2154 | |
---|
2155 | C Potential temperatures and humidity |
---|
2156 | c---------------------------------------------------------- |
---|
2157 | |
---|
2158 | DO k =1,klev |
---|
2159 | rho(k) = p(k)/(rd*te(k)) |
---|
2160 | IF(k .eq. 1) THEN |
---|
2161 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
2162 | zhh(k)=0 |
---|
2163 | ELSE |
---|
2164 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
2165 | zhh(k)=(ph(k)-ph(k-1))/(-rhoh(k)*RG)+zhh(k-1) |
---|
2166 | ENDIF |
---|
2167 | the(k) = te(k)/ppi(k) |
---|
2168 | thu(k) = (te(k) - deltatw(k)*sigmaw)/ppi(k) |
---|
2169 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
2170 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
2171 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
2172 | dth(k) = deltatw(k)/ppi(k) |
---|
2173 | LL = (1-sqrt(sigmaw))/sqrt(wdens) |
---|
2174 | ENDDO |
---|
2175 | |
---|
2176 | DO k = 1, klev-1 |
---|
2177 | IF(k.eq.1) THEN |
---|
2178 | N2(k)=0 |
---|
2179 | ELSE |
---|
2180 | N2(k)=max(0.,-RG**2/the(k)*rho(k)*(the(k+1)-the(k-1)) |
---|
2181 | $ /(p(k+1)-p(k-1))) |
---|
2182 | ENDIF |
---|
2183 | ZH(k)=(zhh(k)+zhh(k+1))/2 |
---|
2184 | |
---|
2185 | Cgw(k)=sqrt(N2(k))*ZH(k) |
---|
2186 | Tgw(k)=coefgw*Cgw(k)/LL |
---|
2187 | ENDDO |
---|
2188 | |
---|
2189 | N2(klev)=0 |
---|
2190 | ZH(klev)=0 |
---|
2191 | Cgw(klev)=0 |
---|
2192 | Tgw(klev)=0 |
---|
2193 | |
---|
2194 | c Calcul de la masse volumique moyenne de la colonne |
---|
2195 | c----------------------------------------------------------------- |
---|
2196 | |
---|
2197 | DO k=1,klev |
---|
2198 | epaisseur1(k)=0. |
---|
2199 | epaisseur2(k)=0. |
---|
2200 | ENDDO |
---|
2201 | |
---|
2202 | epaisseur1(1)= -(Ph(2)-Ph(1))/(rho(1)*rg)+1. |
---|
2203 | epaisseur2(1)= -(Ph(2)-Ph(1))/(rho(1)*rg)+1. |
---|
2204 | rhow_moyen(1) = rhow(1) |
---|
2205 | |
---|
2206 | DO k = 2, klev |
---|
2207 | epaisseur1(k)= -(Ph(k+1)-Ph(k))/(rho(k)*rg) +1. |
---|
2208 | epaisseur2(k)=epaisseur2(k-1)+epaisseur1(k) |
---|
2209 | rhow_moyen(k) = (rhow_moyen(k-1)*epaisseur2(k-1)+ |
---|
2210 | $ rhow(k)*epaisseur1(k))/epaisseur2(k) |
---|
2211 | ENDDO |
---|
2212 | |
---|
2213 | |
---|
2214 | C Choose an integration bound well above wake top |
---|
2215 | c----------------------------------------------------------------- |
---|
2216 | |
---|
2217 | c Pupper = 50000. ! melting level |
---|
2218 | Pupper = 60000. |
---|
2219 | c Pupper = 70000. |
---|
2220 | |
---|
2221 | |
---|
2222 | C Determine Wake top pressure (Ptop) from buoyancy integral |
---|
2223 | C----------------------------------------------------------------- |
---|
2224 | |
---|
2225 | c-1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
2226 | |
---|
2227 | Ptop_provis=ph(1) |
---|
2228 | DO k= 2,klev |
---|
2229 | IF (dth(k) .GT. -delta_t_min .and. |
---|
2230 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
2231 | Ptop_provis = ((dth(k)+delta_t_min)*p(k-1) |
---|
2232 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
2233 | GO TO 25 |
---|
2234 | ENDIF |
---|
2235 | ENDDO |
---|
2236 | 25 CONTINUE |
---|
2237 | |
---|
2238 | c-2/ dth integral |
---|
2239 | |
---|
2240 | sum_dth = 0. |
---|
2241 | dthmin = -delta_t_min |
---|
2242 | z = 0. |
---|
2243 | |
---|
