1 | MODULE traccoag_mod |
---|
2 | ! |
---|
3 | ! This module calculates the concentration of aerosol particles in certain size bins |
---|
4 | ! considering coagulation and sedimentation. |
---|
5 | ! |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | SUBROUTINE traccoag(pdtphys, gmtime, debutphy, julien, & |
---|
9 | presnivs, xlat, xlon, pphis, pphi, & |
---|
10 | t_seri, pplay, paprs, sh, rh, tr_seri) |
---|
11 | |
---|
12 | USE phys_local_var_mod, ONLY: mdw, R2SO4, DENSO4, f_r_wet, surf_PM25_sulf, & |
---|
13 | & budg_emi_ocs, budg_emi_so2, budg_emi_h2so4, budg_emi_part |
---|
14 | |
---|
15 | USE dimphy |
---|
16 | USE infotrac |
---|
17 | USE aerophys |
---|
18 | USE geometry_mod, ONLY : cell_area |
---|
19 | USE mod_grid_phy_lmdz |
---|
20 | USE mod_phys_lmdz_mpi_data, ONLY : is_mpi_root |
---|
21 | USE mod_phys_lmdz_para, only: gather, scatter |
---|
22 | USE phys_cal_mod |
---|
23 | USE sulfate_aer_mod |
---|
24 | USE phys_local_var_mod, ONLY: stratomask |
---|
25 | USE YOMCST |
---|
26 | |
---|
27 | IMPLICIT NONE |
---|
28 | |
---|
29 | ! Input argument |
---|
30 | !--------------- |
---|
31 | REAL,INTENT(IN) :: pdtphys ! Pas d'integration pour la physique (seconde) |
---|
32 | REAL,INTENT(IN) :: gmtime ! Heure courante |
---|
33 | LOGICAL,INTENT(IN) :: debutphy ! le flag de l'initialisation de la physique |
---|
34 | INTEGER,INTENT(IN) :: julien ! Jour julien |
---|
35 | |
---|
36 | REAL,DIMENSION(klev),INTENT(IN) :: presnivs! pressions approximat. des milieux couches (en PA) |
---|
37 | REAL,DIMENSION(klon),INTENT(IN) :: xlat ! latitudes pour chaque point |
---|
38 | REAL,DIMENSION(klon),INTENT(IN) :: xlon ! longitudes pour chaque point |
---|
39 | REAL,DIMENSION(klon),INTENT(IN) :: pphis ! geopotentiel du sol |
---|
40 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pphi ! geopotentiel de chaque couche |
---|
41 | |
---|
42 | REAL,DIMENSION(klon,klev),INTENT(IN) :: t_seri ! Temperature |
---|
43 | REAL,DIMENSION(klon,klev),INTENT(IN) :: pplay ! pression pour le mileu de chaque couche (en Pa) |
---|
44 | REAL,DIMENSION(klon,klev+1),INTENT(IN) :: paprs ! pression pour chaque inter-couche (en Pa) |
---|
45 | REAL,DIMENSION(klon,klev),INTENT(IN) :: sh ! humidite specifique |
---|
46 | REAL,DIMENSION(klon,klev),INTENT(IN) :: rh ! humidite relative |
---|
47 | |
---|
48 | ! Output argument |
---|
49 | !---------------- |
---|
50 | REAL,DIMENSION(klon,klev,nbtr),INTENT(INOUT) :: tr_seri ! Concentration Traceur [U/KgA] |
---|
51 | |
---|
52 | ! Local variables |
---|
53 | !---------------- |
---|
54 | ! flag for sulfur emission scenario: (0) background aerosol ; (1) volcanic eruption ; (2) stratospheric aerosol injections (SAI) |
---|
55 | INTEGER,PARAMETER :: flag_sulf_emit=2 |
---|
56 | ! |
---|
57 | !--flag_sulf_emit=1 --example Pinatubo |
---|
58 | INTEGER,PARAMETER :: year_emit_vol=1991 ! year of emission date |
---|
59 | INTEGER,PARAMETER :: mth_emit_vol=6 ! month of emission date |
---|
