| 1 | !--------------------------------------------------------------------- |
|---|
| 2 | ! Interpolation forcing in time and onto model levels |
|---|
| 3 | !--------------------------------------------------------------------- |
|---|
| 4 | if (forcing_GCSSold) then |
|---|
| 5 | |
|---|
| 6 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, |
|---|
| 7 | : ht_gcssold,hq_gcssold,hw_gcssold, |
|---|
| 8 | : hu_gcssold,hv_gcssold, |
|---|
| 9 | : hthturb_gcssold,hqturb_gcssold,Ts_gcssold, |
|---|
| 10 | : imp_fcg_gcssold,ts_fcg_gcssold, |
|---|
| 11 | : Tp_fcg_gcssold,Turb_fcg_gcssold) |
|---|
| 12 | if (prt_level.ge.1) then |
|---|
| 13 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
|---|
| 14 | endif |
|---|
| 15 | ! large-scale forcing : |
|---|
| 16 | !!! tsurf = ts_gcssold |
|---|
| 17 | do l = 1, llm |
|---|
| 18 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
|---|
| 19 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
|---|
| 20 | ! omega(l) = hw_gcssold(l) |
|---|
| 21 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
|---|
| 22 | ! omega2(l)=-rho(l)*omega(l) |
|---|
| 23 | omega(l) = hw_gcssold(l) |
|---|
| 24 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 25 | |
|---|
| 26 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 27 | d_th_adv(l) = ht_gcssold(l) |
|---|
| 28 | d_q_adv(l,1) = hq_gcssold(l) |
|---|
| 29 | dt_cooling(l) = 0.0 |
|---|
| 30 | enddo |
|---|
| 31 | |
|---|
| 32 | endif ! forcing_GCSSold |
|---|
| 33 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 34 | !--------------------------------------------------------------------- |
|---|
| 35 | ! Interpolation Toga forcing |
|---|
| 36 | !--------------------------------------------------------------------- |
|---|
| 37 | if (forcing_toga) then |
|---|
| 38 | |
|---|
| 39 | if (prt_level.ge.1) then |
|---|
| 40 | print*, |
|---|
| 41 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', |
|---|
| 42 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
|---|
| 43 | endif |
|---|
| 44 | |
|---|
| 45 | ! time interpolation: |
|---|
| 46 | CALL interp_toga_time(daytime,day1,annee_ref |
|---|
| 47 | i ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga |
|---|
| 48 | i ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga |
|---|
| 49 | i ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga |
|---|
| 50 | o ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof |
|---|
| 51 | o ,ht_prof,vt_prof,hq_prof,vq_prof) |
|---|
| 52 | |
|---|
| 53 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
|---|
| 54 | |
|---|
| 55 | ! vertical interpolation: |
|---|
| 56 | CALL interp_toga_vertical(play,nlev_toga,plev_prof |
|---|
| 57 | : ,t_prof,q_prof,u_prof,v_prof,w_prof |
|---|
| 58 | : ,ht_prof,vt_prof,hq_prof,vq_prof |
|---|
| 59 | : ,t_mod,q_mod,u_mod,v_mod,w_mod |
|---|
| 60 | : ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
|---|
| 61 | |
|---|
| 62 | ! large-scale forcing : |
|---|
| 63 | tsurf = ts_prof |
|---|
| 64 | do l = 1, llm |
|---|
| 65 | u(l) = u_mod(l) ! sb: on prescrit le vent |
|---|
| 66 | v(l) = v_mod(l) ! sb: on prescrit le vent |
|---|
| 67 | ! omega(l) = w_prof(l) |
|---|
| 68 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
|---|
| 69 | ! omega2(l)=-rho(l)*omega(l) |
|---|
| 70 | omega(l) = w_mod(l) |
|---|
| 71 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 72 | |
|---|
| 73 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 74 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
|---|
| 75 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
|---|
| 76 | dt_cooling(l) = 0.0 |
|---|
| 77 | enddo |
|---|
| 78 | |
|---|
| 79 | endif ! forcing_toga |
|---|
| 80 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 81 | !--------------------------------------------------------------------- |
|---|
| 82 | ! Interpolation forcing TWPice |
