1 | subroutine PHY_Atm_CP_RUN(mzc,kcolc) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------+ |
---|
4 | ! Mon 17-Jun-2013 MAR | |
---|
5 | ! subroutine PHY_Atm_CP_RUN interfaces | |
---|
6 | ! Bechtold et al. (2001) Convective Parameterization with MAR | |
---|
7 | ! | |
---|
8 | ! version 3.p.4.1 created by H. Gallee, Mon 8-Apr-2013 | |
---|
9 | ! Last Modification by H. Gallee, Mon 17-Jun-2013 | |
---|
10 | ! | |
---|
11 | !------------------------------------------------------------------------------+ |
---|
12 | ! | |
---|
13 | ! INPUT | |
---|
14 | ! ^^^^^ it_EXP : Experiment Iteration Counter | |
---|
15 | ! dt__CP : Mass Flux Scheme: Time Step | |
---|
16 | ! dxHOST : grid spacing of HOST MODEL [m] | |
---|
17 | ! Ta__DY(kcolp,mzpp) : air temperature [K] | |
---|
18 | ! qs__CM(kcolp,mzpp) : air snow Particl. concentr. [kg/kg] | |
---|
19 | ! qr__CM(kcolp,mzp ) : air rain drops concentr. [kg/kg] | |
---|
20 | ! | |
---|
21 | ! INPUT/OUTPUT | |
---|
22 | ! ^^^^^^^^^^^^ qv__DY(kcolp,mzpp) : Specific Humidity [kg/kg] | |
---|
23 | ! qw__CM(kcolp,mzp ) : air cloud droplets concentr. [kg/kg] | |
---|
24 | ! qi__CM(kcolp,mzp ) : air cloud crystals concentr. [kg/kg] | |
---|
25 | ! snowCP(kcolp ) : Snow (convective) [m] | |
---|
26 | ! snowCM(kcolp ) : Snow (convective + stratiform) [m] | |
---|
27 | ! rainCP(kcolp ) : Rain (convective) [m] | |
---|
28 | ! rainCM(kcolp ) : Rain (convective + stratiform) [m] | |
---|
29 | ! | |
---|
30 | ! OUTPUT dpktCP(kcolp,mzp ) : Reduc. Pot.Temperat.Tendency [K/X/s] | |
---|
31 | ! ^^^^^^ dqv_CP(kcolp,mzp ) : Specific Humidity Tendency [kg/kg/s] | |
---|
32 | ! dqw_CP(kcolp,mzp ) : cloud dropl.Concent.Tendency [kg/kg/s] | |
---|
33 | ! dqi_CP(kcolp,mzp ) : cloud cryst.Concent.Tendency [kg/kg/s] | |
---|
34 | ! | |
---|
35 | ! dss_CP(kcolp ) : Snow (convective) Tendency [m/s] | |
---|
36 | ! drr_CP(kcolp ) : Rain (convective) Tendency [m/s] | |
---|
37 | ! | |
---|
38 | ! pkt_DY(kcolp,mzp ) : Reduced Potential Temperature [K/X] | |
---|
39 | ! | |
---|
40 | ! CAPECP(kcolp ) : Convective Avail.Potent.Energy | |
---|
41 | ! | |
---|
42 | ! REFER. : MesoNH MASS FLUX CONVECTION Routine | |
---|
43 | ! ^^^^^^^^ (Bechtold et al., 2001, QJRMS 127, pp 869-886) | |
---|
44 | ! | |
---|
45 | ! # OPTION : #EW Energy and Water Conservation | |
---|
46 | ! # ^^^^^^^^ | |
---|
47 | ! | |
---|
48 | ! MODIF. HGallee: 18-11-2004: Adaptation to CVAmnh.f90.laurent | |
---|
49 | ! ^^^^^^ (Argument kensbl of CONVECTION removed) | |
---|
50 | ! | |
---|
51 | !------------------------------------------------------------------------------+ |
---|
52 | |
---|
53 | use Mod_Real |
---|
54 | use Mod_PHY____dat |