60 | INTEGER,PARAMETER :: day_emit_vol=15 ! day of emission date |
---|
61 | REAL,PARAMETER :: m_aer_emiss_vol=7.e9 ! emitted sulfur mass in kgS, e.g. 7Tg(S)=14Tg(SO2) |
---|
62 | REAL,PARAMETER :: altemiss_vol=17.e3 ! emission altitude in m |
---|
63 | REAL,PARAMETER :: sigma_alt_vol=1.e3 ! standard deviation of emission altitude in m |
---|
64 | REAL,PARAMETER :: xlat_vol=15.14 ! latitude of volcano in degree |
---|
65 | REAL,PARAMETER :: xlon_vol=120.35 ! longitude of volcano in degree |
---|
66 | |
---|
67 | !--flag_sulf_emit=2 --SAI |
---|
68 | REAL,PARAMETER :: m_aer_emiss_sai=1.e10 ! emitted sulfur mass in kgS, eg 1e9=1TgS, 1e10=10TgS |
---|
69 | REAL,PARAMETER :: altemiss_sai=17.e3 ! emission altitude in m |
---|
70 | REAL,PARAMETER :: sigma_alt_sai=1.e3 ! standard deviation of emission altitude in m |
---|
71 | REAL,PARAMETER :: xlat_sai=0.01 ! latitude of SAI in degree |
---|
72 | REAL,PARAMETER :: xlon_sai=120.35 ! longitude of SAI in degree |
---|
73 | |
---|
74 | !--other local variables |
---|
75 | INTEGER :: it, k, i, ilon, ilev, itime, i_int |
---|
76 | LOGICAL,DIMENSION(klon,klev) :: is_strato ! true = above tropopause, false = below |
---|
77 | REAL,DIMENSION(klon,klev) :: m_air_gridbox ! mass of air in every grid box [kg] |
---|
78 | REAL,DIMENSION(klon_glo,klev,nbtr) :: tr_seri_glo ! Concentration Traceur [U/KgA] |
---|
79 | REAL,DIMENSION(klev+1) :: altLMDz ! altitude of layer interfaces in m |
---|
80 | REAL,DIMENSION(klev) :: f_lay_emiss ! fraction of emission for every vertical layer |
---|
81 | REAL :: f_lay_sum ! sum of layer emission fractions |
---|
82 | REAL :: alt ! altitude for integral calculation |
---|
83 | INTEGER,PARAMETER :: n_int_alt=10 ! number of subintervals for integration over Gaussian emission profile |
---|
84 | REAL,DIMENSION(nbtr_bin) :: r_bin ! particle radius in size bin [m] |
---|
85 | REAL,DIMENSION(nbtr_bin) :: r_lower ! particle radius at lower bin boundary [m] |
---|
86 | REAL,DIMENSION(nbtr_bin) :: r_upper ! particle radius at upper bin boundary [m] |
---|
87 | REAL,DIMENSION(nbtr_bin) :: m_part_dry ! mass of one dry particle in size bin [kg] |
---|
88 | REAL :: zrho ! Density of air [kg/m3] |
---|
89 | REAL :: zdz ! thickness of atm. model layer in m |
---|
90 | REAL,DIMENSION(klev) :: zdm ! mass of atm. model layer in kg |
---|
91 | REAL,DIMENSION(klon,klev) :: dens_aer ! density of aerosol particles [kg/m3 aerosol] with default H2SO4 mass fraction |
---|
92 | REAL :: dlat, dlon ! d latitude and d longitude of grid in degree |
---|
93 | REAL :: emission ! emission |
---|
94 | |
---|
95 | IF (is_mpi_root) THEN |
---|
96 | PRINT *,'in traccoag: date from phys_cal_mod =',year_cur,'-',mth_cur,'-',day_cur,'-',hour |
---|
97 | ENDIF |
---|
98 | |
---|
99 | dlat=180./2./FLOAT(nbp_lat) ! d latitude in degree |
---|
100 | dlon=360./2./FLOAT(nbp_lon) ! d longitude in degree |
---|
101 | |
---|
102 | DO it=1, nbtr_bin |
---|
103 | r_bin(it)=mdw(it)/2. |
---|
104 | ENDDO |
---|
105 | |