|---|
| 83 | !--------------------------------------------------------------------- |
|---|
| 84 | if (forcing_twpice) then |
|---|
| 85 | |
|---|
| 86 | print*, |
|---|
| 87 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', |
|---|
| 88 | : daytime,day1,(daytime-day1)*86400., |
|---|
| 89 | : (daytime-day1)*86400/dt_twpi |
|---|
| 90 | |
|---|
| 91 | ! time interpolation: |
|---|
| 92 | CALL interp_toga_time(daytime,day1,annee_ref |
|---|
| 93 | i ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi |
|---|
| 94 | i ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi |
|---|
| 95 | i ,ht_twpi,vt_twpi,hq_twpi,vq_twpi |
|---|
| 96 | o ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp |
|---|
| 97 | o ,v_proftwp,w_proftwp |
|---|
| 98 | o ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
|---|
| 99 | |
|---|
| 100 | ! vertical interpolation: |
|---|
| 101 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp |
|---|
| 102 | : ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp |
|---|
| 103 | : ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp |
|---|
| 104 | : ,t_mod,q_mod,u_mod,v_mod,w_mod |
|---|
| 105 | : ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
|---|
| 106 | |
|---|
| 107 | |
|---|
| 108 | !calcul de l'advection verticale a partir du omega |
|---|
| 109 | cCalcul des gradients verticaux |
|---|
| 110 | cinitialisation |
|---|
| 111 | d_t_z(:)=0. |
|---|
| 112 | d_q_z(:)=0. |
|---|
| 113 | d_t_dyn_z(:)=0. |
|---|
| 114 | d_q_dyn_z(:)=0. |
|---|
| 115 | DO l=2,llm-1 |
|---|
| 116 | d_t_z(l)=(temp(l+1)-temp(l-1)) |
|---|
| 117 | & /(play(l+1)-play(l-1)) |
|---|
| 118 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
|---|
| 119 | & /(play(l+1)-play(l-1)) |
|---|
| 120 | ENDDO |
|---|
| 121 | d_t_z(1)=d_t_z(2) |
|---|
| 122 | d_q_z(1)=d_q_z(2) |
|---|
| 123 | d_t_z(llm)=d_t_z(llm-1) |
|---|
| 124 | d_q_z(llm)=d_q_z(llm-1) |
|---|
| 125 | |
|---|
| 126 | cCalcul de l advection verticale |
|---|
| 127 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
|---|
| 128 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
|---|
| 129 | |
|---|
| 130 | !wind nudging above 500m with a 2h time scale |
|---|
| 131 | do l=1,llm |
|---|
| 132 | if (nudge_wind) then |
|---|
| 133 | ! if (phi(l).gt.5000.) then |
|---|
| 134 | if (phi(l).gt.0.) then |
|---|
| 135 | u(l)=u(l) |
|---|
| 136 | . +timestep*(u_mod(l)-u(l))/(2.*3600.) |
|---|
| 137 | v(l)=v(l) |
|---|
| 138 | . +timestep*(v_mod(l)-v(l))/(2.*3600.) |
|---|
| 139 | endif |
|---|
| 140 | else |
|---|
| 141 | u(l) = u_mod(l) |
|---|
| 142 | v(l) = v_mod(l) |
|---|
| 143 | endif |
|---|
| 144 | enddo |
|---|
| 145 | |
|---|
| 146 | !CR:nudging of q and theta with a 6h time scale above 15km |
|---|
| 147 | if (nudge_thermo) then |
|---|
| 148 | do l=1,llm |
|---|
| 149 | zz(l)=phi(l)/9.8 |
|---|
| 150 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
|---|
| 151 | zfact=(zz(l)-15000.)/1000. |
|---|
| 152 | q(l,1)=q(l,1) |
|---|
| 153 | . +timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
|---|
| 154 | temp(l)=temp(l) |
|---|
| 155 | . +timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
|---|
| 156 | else if (zz(l).gt.16000.) then |
|---|
| 157 | q(l,1)=q(l,1) |
|---|
| 158 | . +timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
|---|
| 159 | temp(l)=temp(l) |
|---|
| 160 | . +timestep*(t_mod(l)-temp(l))/(6.*3600.) |
|---|
| 161 | endif |
|---|
| 162 | enddo |
|---|
| 163 | endif |
|---|
| 164 | |
|---|
| 165 | do l = 1, llm |
|---|
| 166 | omega(l) = w_mod(l) |
|---|
| 167 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 168 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 169 | !calcul de l'advection totale |
|---|
| 170 | if (cptadvw) then |
|---|
| 171 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
|---|
| 172 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