2244 | DO k = 1,klev |
---|
2245 | dz = -(max(ph(k+1),Ptop_provis)-Ph(k))/(rho(k)*rg) |
---|
2246 | IF (dz .le. 0) GO TO 40 |
---|
2247 | z = z+dz |
---|
2248 | sum_dth = sum_dth + dth(k)*dz |
---|
2249 | dthmin = min(dthmin,dth(k)) |
---|
2250 | ENDDO |
---|
2251 | 40 CONTINUE |
---|
2252 | |
---|
2253 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
2254 | |
---|
2255 | hw0 = 2.*sum_dth/min(dthmin,-0.5) |
---|
2256 | hw0 = max(hwmin,hw0) |
---|
2257 | |
---|
2258 | c-4/ now, get Ptop |
---|
2259 | |
---|
2260 | z = 0. |
---|
2261 | ptop = ph(1) |
---|
2262 | |
---|
2263 | DO k = 1,klev |
---|
2264 | dz = min(-(ph(k+1)-Ph(k))/(rho(k)*rg),hw0-z) |
---|
2265 | IF (dz .le. 0) GO TO 45 |
---|
2266 | z = z+dz |
---|
2267 | Ptop = Ph(k)-rho(k)*rg*dz |
---|
2268 | ENDDO |
---|
2269 | 45 CONTINUE |
---|
2270 | |
---|
2271 | |
---|
2272 | C-5/ Determination de ktop et kupper |
---|
2273 | |
---|
2274 | DO k=klev,1,-1 |
---|
2275 | IF (ph(k+1) .lt. ptop) ktop=k |
---|
2276 | IF (ph(k+1) .lt. pupper) kupper=k |
---|
2277 | ENDDO |
---|
2278 | |
---|
2279 | c-6/ Correct ktop and ptop |
---|
2280 | |
---|
2281 | Ptop_new=ptop |
---|
2282 | DO k= ktop,2,-1 |
---|
2283 | IF (dth(k) .GT. -delta_t_min .and. |
---|
2284 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
2285 | Ptop_new = ((dth(k)+delta_t_min)*p(k-1) |
---|
2286 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
2287 | GO TO 225 |
---|
2288 | ENDIF |
---|
2289 | ENDDO |
---|
2290 | 225 CONTINUE |
---|
2291 | |
---|
2292 | ptop = ptop_new |
---|
2293 | |
---|
2294 | DO k=klev,1,-1 |
---|
2295 | IF (ph(k+1) .lt. ptop) ktop=k |
---|
2296 | ENDDO |
---|
2297 | |
---|
2298 | c Set deltatw & deltaqw to 0 above kupper |
---|
2299 | c----------------------------------------------------------- |
---|
2300 | |
---|
2301 | DO k = kupper,klev |
---|
2302 | deltatw(k) = 0. |
---|
2303 | deltaqw(k) = 0. |
---|
2304 | ENDDO |
---|
2305 | |
---|
2306 | |
---|
2307 | C Vertical gradient of LS omega |
---|
2308 | C------------------------------------------------------------ |
---|
2309 | |
---|
2310 | DO k = 1,kupper |
---|
2311 | dp_omgb(k) = (omgb(k+1) - omgb(k))/(ph(k+1)-ph(k)) |
---|
2312 | ENDDO |
---|
2313 | |
---|
2314 | |
---|
2315 | C Integrals (and wake top level number) |
---|
2316 | C ----------------------------------------------------------- |
---|
2317 | |
---|
2318 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
2319 | |
---|
2320 | z = 1. |
---|
2321 | dz = 1. |
---|
2322 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
2323 | sum_dth = 0. |
---|
2324 | |
---|
2325 | DO k = 1,klev |
---|
2326 | dz = -(max(ph(k+1),Ptop)-Ph(k))/(rho(k)*rg) |
---|
2327 | IF (dz .LE. 0) GO TO 50 |
---|
2328 | z = z+dz |
---|
2329 | sum_thu = sum_thu + thu(k)*dz |
---|
2330 | sum_tu = sum_tu + tu(k)*dz |
---|
2331 | sum_qu = sum_qu + qu(k)*dz |
---|
2332 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
2333 | sum_dth = sum_dth + dth(k)*dz |
---|
2334 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
2335 | sum_rho = sum_rho + rhow(k)*dz |
---|
2336 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
2337 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
2338 | ENDDO |
---|
2339 | 50 CONTINUE |
---|
2340 | |
---|
