source: LMDZ5/branches/LF-private/libf/phylmd/radlwsw_m.F90 @ 5427

Last change on this file since 5427 was 1852, checked in by Ehouarn Millour, 11 years ago

Implémentation des sorties XIOS dans LMDZ. Activation via -cpp CPP_XIOS.
ATTENTION: un problème de raccord subsiste en mode MPI !
UG
................................
Adding XIOS output to LMDZ. Activated by the CPP_XIOS key.
WARNING: buggy for now in MPI mode.
UG

File size: 18.6 KB
Line 
1module radlwsw_m
2
3  IMPLICIT NONE
4
5contains
6
7SUBROUTINE radlwsw( &
8   dist, rmu0, fract, &
9   paprs, pplay,tsol,alb1, alb2, &
10   t,q,wo,&
11   cldfra, cldemi, cldtaupd,&
12   ok_ade, ok_aie, flag_aerosol,&
13   flag_aerosol_strat,&
14   tau_aero, piz_aero, cg_aero,&
15   cldtaupi, new_aod, &
16   qsat, flwc, fiwc, &
17   heat,heat0,cool,cool0,radsol,albpla,&
18   topsw,toplw,solsw,sollw,&
19   sollwdown,&
20   topsw0,toplw0,solsw0,sollw0,&
21   lwdn0, lwdn, lwup0, lwup,&
22   swdn0, swdn, swup0, swup,&
23   topswad_aero, solswad_aero,&
24   topswai_aero, solswai_aero, &
25   topswad0_aero, solswad0_aero,&
26   topsw_aero, topsw0_aero,&
27   solsw_aero, solsw0_aero, &
28   topswcf_aero, solswcf_aero)
29
30
31
32  USE DIMPHY
33  USE assert_m, ONLY : assert
34  USE infotrac, ONLY : type_trac
35#ifdef REPROBUS
36  USE CHEM_REP, ONLY : solaireTIME, ok_SUNTIME, ndimozon
37#endif
38
39  !======================================================================
40  ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719
41  ! Objet: interface entre le modele et les rayonnements
42  ! Arguments:
43  ! dist-----input-R- distance astronomique terre-soleil
44  ! rmu0-----input-R- cosinus de l'angle zenithal
45  ! fract----input-R- duree d'ensoleillement normalisee
46  ! co2_ppm--input-R- concentration du gaz carbonique (en ppm)
47  ! paprs----input-R- pression a inter-couche (Pa)
48  ! pplay----input-R- pression au milieu de couche (Pa)
49  ! tsol-----input-R- temperature du sol (en K)
50  ! alb1-----input-R- albedo du sol(entre 0 et 1) dans l'interval visible
51  ! alb2-----input-R- albedo du sol(entre 0 et 1) dans l'interval proche infra-rouge   
52  ! t--------input-R- temperature (K)
53  ! q--------input-R- vapeur d'eau (en kg/kg)
54  ! cldfra---input-R- fraction nuageuse (entre 0 et 1)
55  ! cldtaupd---input-R- epaisseur optique des nuages dans le visible (present-day value)
56  ! cldemi---input-R- emissivite des nuages dans l'IR (entre 0 et 1)
57  ! ok_ade---input-L- apply the Aerosol Direct Effect or not?
58  ! ok_aie---input-L- apply the Aerosol Indirect Effect or not?
59  ! flag_aerosol-input-I- aerosol flag from 0 to 6
60  ! flag_aerosol_strat-input-I- use stratospheric aerosols flag (T/F)
61  ! tau_ae, piz_ae, cg_ae-input-R- aerosol optical properties (calculated in aeropt.F)
62  ! cldtaupi-input-R- epaisseur optique des nuages dans le visible
63  !                   calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller
64  !                   droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd
65  !                   it is needed for the diagnostics of the aerosol indirect radiative forcing     
66  !