|---|
| 173 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
|---|
| 174 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
|---|
| 175 | else |
|---|
| 176 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
|---|
| 177 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
|---|
| 178 | endif |
|---|
| 179 | dt_cooling(l) = 0.0 |
|---|
| 180 | enddo |
|---|
| 181 | |
|---|
| 182 | endif ! forcing_twpice |
|---|
| 183 | |
|---|
| 184 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 185 | !--------------------------------------------------------------------- |
|---|
| 186 | ! Interpolation forcing AMMA |
|---|
| 187 | !--------------------------------------------------------------------- |
|---|
| 188 | |
|---|
| 189 | if (forcing_amma) then |
|---|
| 190 | |
|---|
| 191 | print*, |
|---|
| 192 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', |
|---|
| 193 | : daytime,day1,(daytime-day1)*86400., |
|---|
| 194 | : (daytime-day1)*86400/dt_amma |
|---|
| 195 | |
|---|
| 196 | ! time interpolation using TOGA interpolation routine |
|---|
| 197 | CALL interp_amma_time(daytime,day1,annee_ref |
|---|
| 198 | i ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma |
|---|
| 199 | i ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma |
|---|
| 200 | o ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma |
|---|
| 201 | : ,sens_profamma) |
|---|
| 202 | |
|---|
| 203 | print*,'apres interpolation temporelle AMMA' |
|---|
| 204 | |
|---|
| 205 | do k=1,nlev_amma |
|---|
| 206 | th_profamma(k)=0. |
|---|
| 207 | q_profamma(k)=0. |
|---|
| 208 | u_profamma(k)=0. |
|---|
| 209 | v_profamma(k)=0. |
|---|
| 210 | vt_profamma(k)=0. |
|---|
| 211 | vq_profamma(k)=0. |
|---|
| 212 | enddo |
|---|
| 213 | ! vertical interpolation using TOGA interpolation routine: |
|---|
| 214 | ! write(*,*)'avant interp vert', t_proftwp |
|---|
| 215 | CALL interp_toga_vertical(play,nlev_amma,plev_amma |
|---|
| 216 | : ,th_profamma,q_profamma,u_profamma,v_profamma |
|---|
| 217 | : ,vitw_profamma |
|---|
| 218 | : ,ht_profamma,vt_profamma,hq_profamma,vq_profamma |
|---|
| 219 | : ,t_mod,q_mod,u_mod,v_mod,w_mod |
|---|
| 220 | : ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
|---|
| 221 | write(*,*) 'Profil initial forcing AMMA interpole' |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | !calcul de l'advection verticale a partir du omega |
|---|
| 225 | cCalcul des gradients verticaux |
|---|
| 226 | cinitialisation |
|---|
| 227 | do l=1,llm |
|---|
| 228 | d_t_z(l)=0. |
|---|
| 229 | d_q_z(l)=0. |
|---|
| 230 | enddo |
|---|
| 231 | |
|---|
| 232 | DO l=2,llm-1 |
|---|
| 233 | d_t_z(l)=(temp(l+1)-temp(l-1)) |
|---|
| 234 | & /(play(l+1)-play(l-1)) |
|---|
| 235 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
|---|
| 236 | & /(play(l+1)-play(l-1)) |
|---|
| 237 | ENDDO |
|---|
| 238 | d_t_z(1)=d_t_z(2) |
|---|
| 239 | d_q_z(1)=d_q_z(2) |
|---|
| 240 | d_t_z(llm)=d_t_z(llm-1) |
|---|
| 241 | d_q_z(llm)=d_q_z(llm-1) |
|---|
| 242 | |
|---|
| 243 | |
|---|
| 244 | do l = 1, llm |
|---|
| 245 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
|---|
| 246 | omega(l) = w_mod(l)*(-rg*rho(l)) |
|---|
| 247 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 248 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 249 | !calcul de l'advection totale |
|---|
| 250 | ! d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
|---|
| 251 | !attention: on impose dth |
|---|
| 252 | d_th_adv(l) = alpha*omega(l)/rcpd+ |
|---|
| 253 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
|---|
| 254 | ! d_th_adv(l) = 0. |
|---|
| 255 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
|---|
| 256 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
|---|
| 257 | ! d_q_adv(l,1) = 0. |
|---|
| 258 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