2341 | hw0 = z |
---|
2342 | |
---|
2343 | C 2.1 - WAPE and mean forcing computation |
---|
2344 | C------------------------------------------------------------- |
---|
2345 | |
---|
2346 | C Means |
---|
2347 | |
---|
2348 | av_thu = sum_thu/hw0 |
---|
2349 | av_tu = sum_tu/hw0 |
---|
2350 | av_qu = sum_qu/hw0 |
---|
2351 | av_thvu = sum_thvu/hw0 |
---|
2352 | c av_thve = sum_thve/hw0 |
---|
2353 | av_dth = sum_dth/hw0 |
---|
2354 | av_dq = sum_dq/hw0 |
---|
2355 | av_rho = sum_rho/hw0 |
---|
2356 | av_dtdwn = sum_dtdwn/hw0 |
---|
2357 | av_dqdwn = sum_dqdwn/hw0 |
---|
2358 | |
---|
2359 | wape = - rg*hw0*(av_dth |
---|
2360 | $ + eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq ))/av_thvu |
---|
2361 | |
---|
2362 | C 2.2 Prognostic variable update |
---|
2363 | C ------------------------------------------------------------ |
---|
2364 | |
---|
2365 | C Filter out bad wakes |
---|
2366 | |
---|
2367 | IF ( wape .LT. 0.) THEN |
---|
2368 | if(prt_level.ge.10) print*,'wape<0' |
---|
2369 | wape = 0. |
---|
2370 | hw = hwmin |
---|
2371 | sigmaw = max(sigmad,sigd_con) |
---|
2372 | fip = 0. |
---|
2373 | DO k = 1,klev |
---|
2374 | deltatw(k) = 0. |
---|
2375 | deltaqw(k) = 0. |
---|
2376 | dth(k) = 0. |
---|
2377 | ENDDO |
---|
2378 | ELSE |
---|
2379 | if(prt_level.ge.10) print*,'wape>0' |
---|
2380 | Cstar = stark*sqrt(2.*wape) |
---|
2381 | ENDIF |
---|
2382 | |
---|
2383 | C------------------------------------------------------------------ |
---|
2384 | C Sub-time-stepping |
---|
2385 | C------------------------------------------------------------------ |
---|
2386 | |
---|
2387 | c nsub=36 |
---|
2388 | nsub=10 |
---|
2389 | dtimesub=dtime/nsub |
---|
2390 | |
---|
2391 | c------------------------------------------------------------ |
---|
2392 | DO isubstep = 1,nsub |
---|
2393 | c------------------------------------------------------------ |
---|
2394 | |
---|
2395 | c print*,'---------------','substep=',isubstep,'-------------' |
---|
2396 | |
---|
2397 | c Evolution of sigmaw |
---|
2398 | |
---|
2399 | |
---|
2400 | gfl = 2.*sqrt(3.14*wdens*sigmaw) |
---|
2401 | |
---|
2402 | sigmaw =sigmaw + gfl*Cstar*dtimesub |
---|
2403 | sigmaw =min(sigmaw,0.99) !!!!!!!! |
---|
2404 | c wdens = wdens0/(10.*sigmaw) |
---|
2405 | c sigmaw =max(sigmaw,sigd_con) |
---|
2406 | c sigmaw =max(sigmaw,sigmad) |
---|
2407 | |
---|
2408 | c calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
2409 | |
---|
2410 | z= 0. |
---|
2411 | dp_deltomg(1:klev)=0. |
---|
2412 | omg(1:klev+1)=0. |
---|
2413 | |
---|
2414 | omg(1) = 0. |
---|
2415 | dp_deltomg(1) = -(gfl*Cstar)/(sigmaw * (1-sigmaw)) |
---|
2416 | |
---|
2417 | DO k=2,ktop |
---|
2418 | dz = -(Ph(k)-Ph(k-1))/(rho(k-1)*rg) |
---|
2419 | z = z+dz |
---|
2420 | dp_deltomg(k)= dp_deltomg(1) |
---|
2421 | omg(k)= dp_deltomg(1)*z |
---|
2422 | ENDDO |
---|
2423 | |
---|
2424 | dztop=-(Ptop-Ph(ktop))/(rho(ktop)*rg) |
---|
2425 | ztop = z+dztop |
---|
2426 | omgtop=dp_deltomg(1)*ztop |
---|
2427 | |
---|
2428 | |
---|
2429 | c Conversion de la vitesse verticale de m/s a Pa/s |
---|
2430 | |
---|
2431 | omgtop = -rho(ktop)*rg*omgtop |
---|
2432 | dp_deltomg(1) = omgtop/(ptop-ph(1)) |
---|
2433 | |
---|
2434 | DO k = 1,ktop |
---|
