source: LMDZ5/branches/LF-private/libf/bibio/pchsp_95_m.F90 @ 5443

Last change on this file since 5443 was 1687, checked in by Laurent Fairhead, 12 years ago

Nettoyage général pour la bonne marche de makegcm
FH


General housekeeping for makegcm to work as expected
FH

File size: 4.2 KB
Line 
1module pchsp_95_m
2
3  implicit none
4
5contains
6
7  function pchsp_95(x, f, ibeg, iend, vc_beg, vc_end)
8
9    ! PURPOSE: Set derivatives needed to determine the Hermite
10    ! representation of the cubic spline interpolant to given data,
11    ! with specified boundary conditions.
12
13    ! Part of the "pchip" package.
14
15    ! CATEGORY: E1A
16
17    ! KEYWORDS: cubic hermite interpolation, piecewise cubic
18    ! interpolation, spline interpolation
19
20    ! DESCRIPTION: "pchsp" stands for "Piecewise Cubic Hermite Spline"
21    ! Computes the Hermite representation of the cubic spline
22    ! interpolant to the data given in X and F satisfying the boundary
23    ! conditions specified by Ibeg, iend, vc_beg and VC_end.
24
25    ! The resulting piecewise cubic Hermite function may be evaluated
26    ! by "pchfe" or "pchfd".
27
28    ! NOTE: This is a modified version of C. de Boor's cubic spline
29    ! routine "cubspl".
30
31    ! REFERENCE: Carl de Boor, A Practical Guide to Splines, Springer,
32    ! 2001, pages 43-47
33
34    use assert_eq_m, only: assert_eq
35
36    real, intent(in):: x(:)
37    ! independent variable values
38    ! The elements of X must be strictly increasing:
39    !                X(I-1) < X(I),  I = 2...N.
40    !           (Error return if not.)
41    ! (error if size(x) < 2)
42
43    real, intent(in):: f(:)
44    !     dependent variable values to be interpolated
45    !  F(I) is value corresponding to X(I).
46
47    INTEGER, intent(in):: ibeg
48    !     desired boundary condition at beginning of data
49
50    !        IBEG = 0  to set pchsp_95(1) so that the third derivative is con-
51    !              tinuous at X(2).  This is the "not a knot" condition
52    !              provided by de Boor's cubic spline routine CUBSPL.
53    !              This is the default boundary condition.
54    !        IBEG = 1  if first derivative at X(1) is given in VC_BEG.
55    !        IBEG = 2  if second derivative at X(1) is given in VC_BEG.
56    !        IBEG = 3  to use the 3-point difference formula for pchsp_95(1).
57    !              (Reverts to the default boundary condition if size(x) < 3 .)
58    !        IBEG = 4  to use the 4-point difference formula for pchsp_95(1).
59    !              (Reverts to the default boundary condition if size(x) < 4 .)
60
61    !          NOTES:
62    !           1. An error return is taken if IBEG is out of range.
63    !           2. For the "natural" boundary condition, use IBEG=2 and
64    !              VC_BEG=0.
65
66    INTEGER, intent(in):: iend
67    !           IC(2) = IEND, desired condition at end of data.
68    !  IEND may take on the same values as IBEG, but applied to
69    !  derivative at X(N). In case IEND = 1 or 2, The value is given in VC_END.
70
71    !          NOTES:
72    !           1. An error return is taken if IEND is out of range.
73    !           2. For the "natural" boundary condition, use IEND=2 and
74    !              VC_END=0.
75
76    REAL, intent(in), optional:: vc_beg
77    ! desired boundary value, as indicated above.
78    !           VC_BEG need be set only if IBEG = 1 or 2 .
79
80    REAL, intent(in), optional:: vc_end
81    ! desired boundary value, as indicated above.
82    !           VC_END need be set only if Iend = 1 or 2 .
83
84    real pchsp_95(size(x))
85    ! derivative values at the data points
86    !           These values will determine the cubic spline interpolant
87    !           with the requested boundary conditions.
88    !           The value corresponding to X(I) is stored in
89    !                PCHSP_95(I),  I=1...N.
90
91    ! LOCAL VARIABLES:
92    real wk(2, size(x)) ! real array of working storage
93    INTEGER n ! number of data points
94    integer ierr, ic(2)
95    real vc(2)
96
97    !-------------------------------------------------------------------
98
99    n = assert_eq(size(x), size(f), "pchsp_95 n")
100    if ((ibeg == 1 .or. ibeg == 2) .and. .not. present(vc_beg)) then
101       print *, "vc_beg required for IBEG = 1 or 2"
102       stop 1
103    end if
104    if ((iend == 1 .or. iend == 2) .and. .not. present(vc_end)) then
105       print *, "vc_end required for IEND = 1 or 2"
106       stop 1
107    end if
108    ic = (/ibeg, iend/)
109    if (present(vc_beg)) vc(1) = vc_beg
110    if (present(vc_end)) vc(2) = vc_end
111    call PCHSP(IC, VC, N, X, F, pchsp_95, 1, WK, size(WK), IERR)
112    if (ierr /= 0) stop 1
113
114  END function pchsp_95
115
116end module pchsp_95_m
Note: See TracBrowser for help on using the repository browser.