|---|
| 259 | |
|---|
| 260 | dt_cooling(l) = 0.0 |
|---|
| 261 | enddo |
|---|
| 262 | |
|---|
| 263 | |
|---|
| 264 | ! ok_flux_surf=.false. |
|---|
| 265 | fsens=-1.*sens_profamma |
|---|
| 266 | flat=-1.*lat_profamma |
|---|
| 267 | |
|---|
| 268 | endif ! forcing_amma |
|---|
| 269 | |
|---|
| 270 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 271 | !--------------------------------------------------------------------- |
|---|
| 272 | ! Interpolation forcing Rico |
|---|
| 273 | !--------------------------------------------------------------------- |
|---|
| 274 | if (forcing_rico) then |
|---|
| 275 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
|---|
| 276 | ! : q,temp,u,v,play) |
|---|
| 277 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn, |
|---|
| 278 | : q,temp,u,v,play) |
|---|
| 279 | |
|---|
| 280 | do l=1,llm |
|---|
| 281 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
|---|
| 282 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
|---|
| 283 | d_q_adv(l,2) = 0. |
|---|
| 284 | enddo |
|---|
| 285 | endif ! forcing_rico |
|---|
| 286 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 287 | !--------------------------------------------------------------------- |
|---|
| 288 | ! Interpolation forcing Arm_cu |
|---|
| 289 | !--------------------------------------------------------------------- |
|---|
| 290 | if (forcing_armcu) then |
|---|
| 291 | |
|---|
| 292 | print*, |
|---|
| 293 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', |
|---|
| 294 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
|---|
| 295 | |
|---|
| 296 | ! time interpolation: |
|---|
| 297 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
|---|
| 298 | ! revoir 1DUTILS.h et les arguments |
|---|
| 299 | CALL interp_armcu_time(daytime,day1,annee_ref |
|---|
| 300 | i ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu |
|---|
| 301 | i ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu |
|---|
| 302 | i ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof |
|---|
| 303 | i ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
|---|
| 304 | |
|---|
| 305 | ! vertical interpolation: |
|---|
| 306 | ! No vertical interpolation if nlev imposed to 19 or 40 |
|---|
| 307 | |
|---|
| 308 | ! For this case, fluxes are imposed |
|---|
| 309 | fsens=-1*sens_prof |
|---|
| 310 | flat=-1*flat_prof |
|---|
| 311 | |
|---|
| 312 | ! Advective forcings are given in K or g/kg ... BY HOUR |
|---|
| 313 | do l = 1, llm |
|---|
| 314 | ug(l)= u_mod(l) |
|---|
| 315 | vg(l)= v_mod(l) |
|---|
| 316 | IF((phi(l)/RG).LT.1000) THEN |
|---|
| 317 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
|---|
| 318 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
|---|
| 319 | d_q_adv(l,2) = 0.0 |
|---|
| 320 | ! print *,'INF1000: phi dth dq1 dq2', |
|---|
| 321 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
|---|
| 322 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
|---|
| 323 | fact=((phi(l)/RG)-1000.)/2000. |
|---|
| 324 | fact=1-fact |
|---|
| 325 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
|---|
| 326 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
|---|
| 327 | d_q_adv(l,2) = 0.0 |
|---|
| 328 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
|---|
| 329 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
|---|
| 330 | ELSE |
|---|
| 331 | d_th_adv(l) = 0.0 |
|---|
| 332 | d_q_adv(l,1) = 0.0 |
|---|
| 333 | d_q_adv(l,2) = 0.0 |
|---|
| 334 | ! print *,'SUP3000: phi dth dq1 dq2', |
|---|
| 335 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
|---|
| 336 | ENDIF |
|---|
| 337 | dt_cooling(l) = 0.0 |
|---|
| 338 | ! print *,'Interp armcu: phi dth dq1 dq2', |
|---|
| 339 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
|---|
| 340 | enddo |
|---|
| 341 | endif ! forcing_armcu |
|---|