---|
55 | use Mod_PHY____grd |
---|
56 | use Mod_PHY_CP_ctr |
---|
57 | use Mod_PHY_CP_dat |
---|
58 | use Mod_PHY_CP_grd |
---|
59 | use Mod_PHY_CP_kkl |
---|
60 | use Mod_PHY_DY_kkl |
---|
61 | use Mod_PHY_AT_kkl |
---|
62 | use Mod_PHY_CM_kkl |
---|
63 | |
---|
64 | use Mod_Atm_CP_RUN |
---|
65 | |
---|
66 | IMPLICIT NONE |
---|
67 | |
---|
68 | |
---|
69 | |
---|
70 | ! Global Variables |
---|
71 | ! ================ |
---|
72 | |
---|
73 | integer :: mzc ! Nb of levels |
---|
74 | integer :: kcolc ! Nb of columns |
---|
75 | |
---|
76 | |
---|
77 | |
---|
78 | |
---|
79 | ! Local Variables |
---|
80 | ! ================ |
---|
81 | |
---|
82 | real(kind=real8) :: bANA ! |
---|
83 | real(kind=real8) :: zANA ! |
---|
84 | |
---|
85 | integer :: i ! x-Axis Index |
---|
86 | integer :: j ! y-Axis Index |
---|
87 | integer :: k ! Level Index (from top to bottom) |
---|
88 | integer :: klc ! Level Index (from bottom to top ) |
---|
89 | integer :: ikl ! Column Index |
---|
90 | |
---|
91 | REAL :: Pdxdy0(kcolc) |
---|
92 | REAL :: P_pa_0(kcolc,mzc) |
---|
93 | REAL :: P_za_0(kcolc,mzc) |
---|
94 | REAL :: P_Ta_0(kcolc,mzc) |
---|
95 | REAL :: P_Qa_0(kcolc,mzc) |
---|
96 | REAL :: P_Qw_0(kcolc,mzc) |
---|
97 | REAL :: P_Qi_0(kcolc,mzc) |
---|
98 | REAL :: P_Ua_0(kcolc,mzc) |
---|
99 | REAL :: P_Va_0(kcolc,mzc) |
---|
100 | REAL :: P_Wa_0(kcolc,mzc) |
---|
101 | |
---|
102 | integer :: Kstep1(kcolc) ! convective counter |
---|
103 | integer :: K_CbT1(kcolc) ! cloud top level |
---|
104 | integer :: K_CbB1(kcolc) ! cloud base level |
---|
105 | |
---|
106 | integer, parameter :: KTCCH0=1 ! |
---|
107 | REAL :: P_CH_0(kcolc,mzc,KTCCH0) |
---|
108 | REAL :: PdCH_1(kcolc,mzc,KTCCH0) |
---|
109 | |
---|
110 | REAL :: PdTa_1(kcolc,mzc) |
---|
111 | REAL :: PdQa_1(kcolc,mzc) |
---|
112 | REAL :: PdQw_1(kcolc,mzc) |
---|
113 | REAL :: PdQi_1(kcolc,mzc) |
---|
114 | REAL :: Pdrr_1(kcolc) |
---|
115 | REAL :: Pdss_1(kcolc) |
---|
116 | REAL :: PuMF_1(kcolc,mzc) ! Upward Mass Flux |
---|
117 | REAL :: PdMF_1(kcolc,mzc) ! Downward Mass Flux |
---|
118 | REAL :: Pfrr_1(kcolc,mzc) ! Liquid Precipitation Flux |
---|
119 | REAL :: Pfss_1(kcolc,mzc) ! Solid Precipitation Flux |
---|
120 | REAL :: Pcape1(kcolc) ! CAPE [J/kg] |
---|
121 | |
---|
122 | |
---|
123 | ! Diagnostic Variables |
---|
124 | ! -------------------- |
---|
125 | |
---|
126 | ! #EW integer :: irmx ,jrmx ,iter_0 ! |
---|
127 | ! #EW real(kind=real8) :: rr_max,temp_r,energ0 ! |
---|
128 | ! #EW real(kind=real8) :: water0,waterb ! |
---|
129 | |
---|
130 | |
---|
131 | |
---|
132 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
133 | ! ! |
---|
134 | ! ALLOCATION |