67  ! heat-----output-R- echauffement atmospherique (visible) (K/jour)
68  ! cool-----output-R- refroidissement dans l'IR (K/jour)
69  ! radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas)
70  ! albpla---output-R- albedo planetaire (entre 0 et 1)
71  ! topsw----output-R- flux solaire net au sommet de l'atm.
72  ! toplw----output-R- ray. IR montant au sommet de l'atmosphere
73  ! solsw----output-R- flux solaire net a la surface
74  ! sollw----output-R- ray. IR montant a la surface
75  ! solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir)
76  ! topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir)
77  ! solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind)
78  ! topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind)
79  !
80  ! ATTENTION: swai and swad have to be interpreted in the following manner:
81  ! ---------
82  ! ok_ade=F & ok_aie=F -both are zero
83  ! ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad
84  !                        indirect is zero
85  ! ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai
86  !                        direct is zero
87  ! ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai
88  !                        aerosol direct forcing is F_{AD} = topswai-topswad
89  !
90 
91  !======================================================================
92 
93  ! ====================================================================
94  ! Adapte au modele de chimie INCA par Celine Deandreis & Anne Cozic -- 2009
95  ! 1 = ZERO   
96  ! 2 = AER total   
97  ! 3 = NAT   
98  ! 4 = BC   
99  ! 5 = SO4   
100  ! 6 = POM   
101  ! 7 = DUST   
102  ! 8 = SS   
103  ! 9 = NO3   
104  !
105  ! ====================================================================
106  include "YOETHF.h"
107  include "YOMCST.h"
108  include "clesphys.h"
109  include "iniprint.h"
110
111! Input arguments
112  REAL,    INTENT(in)  :: dist
113  REAL,    INTENT(in)  :: rmu0(KLON), fract(KLON)
114  REAL,    INTENT(in)  :: paprs(KLON,KLEV+1), pplay(KLON,KLEV)
115  REAL,    INTENT(in)  :: alb1(KLON), alb2(KLON), tsol(KLON)
116  REAL,    INTENT(in)  :: t(KLON,KLEV), q(KLON,KLEV)
117
118  REAL, INTENT(in):: wo(:, :, :) ! dimension(KLON,KLEV, 1 or 2)
119  ! column-density of ozone in a layer, in kilo-Dobsons
120  ! "wo(:, :, 1)" is for the average day-night field,
121  ! "wo(:, :, 2)" is for daylight time.
122
123  LOGICAL, INTENT(in)  :: ok_ade, ok_aie                                 ! switches whether to use aerosol direct (indirect) effects or not
124  INTEGER, INTENT(in)  :: flag_aerosol                                   ! takes value 0 (no aerosol) or 1 to 6 (aerosols)
125  LOGICAL, INTENT(in)  :: flag_aerosol_strat                             ! use stratospheric aerosols
126  REAL,    INTENT(in)  :: cldfra(KLON,KLEV), cldemi(KLON,KLEV), cldtaupd(KLON,KLEV)
127  REAL,    INTENT(in)  :: tau_aero(KLON,KLEV,9,2)                        ! aerosol optical properties (see aeropt.F)
128  REAL,    INTENT(in)  :: piz_aero(KLON,KLEV,9,2)                        ! aerosol optical properties (see aeropt.F)