---|
106 | !--set boundaries of size bins |
---|
107 | DO it=1, nbtr_bin |
---|
108 | IF (it.EQ.1) THEN |
---|
109 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
110 | r_lower(it)=r_bin(it)**2./r_upper(it) |
---|
111 | ELSEIF (it.EQ.nbtr_bin) THEN |
---|
112 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
113 | r_upper(it)=r_bin(it)**2./r_lower(it) |
---|
114 | ELSE |
---|
115 | r_lower(it)=sqrt(r_bin(it)*r_bin(it-1)) |
---|
116 | r_upper(it)=sqrt(r_bin(it+1)*r_bin(it)) |
---|
117 | ENDIF |
---|
118 | ENDDO |
---|
119 | |
---|
120 | IF (debutphy .and. is_mpi_root) THEN |
---|
121 | DO it=1, nbtr_bin |
---|
122 | PRINT *,'radius bin', it, ':', r_bin(it), '(from', r_lower(it), 'to', r_upper(it), ')' |
---|
123 | ENDDO |
---|
124 | ENDIF |
---|
125 | |
---|
126 | !--initialising logical is_strato from stratomask |
---|
127 | is_strato(:,:)=.FALSE. |
---|
128 | WHERE (stratomask.GT.0.5) is_strato=.TRUE. |
---|
129 | |
---|
130 | ! STRACOMP (H2O, P, t_seri -> aerosol composition (R2SO4)) |
---|
131 | ! H2SO4 mass fraction in aerosol (%) |
---|
132 | CALL stracomp(sh,t_seri,pplay) |
---|
133 | |
---|
134 | ! aerosol density (gr/cm3) |
---|
135 | CALL denh2sa(t_seri) |
---|
136 | |
---|
137 | ! compute factor for converting dry to wet radius (for every grid box) |
---|
138 | f_r_wet(:,:) = (dens_aer_dry/(DENSO4(:,:)*1000.)/(R2SO4(:,:)/100.))**(1./3.) |
---|
139 | |
---|
140 | !--calculate mass of air in every grid box |
---|
141 | DO ilon=1, klon |
---|
142 | DO ilev=1, klev |
---|
143 | m_air_gridbox(ilon,ilev)=(paprs(ilon,ilev)-paprs(ilon,ilev+1))/RG*cell_area(ilon) |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | |
---|
147 | ! IF (debutphy) THEN |
---|
148 | ! CALL gather(tr_seri, tr_seri_glo) |
---|
149 | ! IF (MAXVAL(tr_seri_glo).LT.1.e-30) THEN |
---|
150 | !--initialising tracer concentrations to zero |
---|
151 | ! DO it=1, nbtr |
---|
152 | ! tr_seri(:,:,it)=0.0 |
---|
153 | ! ENDDO |
---|
154 | ! ENDIF |
---|
155 | ! ENDIF |
---|
156 | |
---|
157 | !--initialise emission diagnostics |
---|
158 | budg_emi_ocs(:)=0.0 |
---|
159 | budg_emi_so2(:)=0.0 |
---|
160 | budg_emi_h2so4(:)=0.0 |
---|
161 | budg_emi_part(:)=0.0 |
---|
162 | |
---|
163 | !--sulfur emission, depending on chosen scenario (flag_sulf_emit) |
---|
164 | SELECT CASE(flag_sulf_emit) |
---|
165 | |
---|
166 | CASE(0) ! background aerosol |
---|
167 | ! do nothing (no emission) |
---|
168 | |
---|
169 | CASE(1) ! volcanic eruption |
---|
170 | !--only emit on day of eruption |
---|
171 | ! stretch emission over one day of Pinatubo eruption |
---|
172 | IF (year_cur==year_emit_vol.AND.mth_cur==mth_emit_vol.AND.day_cur==day_emit_vol) THEN |
---|
173 | ! |
---|
174 | DO i=1,klon |
---|
175 | !Pinatubo eruption at 15.14N, 120.35E |
---|
176 | IF ( xlat(i).GE.xlat_vol-dlat .AND. xlat(i).LT.xlat_vol+dlat .AND. & |
---|
177 | xlon(i).GE.xlon_vol-dlon .AND. xlon(i).LT.xlon_vol+dlon ) THEN |
---|
178 | ! |
---|