| 342 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 343 | !--------------------------------------------------------------------- |
|---|
| 344 | ! Interpolation forcing in time and onto model levels |
|---|
| 345 | !--------------------------------------------------------------------- |
|---|
| 346 | if (forcing_sandu) then |
|---|
| 347 | |
|---|
| 348 | print*, |
|---|
| 349 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', |
|---|
| 350 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
|---|
| 351 | |
|---|
| 352 | ! time interpolation: |
|---|
| 353 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
|---|
| 354 | ! revoir 1DUTILS.h et les arguments |
|---|
| 355 | CALL interp_sandu_time(daytime,day1,annee_ref |
|---|
| 356 | i ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu |
|---|
| 357 | i ,nlev_sandu |
|---|
| 358 | i ,ts_sandu,ts_prof) |
|---|
| 359 | |
|---|
| 360 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
|---|
| 361 | |
|---|
| 362 | ! vertical interpolation: |
|---|
| 363 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs |
|---|
| 364 | : ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs |
|---|
| 365 | : ,omega_profs,o3mmr_profs |
|---|
| 366 | : ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod |
|---|
| 367 | : ,omega_mod,o3mmr_mod,mxcalc) |
|---|
| 368 | !calcul de l'advection verticale |
|---|
| 369 | cCalcul des gradients verticaux |
|---|
| 370 | cinitialisation |
|---|
| 371 | d_t_z(:)=0. |
|---|
| 372 | d_q_z(:)=0. |
|---|
| 373 | d_t_dyn_z(:)=0. |
|---|
| 374 | d_q_dyn_z(:)=0. |
|---|
| 375 | ! schema centre |
|---|
| 376 | ! DO l=2,llm-1 |
|---|
| 377 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
|---|
| 378 | ! & /(play(l+1)-play(l-1)) |
|---|
| 379 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
|---|
| 380 | ! & /(play(l+1)-play(l-1)) |
|---|
| 381 | ! schema amont |
|---|
| 382 | DO l=2,llm-1 |
|---|
| 383 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
|---|
| 384 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
|---|
| 385 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
|---|
| 386 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
|---|
| 387 | ENDDO |
|---|
| 388 | d_t_z(1)=d_t_z(2) |
|---|
| 389 | d_q_z(1)=d_q_z(2) |
|---|
| 390 | d_t_z(llm)=d_t_z(llm-1) |
|---|
| 391 | d_q_z(llm)=d_q_z(llm-1) |
|---|
| 392 | |
|---|
| 393 | ! calcul de l advection verticale |
|---|
| 394 | ! Confusion w (m/s) et omega (Pa/s) !! |
|---|
| 395 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
|---|
| 396 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
|---|
| 397 | ! do l=1,llm |
|---|
| 398 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
|---|
| 399 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
|---|
| 400 | ! enddo |
|---|
| 401 | |
|---|
| 402 | |
|---|
| 403 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
|---|
| 404 | ! et une divergence constante -> profil de omega |
|---|
| 405 | tsurf = ts_prof |
|---|
| 406 | write(*,*) 'SST suivante: ',tsurf |
|---|
| 407 | do l = 1, llm |
|---|
| 408 | omega(l) = omega_mod(l) |
|---|
| 409 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 410 | |
|---|
| 411 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 412 | ! |
|---|
| 413 | ! d_th_adv(l) = 0.0 |
|---|
| 414 | ! d_q_adv(l,1) = 0.0 |
|---|
| 415 | !CR:test advection=0 |
|---|
| 416 | !calcul de l'advection verticale |
|---|
| 417 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
|---|
| 418 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
|---|
| 419 | d_q_adv(l,1) = -d_q_dyn_z(l) |
|---|
| 420 | ! print*,'q adv',l,-d_q_dyn_z(l) |
|---|
| 421 | dt_cooling(l) = 0.0 |
|---|
| 422 | enddo |
|---|
| 423 | endif ! forcing_sandu |
|---|
| 424 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 425 | !--------------------------------------------------------------------- |