129  REAL,    INTENT(in)  :: cg_aero(KLON,KLEV,9,2)                         ! aerosol optical properties (see aeropt.F)
130  REAL,    INTENT(in)  :: cldtaupi(KLON,KLEV)                            ! cloud optical thickness for pre-industrial aerosol concentrations
131  LOGICAL, INTENT(in)  :: new_aod                                        ! flag pour retrouver les resultats exacts de l'AR4 dans le cas ou l'on ne travaille qu'avec les sulfates
132  REAL,    INTENT(in)  :: qsat(klon,klev) ! Variable pour iflag_rrtm=1
133  REAL,    INTENT(in)  :: flwc(klon,klev) ! Variable pour iflag_rrtm=1
134  REAL,    INTENT(in)  :: fiwc(klon,klev) ! Variable pour iflag_rrtm=1
135
136! Output arguments
137  REAL,    INTENT(out) :: heat(KLON,KLEV), cool(KLON,KLEV)
138  REAL,    INTENT(out) :: heat0(KLON,KLEV), cool0(KLON,KLEV)
139  REAL,    INTENT(out) :: radsol(KLON), topsw(KLON), toplw(KLON)
140  REAL,    INTENT(out) :: solsw(KLON), sollw(KLON), albpla(KLON)
141  REAL,    INTENT(out) :: topsw0(KLON), toplw0(KLON), solsw0(KLON), sollw0(KLON)
142  REAL,    INTENT(out) :: sollwdown(KLON)
143  REAL,    INTENT(out) :: swdn(KLON,kflev+1),swdn0(KLON,kflev+1)
144  REAL,    INTENT(out) :: swup(KLON,kflev+1),swup0(KLON,kflev+1)
145  REAL,    INTENT(out) :: lwdn(KLON,kflev+1),lwdn0(KLON,kflev+1)
146  REAL,    INTENT(out) :: lwup(KLON,kflev+1),lwup0(KLON,kflev+1)
147  REAL,    INTENT(out) :: topswad_aero(KLON), solswad_aero(KLON)         ! output: aerosol direct forcing at TOA and surface
148  REAL,    INTENT(out) :: topswai_aero(KLON), solswai_aero(KLON)         ! output: aerosol indirect forcing atTOA and surface
149  REAL, DIMENSION(klon), INTENT(out)    :: topswad0_aero
150  REAL, DIMENSION(klon), INTENT(out)    :: solswad0_aero
151  REAL, DIMENSION(kdlon,9), INTENT(out) :: topsw_aero
152  REAL, DIMENSION(kdlon,9), INTENT(out) :: topsw0_aero
153  REAL, DIMENSION(kdlon,9), INTENT(out) :: solsw_aero
154  REAL, DIMENSION(kdlon,9), INTENT(out) :: solsw0_aero
155  REAL, DIMENSION(kdlon,3), INTENT(out) :: topswcf_aero
156  REAL, DIMENSION(kdlon,3), INTENT(out) :: solswcf_aero
157
158! Local variables
159  REAL(KIND=8) ZFSUP(KDLON,KFLEV+1)
160  REAL(KIND=8) ZFSDN(KDLON,KFLEV+1)
161  REAL(KIND=8) ZFSUP0(KDLON,KFLEV+1)
162  REAL(KIND=8) ZFSDN0(KDLON,KFLEV+1)
163  REAL(KIND=8) ZFLUP(KDLON,KFLEV+1)
164  REAL(KIND=8) ZFLDN(KDLON,KFLEV+1)
165  REAL(KIND=8) ZFLUP0(KDLON,KFLEV+1)
166  REAL(KIND=8) ZFLDN0(KDLON,KFLEV+1)
167  REAL(KIND=8) zx_alpha1, zx_alpha2
168  INTEGER k, kk, i, j, iof, nb_gr
169  REAL(KIND=8) PSCT
170  REAL(KIND=8) PALBD(kdlon,2), PALBP(kdlon,2)
171  REAL(KIND=8) PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon)
172  REAL(KIND=8) PPSOL(kdlon), PDP(kdlon,KLEV)
173  REAL(KIND=8) PTL(kdlon,kflev+1), PPMB(kdlon,kflev+1)
174  REAL(KIND=8) PTAVE(kdlon,kflev)
175  REAL(KIND=8) PWV(kdlon,kflev), PQS(kdlon,kflev)
176
177  real(kind=8) POZON(kdlon, kflev, size(wo, 3)) ! mass fraction of ozone
178  ! "POZON(:, :, 1)" is for the average day-night field,
179  ! "POZON(:, :, 2)" is for daylight time.