2435 | omg(k) = - rho(k)*rg*omg(k) |
---|
2436 | dp_deltomg(k) = dp_deltomg(1) |
---|
2437 | ENDDO |
---|
2438 | |
---|
2439 | c raccordement lineaire de omg de ptop a pupper |
---|
2440 | |
---|
2441 | IF (kupper .GT. ktop) THEN |
---|
2442 | omg(kupper+1) = - Rg*amdwn(kupper+1)/sigmaw |
---|
2443 | $ + Rg*amup(kupper+1)/(1.-sigmaw) |
---|
2444 | dp_deltomg(kupper) = (omgtop-omg(kupper+1))/(Ptop-Pupper) |
---|
2445 | DO k=ktop+1,kupper |
---|
2446 | dp_deltomg(k) = dp_deltomg(kupper) |
---|
2447 | omg(k) = omgtop+(ph(k)-Ptop)*dp_deltomg(kupper) |
---|
2448 | ENDDO |
---|
2449 | ENDIF |
---|
2450 | |
---|
2451 | c Compute wake average vertical velocity omgbw |
---|
2452 | |
---|
2453 | DO k = 1,klev+1 |
---|
2454 | omgbw(k) = omgb(k)+(1.-sigmaw)*omg(k) |
---|
2455 | ENDDO |
---|
2456 | |
---|
2457 | c and its vertical gradient dp_omgbw |
---|
2458 | |
---|
2459 | DO k = 1,klev |
---|
2460 | dp_omgbw(k) = (omgbw(k+1)-omgbw(k))/(ph(k+1)-ph(k)) |
---|
2461 | ENDDO |
---|
2462 | |
---|
2463 | |
---|
2464 | c Upstream coefficients for omgb velocity |
---|
2465 | c-- (alpha_up(k) is the coefficient of the value at level k) |
---|
2466 | c-- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
2467 | |
---|
2468 | DO k = 1,klev |
---|
2469 | alpha_up(k) = 0. |
---|
2470 | IF (omgb(k) .GT. 0.) alpha_up(k) = 1. |
---|
2471 | ENDDO |
---|
2472 | |
---|
2473 | c Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
2474 | |
---|
2475 | RRe1 = 1.-sigmaw |
---|
2476 | RRe2 = sigmaw |
---|
2477 | RRd1 = -1. |
---|
2478 | RRd2 = 1. |
---|
2479 | |
---|
2480 | c Get [Th1,Th2], dth and [q1,q2] |
---|
2481 | |
---|
2482 | DO k = 1,kupper+1 |
---|
2483 | dth(k) = deltatw(k)/ppi(k) |
---|
2484 | Th1(k) = the(k) - sigmaw *dth(k) ! undisturbed area |
---|
2485 | Th2(k) = the(k) + (1.-sigmaw)*dth(k) ! wake |
---|
2486 | q1(k) = qe(k) - sigmaw *deltaqw(k) ! undisturbed area |
---|
2487 | q2(k) = qe(k) + (1.-sigmaw)*deltaqw(k) ! wake |
---|
2488 | ENDDO |
---|
2489 | |
---|
2490 | D_Th1(1) = 0. |
---|
2491 | D_Th2(1) = 0. |
---|
2492 | D_dth(1) = 0. |
---|
2493 | D_q1(1) = 0. |
---|
2494 | D_q2(1) = 0. |
---|
2495 | D_dq(1) = 0. |
---|
2496 | |
---|
2497 | DO k = 2,kupper+1 ! loop on interfaces |
---|
2498 | D_Th1(k) = Th1(k-1)-Th1(k) |
---|
2499 | D_Th2(k) = Th2(k-1)-Th2(k) |
---|
2500 | D_dth(k) = dth(k-1)-dth(k) |
---|
2501 | D_q1(k) = q1(k-1)-q1(k) |
---|
2502 | D_q2(k) = q2(k-1)-q2(k) |
---|
2503 | D_dq(k) = deltaqw(k-1)-deltaqw(k) |
---|
2504 | ENDDO |
---|
2505 | |
---|
2506 | omgbdth(1) = 0. |
---|
2507 | omgbdq(1) = 0. |
---|
2508 | |
---|
2509 | DO k = 2,kupper+1 ! loop on interfaces |
---|
2510 | omgbdth(k) = omgb(k)*( dth(k-1) - dth(k)) |
---|
2511 | omgbdq(k) = omgb(k)*(deltaqw(k-1) - deltaqw(k)) |
---|
2512 | ENDDO |
---|
2513 | |
---|
2514 | |
---|
2515 | c----------------------------------------------------------------- |
---|
2516 | DO k=1,kupper-1 |
---|
2517 | c----------------------------------------------------------------- |
---|
2518 | c |
---|
2519 | c Compute redistribution (advective) term |
---|
2520 | c |
---|
2521 | d_deltatw(k) = |
---|
2522 | $ dtimesub/(Ph(k)-Ph(k+1))*( |
---|
2523 | $ RRd1*omg(k )*sigmaw *D_Th1(k) |
---|
2524 | $ -RRd2*omg(k+1)*(1.-sigmaw)*D_Th2(k+1) |