---|
135 | ! ---------- |
---|
136 | |
---|
137 | IF (it_RUN.EQ.1 .OR. FlagDALLOC) THEN ! |
---|
138 | allocate ( wa_ANA(kcolc,mzc) ) ! ANAbatic Wind Speed [m/s] |
---|
139 | END IF |
---|
140 | ! ! |
---|
141 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
142 | |
---|
143 | |
---|
144 | |
---|
145 | |
---|
146 | ! Update Convective Mass Flux |
---|
147 | ! =========================== |
---|
148 | |
---|
149 | IF ( mod(iitCV0,jjtCV0).EQ.0 ) THEN |
---|
150 | |
---|
151 | ! Martin control |
---|
152 | PRINT*,'Dans PHY_Atm_CP_RUN' |
---|
153 | PRINT*,'size(ii__AP)',size(ii__AP) |
---|
154 | PRINT*,'size(jj__AP)',size(jj__AP) |
---|
155 | PRINT*,'size(wa_ANA)=',size(wa_ANA) |
---|
156 | PRINT*,'ii__AP(1)=',ii__AP(1) |
---|
157 | PRINT*,'jj__AP(1)=',jj__AP(1) |
---|
158 | PRINT*,'ii__AP(kcolp)=',ii__AP(kcolp) |
---|
159 | PRINT*,'jj__AP(kcolp)=',jj__AP(kcolp) |
---|
160 | PRINT*,'mzp=',mzp |
---|
161 | ! Martin control |
---|
162 | |
---|
163 | DO ikl = 1,kcolp |
---|
164 | |
---|
165 | ! PRINT*,'ikl=',ikl |
---|
166 | |
---|
167 | i = ii__AP(ikl) |
---|
168 | j = jj__AP(ikl) |
---|
169 | |
---|
170 | ! PRINT*,'ii__AP(',ikl,')=',ii__AP(ikl) |
---|
171 | ! PRINT*,'jj__AP(',ikl,')=',jj__AP(ikl) |
---|
172 | |
---|
173 | |
---|
174 | ! Contribution from Subgrid Mountain Breeze |
---|
175 | ! ----------------------------------------- |
---|
176 | |
---|
177 | DO k=1,mzp |
---|
178 | wa_ANA(ikl,k ) = 0.0 |
---|
179 | END DO |
---|
180 | IF(Lo_ANA) THEN |
---|
181 | DO k=1,mzp |
---|
182 | bANA = min(Z___DY(ikl,k ), zi__AT(ikl)) |
---|
183 | zANA = hANA(ikl) + bANA * 2.0 |
---|
184 | IF (Z___DY(ikl,k ) .LE. zANA .AND. & |
---|
185 | & Ta__DY(ikl,mzpp) .GT. Ta__DY(ikl,mzp)) THEN |
---|
186 | wa_ANA(ikl,k ) = rANA * bANA * 0.5 ! Half Integrated Horizontal Divergence |
---|
187 | |
---|
188 | END IF |
---|
189 | END DO |
---|
190 | END IF |
---|
191 | |
---|
192 | |
---|
193 | |
---|
194 | ! Mass Flux convective Scheme: Set Up Vertical Profiles |
---|
195 | ! ----------------------------------------------------- |
---|
196 | |
---|
197 | Pdxdy0(ikl) = dxHOST * dxHOST ! grid area [m2] |
---|
198 | DO klc= 1,mzp |
---|
199 | k = mzpp-klc |
---|
200 | P_pa_0(ikl,klc) = (psa_DY( ikl)*sigma(k) + pt__DY) *1.e3 ! pressure in layer [Pa] |
---|
201 | P_za_0(ikl,klc) = Z___DY(ikl,k) ! height of model layer [m] |
---|
202 | P_Ta_0(ikl,klc) = Ta__DY(ikl,k) ! grid scale T at time t [K] |
---|
203 | P_Qa_0(ikl,klc) = qv__DY(ikl,k) ! grid scale water vapor at time t [kg/kg] |
---|
204 | P_Qw_0(ikl,klc) = qw__CM(ikl,k) / (1.0-qw__CM(ikl,k)) ! grid scale Cloud drops at time t [kg/kg] |
---|