180
181  REAL(KIND=8) PAER(kdlon,kflev,5)
182  REAL(KIND=8) PCLDLD(kdlon,kflev)
183  REAL(KIND=8) PCLDLU(kdlon,kflev)
184  REAL(KIND=8) PCLDSW(kdlon,kflev)
185  REAL(KIND=8) PTAU(kdlon,2,kflev)
186  REAL(KIND=8) POMEGA(kdlon,2,kflev)
187  REAL(KIND=8) PCG(kdlon,2,kflev)
188  REAL(KIND=8) zfract(kdlon), zrmu0(kdlon), zdist
189  REAL(KIND=8) zheat(kdlon,kflev), zcool(kdlon,kflev)
190  REAL(KIND=8) zheat0(kdlon,kflev), zcool0(kdlon,kflev)
191  REAL(KIND=8) ztopsw(kdlon), ztoplw(kdlon)
192  REAL(KIND=8) zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon)
193  REAL(KIND=8) zsollwdown(kdlon)
194  REAL(KIND=8) ztopsw0(kdlon), ztoplw0(kdlon)
195  REAL(KIND=8) zsolsw0(kdlon), zsollw0(kdlon)
196  REAL(KIND=8) zznormcp
197  REAL(KIND=8) tauaero(kdlon,kflev,9,2)                     ! aer opt properties
198  REAL(KIND=8) pizaero(kdlon,kflev,9,2)
199  REAL(KIND=8) cgaero(kdlon,kflev,9,2)
200  REAL(KIND=8) PTAUA(kdlon,2,kflev)                         ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use
201  REAL(KIND=8) POMEGAA(kdlon,2,kflev)                       ! dito for single scatt albedo
202  REAL(KIND=8) ztopswadaero(kdlon), zsolswadaero(kdlon)     ! Aerosol direct forcing at TOAand surface
203  REAL(KIND=8) ztopswad0aero(kdlon), zsolswad0aero(kdlon)   ! Aerosol direct forcing at TOAand surface
204  REAL(KIND=8) ztopswaiaero(kdlon), zsolswaiaero(kdlon)     ! dito, indirect
205  REAL(KIND=8) ztopsw_aero(kdlon,9), ztopsw0_aero(kdlon,9)
206  REAL(KIND=8) zsolsw_aero(kdlon,9), zsolsw0_aero(kdlon,9)
207  REAL(KIND=8) ztopswcf_aero(kdlon,3), zsolswcf_aero(kdlon,3)     
208  real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2
209
210  call assert(size(wo, 1) == klon, size(wo, 2) == klev, "radlwsw wo")
211  ! initialisation
212  tauaero(:,:,:,:)=0.
213  pizaero(:,:,:,:)=0.
214  cgaero(:,:,:,:)=0.
215 
216  !
217  !-------------------------------------------
218  nb_gr = KLON / kdlon
219  IF (nb_gr*kdlon .NE. KLON) THEN
220      PRINT*, "kdlon mauvais:", KLON, kdlon, nb_gr
221      CALL abort
222  ENDIF
223  IF (kflev .NE. KLEV) THEN
224      PRINT*, "kflev differe de KLEV, kflev, KLEV"
225      CALL abort
226  ENDIF
227  !-------------------------------------------
228  DO k = 1, KLEV
229    DO i = 1, KLON
230      heat(i,k)=0.
231      cool(i,k)=0.
232      heat0(i,k)=0.
233      cool0(i,k)=0.
234    ENDDO
235  ENDDO
236  !
237  zdist = dist
238  !