---|
2525 | $ -(1.-alpha_up(k))*omgbdth(k) - alpha_up(k+1)*omgbdth(k+1) |
---|
2526 | $ )*ppi(k) |
---|
2527 | c print*,'d_deltatw=',d_deltatw(k) |
---|
2528 | c |
---|
2529 | d_deltaqw(k) = |
---|
2530 | $ dtimesub/(Ph(k)-Ph(k+1))*( |
---|
2531 | $ RRd1*omg(k )*sigmaw *D_q1(k) |
---|
2532 | $ -RRd2*omg(k+1)*(1.-sigmaw)*D_q2(k+1) |
---|
2533 | $ -(1.-alpha_up(k))*omgbdq(k) - alpha_up(k+1)*omgbdq(k+1) |
---|
2534 | $ ) |
---|
2535 | c print*,'d_deltaqw=',d_deltaqw(k) |
---|
2536 | c |
---|
2537 | c and increment large scale tendencies |
---|
2538 | c |
---|
2539 | dtls(k) = dtls(k) + |
---|
2540 | $ dtimesub*( |
---|
2541 | $ ( RRe1*omg(k )*sigmaw *D_Th1(k) |
---|
2542 | $ -RRe2*omg(k+1)*(1.-sigmaw)*D_Th2(k+1) ) |
---|
2543 | $ /(Ph(k)-Ph(k+1)) |
---|
2544 | $ -sigmaw*(1.-sigmaw)*dth(k)*dp_deltomg(k) |
---|
2545 | $ )*ppi(k) |
---|
2546 | c print*,'dtls=',dtls(k) |
---|
2547 | c |
---|
2548 | dqls(k) = dqls(k) + |
---|
2549 | $ dtimesub*( |
---|
2550 | $ ( RRe1*omg(k )*sigmaw *D_q1(k) |
---|
2551 | $ -RRe2*omg(k+1)*(1.-sigmaw)*D_q2(k+1) ) |
---|
2552 | $ /(Ph(k)-Ph(k+1)) |
---|
2553 | $ -sigmaw*(1.-sigmaw)*deltaqw(k)*dp_deltomg(k) |
---|
2554 | $ ) |
---|
2555 | c print*,'dqls=',dqls(k) |
---|
2556 | |
---|
2557 | c------------------------------------------------------------------- |
---|
2558 | ENDDO |
---|
2559 | c------------------------------------------------------------------ |
---|
2560 | |
---|
2561 | C Increment state variables |
---|
2562 | |
---|
2563 | DO k = 1,kupper-1 |
---|
2564 | |
---|
2565 | c Coefficient de répartition |
---|
2566 | |
---|
2567 | Crep(k)=Crep_sol*(ph(kupper)-ph(k))/(ph(kupper)-ph(1)) |
---|
2568 | Crep(k)=Crep(k)+Crep_upper*(ph(1)-ph(k))/(p(1)-ph(kupper)) |
---|
2569 | |
---|
2570 | |
---|
2571 | c Reintroduce compensating subsidence term. |
---|
2572 | |
---|
2573 | c dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
2574 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
2575 | c . /(1-sigmaw) |
---|
2576 | c dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
2577 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
2578 | c . /(1-sigmaw) |
---|
2579 | c |
---|
2580 | c dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
2581 | c dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
2582 | c . /(1-sigmaw) |
---|
2583 | c dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
2584 | c dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
2585 | c . /(1-sigmaw) |
---|
2586 | |
---|
2587 | dtKE(k)=(dtdwn(k)/sigmaw - dta(k)/(1.-sigmaw)) |
---|
2588 | dqKE(k)=(dqdwn(k)/sigmaw - dqa(k)/(1.-sigmaw)) |
---|
2589 | c print*,'dtKE=',dtKE(k) |
---|
2590 | c print*,'dqKE=',dqKE(k) |
---|
2591 | c |
---|
2592 | dtPBL(k)=(wdtPBL(k)/sigmaw - udtPBL(k)/(1.-sigmaw)) |
---|
2593 | dqPBL(k)=(wdqPBL(k)/sigmaw - udqPBL(k)/(1.-sigmaw)) |
---|
2594 | c |
---|
2595 | spread(k) = (1.-sigmaw)*dp_deltomg(k)+gfl*Cstar/sigmaw |
---|
2596 | c print*,'spread=',spread(k) |
---|
2597 | |
---|
2598 | |
---|
2599 | c ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU Jingmei |
---|
2600 | |
---|
2601 | d_deltat_gw(k)=d_deltat_gw(k)-Tgw(k)*deltatw(k)* dtimesub |
---|
2602 | c print*,'d_delta_gw=',d_deltat_gw(k) |
---|
2603 | ff=d_deltatw(k)/dtimesub |