|---|
| 426 | ! Interpolation forcing in time and onto model levels |
|---|
| 427 | !--------------------------------------------------------------------- |
|---|
| 428 | if (forcing_astex) then |
|---|
| 429 | |
|---|
| 430 | print*, |
|---|
| 431 | : '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', |
|---|
| 432 | : day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
|---|
| 433 | |
|---|
| 434 | ! time interpolation: |
|---|
| 435 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
|---|
| 436 | ! revoir 1DUTILS.h et les arguments |
|---|
| 437 | CALL interp_astex_time(daytime,day1,annee_ref |
|---|
| 438 | i ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex |
|---|
| 439 | i ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex |
|---|
| 440 | i ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof |
|---|
| 441 | i ,ufa_prof,vfa_prof) |
|---|
| 442 | |
|---|
| 443 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
|---|
| 444 | |
|---|
| 445 | ! vertical interpolation: |
|---|
| 446 | CALL interp_astex_vertical(play,nlev_astex,plev_profa |
|---|
| 447 | : ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa |
|---|
| 448 | : ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa |
|---|
| 449 | : ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod |
|---|
| 450 | : ,tke_mod,o3mmr_mod,mxcalc) |
|---|
| 451 | !calcul de l'advection verticale |
|---|
| 452 | !Calcul des gradients verticaux |
|---|
| 453 | !initialisation |
|---|
| 454 | d_t_z(:)=0. |
|---|
| 455 | d_q_z(:)=0. |
|---|
| 456 | d_t_dyn_z(:)=0. |
|---|
| 457 | d_q_dyn_z(:)=0. |
|---|
| 458 | ! schema centre |
|---|
| 459 | ! DO l=2,llm-1 |
|---|
| 460 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
|---|
| 461 | ! & /(play(l+1)-play(l-1)) |
|---|
| 462 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
|---|
| 463 | ! & /(play(l+1)-play(l-1)) |
|---|
| 464 | ! schema amont |
|---|
| 465 | DO l=2,llm-1 |
|---|
| 466 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
|---|
| 467 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
|---|
| 468 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
|---|
| 469 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
|---|
| 470 | ENDDO |
|---|
| 471 | d_t_z(1)=d_t_z(2) |
|---|
| 472 | d_q_z(1)=d_q_z(2) |
|---|
| 473 | d_t_z(llm)=d_t_z(llm-1) |
|---|
| 474 | d_q_z(llm)=d_q_z(llm-1) |
|---|
| 475 | |
|---|
| 476 | ! calcul de l advection verticale |
|---|
| 477 | ! Confusion w (m/s) et omega (Pa/s) !! |
|---|
| 478 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
|---|
| 479 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
|---|
| 480 | ! do l=1,llm |
|---|
| 481 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
|---|
| 482 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
|---|
| 483 | ! enddo |
|---|
| 484 | |
|---|
| 485 | |
|---|
| 486 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
|---|
| 487 | ! la divergence,ug,vg,ufa,vfa |
|---|
| 488 | tsurf = ts_prof |
|---|
| 489 | write(*,*) 'SST suivante: ',tsurf |
|---|
| 490 | do l = 1, llm |
|---|
| 491 | omega(l) = w_mod(l) |
|---|
| 492 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
|---|
| 493 | |
|---|
| 494 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
|---|
| 495 | ! |
|---|
| 496 | ! d_th_adv(l) = 0.0 |
|---|
| 497 | ! d_q_adv(l,1) = 0.0 |
|---|
| 498 | !CR:test advection=0 |
|---|
| 499 | !calcul de l'advection verticale |
|---|
| 500 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
|---|
| 501 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
|---|
| 502 | d_q_adv(l,1) = -d_q_dyn_z(l) |
|---|
| 503 | ! print*,'q adv',l,-d_q_dyn_z(l) |
|---|
| 504 | dt_cooling(l) = 0.0 |
|---|
| 505 | enddo |
|---|
| 506 | endif ! forcing_astex |
|---|
| 507 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
|---|
| 508 | |
|---|