239  PSCT = solaire/zdist/zdist
240
241  IF (type_trac == 'repr') THEN
242#ifdef REPROBUS
243     if(ok_SUNTIME) PSCT = solaireTIME/zdist/zdist
244     print*,'Constante solaire: ',PSCT*zdist*zdist
245#endif
246  END IF
247
248  DO j = 1, nb_gr
249    iof = kdlon*(j-1)
250    DO i = 1, kdlon
251      zfract(i) = fract(iof+i)
252      zrmu0(i) = rmu0(iof+i)
253      PALBD(i,1) = alb1(iof+i)
254      PALBD(i,2) = alb2(iof+i)
255      PALBP(i,1) = alb1(iof+i)
256      PALBP(i,2) = alb2(iof+i)
257      PEMIS(i) = 1.0
258      PVIEW(i) = 1.66
259      PPSOL(i) = paprs(iof+i,1)
260      zx_alpha1 = (paprs(iof+i,1)-pplay(iof+i,2))/(pplay(iof+i,1)-pplay(iof+i,2))
261      zx_alpha2 = 1.0 - zx_alpha1
262      PTL(i,1) = t(iof+i,1) * zx_alpha1 + t(iof+i,2) * zx_alpha2
263      PTL(i,KLEV+1) = t(iof+i,KLEV)
264      PDT0(i) = tsol(iof+i) - PTL(i,1)
265    ENDDO
266    DO k = 2, kflev
267      DO i = 1, kdlon
268        PTL(i,k) = (t(iof+i,k)+t(iof+i,k-1))*0.5
269      ENDDO
270    ENDDO
271    DO k = 1, kflev
272      DO i = 1, kdlon
273        PDP(i,k) = paprs(iof+i,k)-paprs(iof+i,k+1)
274        PTAVE(i,k) = t(iof+i,k)
275        PWV(i,k) = MAX (q(iof+i,k), 1.0e-12)
276        PQS(i,k) = PWV(i,k)
277        POZON(i,k, :) = wo(iof+i, k, :) * RG * dobson_u * 1e3 &
278             / (paprs(iof+i, k) - paprs(iof+i, k+1))
279        PCLDLD(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k)
280        PCLDLU(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k)
281        PCLDSW(i,k) = cldfra(iof+i,k)
282        PTAU(i,1,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! 1e-12 serait instable
283        PTAU(i,2,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! pour 32-bit machines
284        POMEGA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i,1,k))
285        POMEGA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i,2,k))
286        PCG(i,1,k) = 0.865
287        PCG(i,2,k) = 0.910
288        !-
289        ! Introduced for aerosol indirect forcings.
290        ! The following values use the cloud optical thickness calculated from
291        ! present-day aerosol concentrations whereas the quantities without the
292        ! "A" at the end are for pre-industial (natural-only) aerosol concentrations
293        !
294        PTAUA(i,1,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! 1e-12 serait instable
295        PTAUA(i,2,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! pour 32-bit machines
296        POMEGAA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i,1,k))
297        POMEGAA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i,2,k))
298      ENDDO
299    ENDDO
300
301    IF (type_trac == 'repr') THEN
302#ifdef REPROBUS
303       ndimozon = size(wo, 3)
304       CALL RAD_INTERACTIF(POZON,iof)
305#endif
306    END IF
307
308    !
309    DO k = 1, kflev+1
310      DO i = 1, kdlon
311        PPMB(i,k) = paprs(iof+i,k)/100.0
312      ENDDO
313    ENDDO
314    !
315    DO kk = 1, 5
316      DO k = 1, kflev
317        DO i = 1, kdlon
318          PAER(i,k,kk) = 1.0E-15
319        ENDDO
320      ENDDO
321    ENDDO
322    DO k = 1, kflev
323      DO i = 1, kdlon
324        tauaero(i,k,:,1)=tau_aero(iof+i,k,:,1)
325        pizaero(i,k,:,1)=piz_aero(iof+i,k,:,1)
326        cgaero(i,k,:,1) =cg_aero(iof+i,k,:,1)
327        tauaero(i,k,:,2)=tau_aero(iof+i,k,:,2)
328        pizaero(i,k,:,2)=piz_aero(iof+i,k,:,2)
329        cgaero(i,k,:,2) =cg_aero(iof+i,k,:,2)
330      ENDDO
331    ENDDO
332
333!