---|
2604 | |
---|
2605 | c Sans GW |
---|
2606 | c |
---|
2607 | c deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
2608 | c |
---|
2609 | c GW formule 1 |
---|
2610 | c |
---|
2611 | c deltatw(k) = deltatw(k)+dtimesub* |
---|
2612 | c $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
2613 | c |
---|
2614 | c GW formule 2 |
---|
2615 | |
---|
2616 | IF (dtimesub*Tgw(k).lt.1.e-10) THEN |
---|
2617 | deltatw(k) = deltatw(k)+dtimesub* |
---|
2618 | $ (ff+dtKE(k)+dtPBL(k) |
---|
2619 | $ - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
2620 | ELSE |
---|
2621 | deltatw(k) = deltatw(k)+1/Tgw(k)*(1-exp(-dtimesub*Tgw(k)))* |
---|
2622 | $ (ff+dtKE(k)+dtPBL(k) |
---|
2623 | $ - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
2624 | ENDIF |
---|
2625 | |
---|
2626 | dth(k) = deltatw(k)/ppi(k) |
---|
2627 | |
---|
2628 | gg=d_deltaqw(k)/dtimesub |
---|
2629 | |
---|
2630 | deltaqw(k) = deltaqw(k) + |
---|
2631 | $ dtimesub*(gg+ dqKE(k)+dqPBL(k) - spread(k)*deltaqw(k)) |
---|
2632 | |
---|
2633 | d_deltatw2(k)=d_deltatw2(k)+d_deltatw(k) |
---|
2634 | d_deltaqw2(k)=d_deltaqw2(k)+d_deltaqw(k) |
---|
2635 | ENDDO |
---|
2636 | |
---|
2637 | C And update large scale variables |
---|
2638 | |
---|
2639 | DO k = 1,kupper |
---|
2640 | te(k) = te0(k) + dtls(k) |
---|
2641 | qe(k) = qe0(k) + dqls(k) |
---|
2642 | the(k) = te(k)/ppi(k) |
---|
2643 | ENDDO |
---|
2644 | |
---|
2645 | c Determine Ptop from buoyancy integral |
---|
2646 | c---------------------------------------------------------------------- |
---|
2647 | |
---|
2648 | c-1/ Pressure of the level where dth changes sign. |
---|
2649 | |
---|
2650 | Ptop_provis=ph(1) |
---|
2651 | |
---|
2652 | DO k= 2,klev |
---|
2653 | IF (dth(k) .GT. -delta_t_min .and. |
---|
2654 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
2655 | Ptop_provis = ((dth(k)+delta_t_min)*p(k-1) |
---|
2656 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
2657 | GO TO 65 |
---|
2658 | ENDIF |
---|
2659 | ENDDO |
---|
2660 | 65 CONTINUE |
---|
2661 | |
---|
2662 | c-2/ dth integral |
---|
2663 | |
---|
2664 | sum_dth = 0. |
---|
2665 | dthmin = -delta_t_min |
---|
2666 | z = 0. |
---|
2667 | |
---|
2668 | DO k = 1,klev |
---|
2669 | dz = -(max(ph(k+1),Ptop_provis)-Ph(k))/(rho(k)*rg) |
---|
2670 | IF (dz .le. 0) GO TO 70 |
---|
2671 | z = z+dz |
---|
2672 | sum_dth = sum_dth + dth(k)*dz |
---|
2673 | dthmin = min(dthmin,dth(k)) |
---|
2674 | ENDDO |
---|
2675 | 70 CONTINUE |
---|
2676 | |
---|
2677 | c-3/ height of triangle with area= sum_dth and base = dthmin |
---|
2678 | |
---|
2679 | hw = 2.*sum_dth/min(dthmin,-0.5) |
---|
2680 | hw = max(hwmin,hw) |
---|
2681 | |
---|
2682 | c-4/ now, get Ptop |
---|
2683 | |
---|
2684 | ktop = 0 |
---|
2685 | z=0. |
---|
2686 | |
---|
2687 | DO k = 1,klev |
---|
2688 | dz = min(-(ph(k+1)-Ph(k))/(rho(k)*rg),hw-z) |
---|
2689 | IF (dz .le. 0) GO TO 75 |
---|
2690 | z = z+dz |
---|
2691 | Ptop = Ph(k)-rho(k)*rg*dz |
---|
2692 | ktop = k |
---|
2693 | ENDDO |
---|
2694 | 75 CONTINUE |
---|
2695 | |
---|
2696 | c-5/Correct ktop and ptop |
---|
2697 | |
---|
2698 | Ptop_new=ptop |
---|
2699 | |
---|
2700 | DO k= ktop,2,-1 |
---|
2701 | IF (dth(k) .GT. -delta_t_min .and. |
---|