205 | P_Qi_0(ikl,klc) = qi__CM(ikl,k) / (1.0-qi__CM(ikl,k)) ! grid scale Cloud ice at time t [kg/kg] |
---|
206 | P_Ua_0(ikl,klc) = ua__DY(ikl,k) ! grid scale hor. wind u at time t [m/s] |
---|
207 | P_Va_0(ikl,klc) = va__DY(ikl,k) ! grid scale hor. wind v at time t [m/s] |
---|
208 | P_Wa_0(ikl,klc) = wa__DY(ikl,k) + wa_ANA(ikl,k) ! grid scale vertic.wind at time t [m/s] |
---|
209 | END DO |
---|
210 | |
---|
211 | END DO ! ikl = 1,kcolp |
---|
212 | |
---|
213 | |
---|
214 | ! Mass Flux convective Scheme: Bechtold et al. (2001) Convective Parameterization |
---|
215 | ! ------------------------------------------------------------------------------- |
---|
216 | |
---|
217 | ! *************** |
---|
218 | call CONVECTION( & |
---|
219 | & kcolc , mzc , kidia0, kfdia0, kbdia0, ktdia0, & |
---|
220 | & pdtCV , Odeep , Oshal , Orset0, Odown0, kIce_0, & |
---|
221 | & OsetA0, PTdcv , PTscv , & |
---|
222 | & kensbl, & |
---|
223 | & P_pa_0, P_za_0, Pdxdy0, & |
---|
224 | & P_Ta_0, P_Qa_0, P_Qw_0, P_Qi_0, P_Ua_0, P_Va_0, P_Wa_0, & |
---|
225 | & Kstep1, PdTa_1, PdQa_1, PdQw_1, PdQi_1, & |
---|
226 | & Pdrr_1, Pdss_1, & |
---|
227 | & PuMF_1, PdMF_1, Pfrr_1, Pfss_1, Pcape1, K_CbT1, K_CbB1, & |
---|
228 | & OCvTC0, KTCCH0, P_CH_0, PdCH_1) |
---|
229 | ! *************** |
---|
230 | |
---|
231 | |
---|
232 | |
---|
233 | ! Mass Flux convective Scheme: products |
---|
234 | ! ------------------------------------- |
---|
235 | |
---|
236 | DO ikl = 1,kcolp |
---|
237 | CAPECP(ikl) = Pcape1(ikl) |
---|
238 | timeCP(ikl) = Kstep1(ikl) *dt__CP |
---|
239 | drr_CP(ikl) = Pdrr_1(ikl) |
---|
240 | dss_CP(ikl) = Pdss_1(ikl) |
---|
241 | |
---|
242 | DO klc= 1,mzp |
---|
243 | k = mzpp - klc |
---|
244 | dpktCP(ikl,k) = PdTa_1(ikl,klc) /ExnrDY(ikl,k) |
---|
245 | dqv_CP(ikl,k) = PdQa_1(ikl,klc) |
---|
246 | dqw_CP(ikl,k) = PdQw_1(ikl,klc) |
---|
247 | dqi_CP(ikl,k) = PdQi_1(ikl,klc) |
---|
248 | |
---|
249 | END DO |
---|
250 | |
---|
251 | END DO |
---|
252 | |
---|
253 | |
---|
254 | END IF ! mod(iitCV0,jjtCV0).EQ.0 (UPDATE) THEN |
---|
255 | |
---|
256 | |
---|
257 | |
---|
258 | |
---|
259 | ! Vertical Integrated Energy and Water Content |
---|
260 | ! ============================================ |
---|
261 | |
---|
262 | ! #EW irmx = i_x0 |
---|
263 | ! #EW jrmx = j_y0 |
---|
264 | ! #EW rr_max = 0.0 |
---|
265 | |
---|
266 | DO ikl = 1,kcolp |
---|
267 | i = ii__AP(ikl) |
---|
268 | j = jj__AP(ikl) |
---|
269 | |
---|
270 | ! #EW enr0EW(ikl) = 0.0 |
---|
271 | ! #EW wat0EW(ikl) = 0.0 |
---|
272 | |
---|
273 | ! #EW DO k=1,mzp |
---|
274 | ! #EW temp_r = pkt_DY(ikl,k)*ExnrDY(ikl,k) |
---|
275 | ! #EW enr0EW(ikl) = enr0EW(ikl) & |
---|
276 | ! #EW& +(temp_r & |
---|