334!===== iflag_rrtm ================================================
335!     
336    print*,'iflag_rrtm = ', iflag_rrtm
337    IF (iflag_rrtm == 0) THEN
338       ! Old radiation scheme, used for AR4 runs
339       ! average day-night ozone for longwave
340       CALL LW_LMDAR4(&
341            PPMB, PDP,&
342            PPSOL,PDT0,PEMIS,&
343            PTL, PTAVE, PWV, POZON(:, :, 1), PAER,&
344            PCLDLD,PCLDLU,&
345            PVIEW,&
346            zcool, zcool0,&
347            ztoplw,zsollw,ztoplw0,zsollw0,&
348            zsollwdown,&
349            ZFLUP, ZFLDN, ZFLUP0,ZFLDN0)
350
351       ! daylight ozone, if we have it, for short wave
352       IF (.NOT. new_aod) THEN
353          ! use old version
354          CALL SW_LMDAR4(PSCT, zrmu0, zfract,&
355               PPMB, PDP, &
356               PPSOL, PALBD, PALBP,&
357               PTAVE, PWV, PQS, POZON(:, :, size(wo, 3)), PAER,&
358               PCLDSW, PTAU, POMEGA, PCG,&
359               zheat, zheat0,&
360               zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0,&
361               ZFSUP,ZFSDN,ZFSUP0,ZFSDN0,&
362               tauaero(:,:,5,:), pizaero(:,:,5,:), cgaero(:,:,5,:),&
363               PTAUA, POMEGAA,&
364               ztopswadaero,zsolswadaero,&
365               ztopswaiaero,zsolswaiaero,&
366               ok_ade, ok_aie)
367         
368       ELSE ! new_aod=T         
369          CALL SW_AEROAR4(PSCT, zrmu0, zfract,&
370               PPMB, PDP,&
371               PPSOL, PALBD, PALBP,&
372               PTAVE, PWV, PQS, POZON(:, :, size(wo, 3)), PAER,&
373               PCLDSW, PTAU, POMEGA, PCG,&
374               zheat, zheat0,&
375               zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0,&
376               ZFSUP,ZFSDN,ZFSUP0,ZFSDN0,&
377               tauaero, pizaero, cgaero, &
378               PTAUA, POMEGAA,&
379               ztopswadaero,zsolswadaero,&
380               ztopswad0aero,zsolswad0aero,&
381               ztopswaiaero,zsolswaiaero, &
382               ztopsw_aero,ztopsw0_aero,&
383               zsolsw_aero,zsolsw0_aero,&
384               ztopswcf_aero,zsolswcf_aero, &
385               ok_ade, ok_aie, flag_aerosol,flag_aerosol_strat)