2702 | $ dth(k-1).LT. -delta_t_min) THEN |
---|
2703 | Ptop_new = ((dth(k)+delta_t_min)*p(k-1) |
---|
2704 | $ - (dth(k-1)+delta_t_min)*p(k)) /(dth(k) - dth(k-1)) |
---|
2705 | GO TO 275 |
---|
2706 | ENDIF |
---|
2707 | ENDDO |
---|
2708 | 275 CONTINUE |
---|
2709 | |
---|
2710 | ptop = ptop_new |
---|
2711 | |
---|
2712 | DO k=klev,1,-1 |
---|
2713 | IF (ph(k+1) .LT. ptop) ktop=k |
---|
2714 | ENDDO |
---|
2715 | |
---|
2716 | c-6/ Set deltatw & deltaqw to 0 above kupper |
---|
2717 | |
---|
2718 | DO k = kupper,klev |
---|
2719 | deltatw(k) = 0. |
---|
2720 | deltaqw(k) = 0. |
---|
2721 | ENDDO |
---|
2722 | |
---|
2723 | c------------------------------------------------------------------ |
---|
2724 | ENDDO ! end sub-timestep loop |
---|
2725 | C ----------------------------------------------------------------- |
---|
2726 | |
---|
2727 | c Get back to tendencies per second |
---|
2728 | |
---|
2729 | DO k = 1,kupper-1 |
---|
2730 | dtls(k) = dtls(k)/dtime |
---|
2731 | dqls(k) = dqls(k)/dtime |
---|
2732 | d_deltatw2(k)=d_deltatw2(k)/dtime |
---|
2733 | d_deltaqw2(k)=d_deltaqw2(k)/dtime |
---|
2734 | d_deltat_gw(k) = d_deltat_gw(k)/dtime |
---|
2735 | ENDDO |
---|
2736 | |
---|
2737 | C 2.1 - Undisturbed area and Wake integrals |
---|
2738 | C --------------------------------------------------------- |
---|
2739 | |
---|
2740 | z = 0. |
---|
2741 | sum_thu = 0. |
---|
2742 | sum_tu = 0. |
---|
2743 | sum_qu = 0. |
---|
2744 | sum_thvu = 0. |
---|
2745 | sum_dth = 0. |
---|
2746 | sum_dq = 0. |
---|
2747 | sum_rho = 0. |
---|
2748 | sum_dtdwn = 0. |
---|
2749 | sum_dqdwn = 0. |
---|
2750 | |
---|
2751 | av_thu = 0. |
---|
2752 | av_tu =0. |
---|
2753 | av_qu =0. |
---|
2754 | av_thvu = 0. |
---|
2755 | av_dth = 0. |
---|
2756 | av_dq = 0. |
---|
2757 | av_rho =0. |
---|
2758 | av_dtdwn =0. |
---|
2759 | av_dqdwn = 0. |
---|
2760 | |
---|
2761 | C Potential temperatures and humidity |
---|
2762 | c---------------------------------------------------------- |
---|
2763 | |
---|
2764 | DO k =1,klev |
---|
2765 | rho(k) = p(k)/(rd*te(k)) |
---|
2766 | IF(k .eq. 1) THEN |
---|
2767 | rhoh(k) = ph(k)/(rd*te(k)) |
---|
2768 | zhh(k)=0 |
---|
2769 | ELSE |
---|
2770 | rhoh(k) = ph(k)*2./(rd*(te(k)+te(k-1))) |
---|
2771 | zhh(k)=(ph(k)-ph(k-1))/(-rhoh(k)*RG)+zhh(k-1) |
---|
2772 | ENDIF |
---|
2773 | the(k) = te(k)/ppi(k) |
---|
2774 | thu(k) = (te(k) - deltatw(k)*sigmaw)/ppi(k) |
---|
2775 | tu(k) = te(k) - deltatw(k)*sigmaw |
---|
2776 | qu(k) = qe(k) - deltaqw(k)*sigmaw |
---|
2777 | rhow(k) = p(k)/(rd*(te(k)+deltatw(k))) |
---|
2778 | dth(k) = deltatw(k)/ppi(k) |
---|
2779 | |
---|
2780 | ENDDO |
---|
2781 | |
---|
2782 | C Integrals (and wake top level number) |
---|
2783 | C ----------------------------------------------------------- |
---|
2784 | |
---|
2785 | C Initialize sum_thvu to 1st level virt. pot. temp. |
---|
2786 | |
---|
2787 | z = 1. |
---|
2788 | dz = 1. |
---|
2789 | sum_thvu = thu(1)*(1.+eps*qu(1))*dz |
---|
2790 | sum_dth = 0. |
---|
2791 | |
---|
2792 | DO k = 1,klev |
---|
2793 | dz = -(max(ph(k+1),Ptop)-Ph(k))/(rho(k)*rg) |
---|
2794 | |
---|
2795 | IF (dz .LE. 0) GO TO 51 |
---|
2796 | z = z+dz |
---|
2797 | sum_thu = sum_thu + thu(k)*dz |
---|
2798 | sum_tu = sum_tu + tu(k)*dz |