277 | ! #EW& -(qw__CM(ikl,k)+qr__CM(ikl,k)) * Lv_CPd & |
---|
278 | ! #EW& -(qi__CM(ikl,k)+qs__CM(ikl,k)) * Ls_CPd)*dsigmi(k) |
---|
279 | ! #EW wat0EW(ikl) = wat0EW(ikl) & |
---|
280 | ! #EW& +(qv__DY(ikl,k) & |
---|
281 | ! #EW& + qw__CM(ikl,k)+qr__CM(ikl,k) & |
---|
282 | ! #EW& + qi__CM(ikl,k)+qs__CM(ikl,k) )*dsigmi(k) |
---|
283 | ! #EW END DO |
---|
284 | |
---|
285 | ! #EW enr0EW(ikl) = enr0EW(ikl) * psa_DY( ikl) * Grav_I |
---|
286 | ! #EW wat0EW(ikl) = wat0EW(ikl) * psa_DY( ikl) * Grav_I |
---|
287 | ! .. wat0EW [m] contains implicit factor 1.d3 [kPa-->Pa] /ro_Wat |
---|
288 | |
---|
289 | ! #EW energ0 = energ0 - enr0EW(ikl) |
---|
290 | ! #EW water0 = water0 - wat0EW(ikl) |
---|
291 | |
---|
292 | |
---|
293 | |
---|
294 | |
---|
295 | ! Update of Mass Flux convective Tendencies |
---|
296 | ! ========================================= |
---|
297 | |
---|
298 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
299 | |
---|
300 | IF (timeCP(ikl) .GT. 0.) THEN |
---|
301 | |
---|
302 | |
---|
303 | ! Temporal tendencies on pkt_DY, qv__DY and rainCM |
---|
304 | ! ------------------------------------------------ |
---|
305 | |
---|
306 | DO k=1,mzp |
---|
307 | dqv_CP(ikl,k) = min(dqv_CP(ikl,k),(qv__DY(ikl,k)-epsq)/dt__CP) |
---|
308 | dqw_CP(ikl,k) = min(dqw_CP(ikl,k),(qw__CM(ikl,k)-epsq)/dt__CP) |
---|
309 | dqi_CP(ikl,k) = min(dqi_CP(ikl,k),(qi__CM(ikl,k)-epsq)/dt__CP) |
---|
310 | ENDDO |
---|
311 | |
---|
312 | rainCM(ikl) = rainCM(ikl) + drr_CP(ikl) *dt__CP |
---|
313 | rainCP(ikl) = rainCP(ikl) + drr_CP(ikl) *dt__CP |
---|
314 | |
---|
315 | snowCM(ikl) = snowCM(ikl) + dss_CP(ikl) *dt__CP |
---|
316 | snowCP(ikl) = snowCP(ikl) + dss_CP(ikl) *dt__CP |
---|
317 | |
---|
318 | ELSE |
---|
319 | |
---|
320 | DO k=1,mzp |
---|
321 | dpktCP(ikl,k) = 0.00 |
---|
322 | dqv_CP(ikl,k) = 0.00 |
---|
323 | dqw_CP(ikl,k) = 0.00 |
---|
324 | dqi_CP(ikl,k) = 0.00 |
---|
325 | ENDDO |
---|
326 | |
---|
327 | |
---|
328 | ENDIF ! {timeCP(ikl) .gt. 0} |
---|
329 | |
---|
330 | timeCP(ikl) = max(timeCP(ikl) - dt__CP,zer0) |
---|
331 | ! .. ^^^^ remaining time before the end of convection |
---|
332 | ! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
333 | |
---|
334 | |
---|
335 | |
---|
336 | |
---|
337 | ! Vertical Integrated Energy and Water Content |
---|
338 | ! ============================================ |
---|
339 | |
---|
340 | ! #EW enr1EW(ikl) = 0.0 |
---|
341 | ! #EW wat1EW(ikl) = 0.0 |
---|
342 | ! #EW watfEW(ikl) =-drr_CP(ikl) |
---|
343 | |
---|
344 | ! #EW DO k=1,mz |
---|
345 | ! #EW temp_r = pkt_DY(ikl,k)*ExnrDY(ikl,k) |
---|
346 | ! #EW enr1EW(ikl) = enr1EW(ikl) & |
---|
347 | ! #EW& +(temp_r & |
---|