386       ENDIF
387
388    ELSE 
389!===== iflag_rrtm=1, on passe dans SW via RECMWFL ===============
390       WRITE(lunout,*) "Option iflag_rrtm=T ne fonctionne pas encore !!!"
391       CALL abort_gcm('radlwsw','iflag_rrtm=T not valid',1)
392
393    ENDIF ! iflag_rrtm
394!======================================================================
395
396    DO i = 1, kdlon
397      radsol(iof+i) = zsolsw(i) + zsollw(i)
398      topsw(iof+i) = ztopsw(i)
399      toplw(iof+i) = ztoplw(i)
400      solsw(iof+i) = zsolsw(i)
401      sollw(iof+i) = zsollw(i)
402      sollwdown(iof+i) = zsollwdown(i)
403      DO k = 1, kflev+1
404        lwdn0 ( iof+i,k)   = ZFLDN0 ( i,k)
405        lwdn  ( iof+i,k)   = ZFLDN  ( i,k)
406        lwup0 ( iof+i,k)   = ZFLUP0 ( i,k)
407        lwup  ( iof+i,k)   = ZFLUP  ( i,k)
408      ENDDO
409      topsw0(iof+i) = ztopsw0(i)
410      toplw0(iof+i) = ztoplw0(i)
411      solsw0(iof+i) = zsolsw0(i)
412      sollw0(iof+i) = zsollw0(i)
413      albpla(iof+i) = zalbpla(i)
414
415      DO k = 1, kflev+1
416        swdn0 ( iof+i,k)   = ZFSDN0 ( i,k)
417        swdn  ( iof+i,k)   = ZFSDN  ( i,k)
418        swup0 ( iof+i,k)   = ZFSUP0 ( i,k)
419        swup  ( iof+i,k)   = ZFSUP  ( i,k)
420      ENDDO
421    ENDDO
422    !-transform the aerosol forcings, if they have
423    ! to be calculated
424    IF (ok_ade) THEN
425        DO i = 1, kdlon
426          topswad_aero(iof+i) = ztopswadaero(i)
427          topswad0_aero(iof+i) = ztopswad0aero(i)
428          solswad_aero(iof+i) = zsolswadaero(i)
429          solswad0_aero(iof+i) = zsolswad0aero(i)
430! MS the following lines seem to be wrong, why is iof on right hand side???
431!          topsw_aero(iof+i,:) = ztopsw_aero(iof+i,:)
432!          topsw0_aero(iof+i,:) = ztopsw0_aero(iof+i,:)
433!          solsw_aero(iof+i,:) = zsolsw_aero(iof+i,:)
434!          solsw0_aero(iof+i,:) = zsolsw0_aero(iof+i,:)
435          topsw_aero(iof+i,:) = ztopsw_aero(i,:)
436          topsw0_aero(iof+i,:) = ztopsw0_aero(i,:)
437          solsw_aero(iof+i,:) = zsolsw_aero(i,:)
438          solsw0_aero(iof+i,:) = zsolsw0_aero(i,:)
439          topswcf_aero(iof+i,:) = ztopswcf_aero(i,:)
440          solswcf_aero(iof+i,:) = zsolswcf_aero(i,:)         
441        ENDDO
442    ELSE
443        DO i = 1, kdlon
444          topswad_aero(iof+i) = 0.0
445          solswad_aero(iof+i) = 0.0
446          topswad0_aero(iof+i) = 0.0
447          solswad0_aero(iof+i) = 0.0
448          topsw_aero(iof+i,:) = 0.
449          topsw0_aero(iof+i,:) =0.
450          solsw_aero(iof+i,:) = 0.
451          solsw0_aero(iof+i,:) = 0.
452        ENDDO
453    ENDIF
454    IF (ok_aie) THEN
455        DO i = 1, kdlon
456          topswai_aero(iof+i) = ztopswaiaero(i)
457          solswai_aero(iof+i) = zsolswaiaero(i)
458        ENDDO
459    ELSE
460        DO i = 1, kdlon
461          topswai_aero(iof+i) = 0.0
462          solswai_aero(iof+i) = 0.0
463        ENDDO
464    ENDIF
465    DO k = 1, kflev
466      DO i = 1, kdlon
467        !        scale factor to take into account the difference between
468        !        dry air and watter vapour scpecifi! heat capacity
469        zznormcp=1.0+RVTMP2*PWV(i,k)
470        heat(iof+i,k) = zheat(i,k)/zznormcp
471        cool(iof+i,k) = zcool(i,k)/zznormcp
472        heat0(iof+i,k) = zheat0(i,k)/zznormcp
473        cool0(iof+i,k) = zcool0(i,k)/zznormcp
474      ENDDO
475    ENDDO
476
477 ENDDO ! j = 1, nb_gr
478
479END SUBROUTINE radlwsw
480
481end module radlwsw_m
Note: See TracBrowser for help on using the repository browser.