179 | PRINT *,'coordinates of volcanic injection point=',xlat(i), xlon(i), day_cur, mth_cur, year_cur |
---|
180 | ! compute altLMDz |
---|
181 | altLMDz(:)=0.0 |
---|
182 | DO k=1, klev |
---|
183 | zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 |
---|
184 | zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg |
---|
185 | zdz=zdm(k)/zrho !thickness of layer in m |
---|
186 | altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface |
---|
187 | ENDDO |
---|
188 | !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) |
---|
189 | f_lay_sum=0.0 |
---|
190 | DO k=1, klev |
---|
191 | f_lay_emiss(k)=0.0 |
---|
192 | DO i_int=1, n_int_alt |
---|
193 | alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
194 | f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_vol)* & |
---|
195 | & exp(-0.5*((alt-altemiss_vol)/sigma_alt_vol)**2.)* & |
---|
196 | & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
197 | ENDDO |
---|
198 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
199 | ENDDO |
---|
200 | !correct for step integration error |
---|
201 | f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum |
---|
202 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
203 | !vertically distributed emission |
---|
204 | DO k=1, klev |
---|
205 | ! stretch emission over one day of Pinatubo eruption |
---|
206 | emission=m_aer_emiss_vol*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/1./86400. |
---|
207 | tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys |
---|
208 | budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol |
---|
209 | ENDDO |
---|
210 | ENDIF ! emission grid cell |
---|
211 | ENDDO ! klon loop |
---|
212 | ENDIF ! emission period |
---|
213 | |
---|
214 | CASE(2) ! stratospheric aerosol injections (SAI) |
---|
215 | ! |
---|
216 | DO i=1,klon |
---|
217 | ! SAI standard scenario with continuous emission from 1 grid point at the equator |
---|
218 | ! SAI emission on single month |
---|
219 | ! IF ((mth_cur==4 .AND. & |
---|
220 | ! SAI continuous emission o |
---|
221 | IF ( xlat(i).GE.xlat_sai-dlat .AND. xlat(i).LT.xlat_sai+dlat .AND. & |
---|
222 | & xlon(i).GE.xlon_sai-dlon .AND. xlon(i).LT.xlon_sai+dlon ) THEN |
---|
223 | ! |
---|
224 | PRINT *,'coordinates of SAI point=',xlat(i), xlon(i), day_cur, mth_cur, year_cur |
---|
225 | ! compute altLMDz |
---|
226 | altLMDz(:)=0.0 |
---|
227 | DO k=1, klev |
---|
228 | zrho=pplay(i,k)/t_seri(i,k)/RD !air density in kg/m3 |
---|
229 | zdm(k)=(paprs(i,k)-paprs(i,k+1))/RG !mass of layer in kg |
---|
230 | zdz=zdm(k)/zrho !thickness of layer in m |
---|
231 | altLMDz(k+1)=altLMDz(k)+zdz !altitude of interface |
---|
232 | ENDDO |
---|
233 | !compute distribution of emission to vertical model layers (based on Gaussian peak in altitude) |
---|
234 | f_lay_sum=0.0 |
---|
235 | DO k=1, klev |
---|
236 | f_lay_emiss(k)=0.0 |
---|
237 | DO i_int=1, n_int_alt |
---|
238 | alt=altLMDz(k)+float(i_int)*(altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