348 | ! #EW& -(qw__CM(ikl,k)+qr__CM(ikl,k)) *Lv_CPd & |
---|
349 | ! #EW& -(qi__CM(ikl,k)+qs__CM(ikl,k)) *Ls_CPd)*dsigmi(k) |
---|
350 | ! #EW wat1EW(ikl) = wat1EW(ikl) & |
---|
351 | ! #EW& +(qv__DY(ikl,k) & |
---|
352 | ! #EW& + qw__CM(ikl,k)+qr__CM(ikl,k) & |
---|
353 | ! #EW& + qi__CM(ikl,k)+qs__CM(ikl,k) )*dsigmi(k) |
---|
354 | ! #EW END DO |
---|
355 | |
---|
356 | ! #EW enr1EW(ikl) = enr1EW(ikl) * psa_DY( ikl) *Grav_I & |
---|
357 | ! #EW& - drr_CP(ikl) *Lv_CPd |
---|
358 | ! #EW wat1EW(ikl) = wat1EW(ikl) * psa_DY( ikl) *Grav_I |
---|
359 | ! .. wat1EW [m] contains implicit factor 1.d3 [kPa-->Pa] /rhoWat |
---|
360 | |
---|
361 | ! #EW energ0 = energ0 + enr1EW(ikl) |
---|
362 | ! #EW water0 = water0 + wat1EW(ikl) |
---|
363 | ! #EW iter_0 = iter_0 + 1 |
---|
364 | |
---|
365 | |
---|
366 | |
---|
367 | |
---|
368 | ! Vertical Integrated Energy and Water Content: OUTPUT |
---|
369 | ! ==================================================== |
---|
370 | |
---|
371 | ! #EW IF (drr_CP(ikl).gt.rr_max) THEN |
---|
372 | ! #EW rr_max = drr_CP(ikl) |
---|
373 | ! #EW irmx = i |
---|
374 | ! #EW jrmx = j |
---|
375 | ! #EW END IF |
---|
376 | |
---|
377 | END DO |
---|
378 | |
---|
379 | ! #EW waterb = wat1EW(irmx,jrmx)-wat0EW(irmx,jrmx)-watfEW(irmx,jrmx) |
---|
380 | ! #EW write(6,606) it_EXP,enr0EW(irmx,jrmx),1.d3*wat0EW(irmx,jrmx), & |
---|
381 | ! #EW& irmx,jrmx,enr1EW(irmx,jrmx),1.d3*wat1EW(irmx,jrmx), & |
---|
382 | ! #EW& 1.d3*watfEW(irmx,jrmx), & |
---|
383 | ! #EW& 1.d3*waterb , & |
---|
384 | ! #EW& energ0/iter_0 , water0/iter_0 |
---|
385 | 606 format(i9,' Before CVAj: E0 =',f12.6,' W0 = ',f9.6, & |
---|
386 | & /,i5,i4,' After CVAj: E1 =',f12.6,' W1 = ',f9.6, & |
---|
387 | & ' W Flux =',f9.6, & |
---|
388 | & ' Div(W) =',e9.3, & |
---|
389 | & /,9x,' Mean dE =',f12.9,' dW = ',e9.3) |
---|
390 | |
---|
391 | |
---|
392 | |
---|
393 | |
---|
394 | ! Incrementation Step Nb |
---|
395 | ! ====================== |
---|
396 | |
---|
397 | iitCV0 = iitCV0 + 1 |
---|
398 | |
---|
399 | |
---|
400 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
401 | ! ! |
---|
402 | ! DE-ALLOCATION |
---|
403 | ! ============= |
---|
404 | |
---|
405 | IF (FlagDALLOC) THEN ! |
---|
406 | deallocate ( wa_ANA ) ! ANAbatic Wind Speed [m/s] |
---|
407 | END IF |
---|
408 | |
---|
409 | ! Bug corrigé par Martin: |
---|
410 | ! IF (it_RUN.EQ.1 .OR. FlagDALLOC) THEN ! |
---|
411 | ! deallocate ( wa_ANA ) ! ANAbatic Wind Speed [m/s] |
---|
412 | ! END IF |
---|
413 | ! ! |
---|
414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
415 | |
---|
416 | |
---|
417 | |
---|
418 | return |
---|
419 | end subroutine PHY_Atm_CP_RUN |
---|