---|
2799 | sum_qu = sum_qu + qu(k)*dz |
---|
2800 | sum_thvu = sum_thvu + thu(k)*(1.+eps*qu(k))*dz |
---|
2801 | sum_dth = sum_dth + dth(k)*dz |
---|
2802 | sum_dq = sum_dq + deltaqw(k)*dz |
---|
2803 | sum_rho = sum_rho + rhow(k)*dz |
---|
2804 | sum_dtdwn = sum_dtdwn + dtdwn(k)*dz |
---|
2805 | sum_dqdwn = sum_dqdwn + dqdwn(k)*dz |
---|
2806 | ENDDO |
---|
2807 | 51 CONTINUE |
---|
2808 | |
---|
2809 | hw0 = z |
---|
2810 | |
---|
2811 | C 2.1 - WAPE and mean forcing computation |
---|
2812 | C------------------------------------------------------------- |
---|
2813 | |
---|
2814 | C Means |
---|
2815 | |
---|
2816 | av_thu = sum_thu/hw0 |
---|
2817 | av_tu = sum_tu/hw0 |
---|
2818 | av_qu = sum_qu/hw0 |
---|
2819 | av_thvu = sum_thvu/hw0 |
---|
2820 | av_dth = sum_dth/hw0 |
---|
2821 | av_dq = sum_dq/hw0 |
---|
2822 | av_rho = sum_rho/hw0 |
---|
2823 | av_dtdwn = sum_dtdwn/hw0 |
---|
2824 | av_dqdwn = sum_dqdwn/hw0 |
---|
2825 | |
---|
2826 | wape2 = - rg*hw0*(av_dth |
---|
2827 | $ + eps*(av_thu*av_dq+av_dth*av_qu+av_dth*av_dq ))/av_thvu |
---|
2828 | |
---|
2829 | |
---|
2830 | C 2.2 Prognostic variable update |
---|
2831 | C ------------------------------------------------------------ |
---|
2832 | |
---|
2833 | C Filter out bad wakes |
---|
2834 | |
---|
2835 | IF ( wape2 .LT. 0.) THEN |
---|
2836 | if(prt_level.ge.10) print*,'wape2<0' |
---|
2837 | wape2 = 0. |
---|
2838 | hw = hwmin |
---|
2839 | sigmaw = max(sigmad,sigd_con) |
---|
2840 | fip = 0. |
---|
2841 | DO k = 1,klev |
---|
2842 | deltatw(k) = 0. |
---|
2843 | deltaqw(k) = 0. |
---|
2844 | dth(k) = 0. |
---|
2845 | ENDDO |
---|
2846 | ELSE |
---|
2847 | if(prt_level.ge.10) print*,'wape2>0' |
---|
2848 | Cstar2 = stark*sqrt(2.*wape2) |
---|
2849 | |
---|
2850 | ENDIF |
---|
2851 | |
---|
2852 | ktopw = ktop |
---|
2853 | |
---|
2854 | IF (ktopw .gt. 0) then |
---|
2855 | |
---|
2856 | Cjyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
2857 | ccc heff = 600. |
---|
2858 | C Utilisation de la hauteur hw |
---|
2859 | cc heff = 0.7*hw |
---|
2860 | heff = hw |
---|
2861 | |
---|
2862 | FIP = 0.5*rho(ktopw)*Cstar2**3*heff*2*sqrt(sigmaw*wdens*3.14) |
---|
2863 | FIP = alpk * FIP |
---|
2864 | Cjyg2 |
---|
2865 | ELSE |
---|
2866 | FIP = 0. |
---|
2867 | ENDIF |
---|
2868 | |
---|
2869 | |
---|
2870 | C Limitation de sigmaw |
---|
2871 | c |
---|
2872 | C sécurité : si le wake occuppe plus de 90 % de la surface de la maille, |
---|
2873 | C alors il disparait en se mélangeant à la partie undisturbed |
---|
2874 | |
---|
2875 | ! correction NICOLAS . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
2876 | IF ((sigmaw.GT.0.9).or. |
---|
2877 | . ((wape.ge.wape2).and.(wape2.le.1.0)).or.(ktopw.le.2)) THEN |
---|
2878 | cIM cf NR/JYG 251108 . ((wape.ge.wape2).and.(wape2.le.1.0))) THEN |
---|
2879 | c IF (sigmaw.GT.0.9) THEN |
---|
2880 | DO k = 1,klev |
---|
2881 | dtls(k) = 0. |
---|
2882 | dqls(k) = 0. |
---|
2883 | deltatw(k) = 0. |
---|
2884 | deltaqw(k) = 0. |
---|
2885 | ENDDO |
---|
2886 | wape = 0. |
---|
2887 | hw = hwmin |
---|
2888 | sigmaw = sigmad |
---|
2889 | fip = 0. |
---|
2890 | ENDIF |
---|
2891 | |
---|
2892 | RETURN |
---|
2893 | END |
---|
2894 | |
---|
2895 | |
---|
2896 | |
---|