239 | f_lay_emiss(k)=f_lay_emiss(k)+1./(sqrt(2.*RPI)*sigma_alt_sai)* & |
---|
240 | & exp(-0.5*((alt-altemiss_sai)/sigma_alt_sai)**2.)* & |
---|
241 | & (altLMDz(k+1)-altLMDz(k))/float(n_int_alt) |
---|
242 | ENDDO |
---|
243 | f_lay_sum=f_lay_sum+f_lay_emiss(k) |
---|
244 | ENDDO |
---|
245 | !correct for step integration error |
---|
246 | f_lay_emiss(:)=f_lay_emiss(:)/f_lay_sum |
---|
247 | !emission as SO2 gas (with m(SO2)=64/32*m_aer_emiss) |
---|
248 | !vertically distributed emission |
---|
249 | DO k=1, klev |
---|
250 | ! stretch emission over whole year (360d) |
---|
251 | emission=m_aer_emiss_sai*(mSO2mol/mSatom)/m_air_gridbox(i,k)*f_lay_emiss(k)/360./86400. |
---|
252 | tr_seri(i,k,id_SO2_strat)=tr_seri(i,k,id_SO2_strat)+emission*pdtphys |
---|
253 | budg_emi_so2(i)=budg_emi_so2(i)+emission*zdm(k)*mSatom/mSO2mol |
---|
254 | ENDDO |
---|
255 | ! !emission as monodisperse particles with 0.1um dry radius (BIN21) |
---|
256 | ! !vertically distributed emission |
---|
257 | ! DO k=1, klev |
---|
258 | ! ! stretch emission over whole year (360d) |
---|
259 | ! emission=m_aer_emiss*(mH2SO4mol/mSatom)/m_part_dry(21)/m_air_gridbox(i,k)*f_lay_emiss(k)/360./86400 |
---|
260 | ! tr_seri(i,k,id_BIN01_strat+20)=tr_seri(i,k,id_BIN01_strat+20)+emission*pdtphys |
---|
261 | ! budg_emi_part(i)=budg_emi_part(i)+emission*zdm(k)*mSatom/mH2SO4mol |
---|
262 | ! ENDDO |
---|
263 | ENDIF ! emission grid cell |
---|
264 | ENDDO ! klon loop |
---|
265 | |
---|
266 | END SELECT ! emission scenario (flag_sulf_emit) |
---|
267 | |
---|
268 | !--read background concentrations of OCS and SO2 and lifetimes from input file |
---|
269 | !--update the variables defined in phys_local_var_mod |
---|
270 | CALL interp_sulf_input(debutphy,pdtphys,paprs,tr_seri) |
---|
271 | |
---|
272 | !--convert OCS to SO2 in the stratosphere |
---|
273 | CALL ocs_to_so2(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
274 | |
---|
275 | !--convert SO2 to H2SO4 |
---|
276 | CALL so2_to_h2so4(pdtphys,tr_seri,t_seri,pplay,paprs,is_strato) |
---|
277 | |
---|
278 | !--common routine for nucleation and condensation/evaporation with adaptive timestep |
---|
279 | CALL micphy_tstep(pdtphys,tr_seri,t_seri,pplay,paprs,rh,is_strato) |
---|
280 | |
---|
281 | !--call coagulation routine |
---|
282 | CALL coagulate(pdtphys,mdw,tr_seri,t_seri,pplay,dens_aer,is_strato) |
---|
283 | |
---|
284 | !--call sedimentation routine |
---|
285 | CALL aer_sedimnt(pdtphys, t_seri, pplay, paprs, tr_seri, dens_aer) |
---|
286 | |
---|
287 | !--compute mass concentration of PM2.5 sulfate particles (wet diameter and mass) at the surface for health studies |
---|
288 | surf_PM25_sulf(:)=0.0 |
---|
289 | DO i=1,klon |
---|
290 | DO it=1, nbtr_bin |
---|
291 | IF (mdw(it) .LT. 2.5e-6) THEN |
---|
292 | !surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas)*m_part(i,1,it) & |
---|
293 | !assume that particles consist of ammonium sulfate at the surface (132g/mol) and are dry at T = 20 deg. C and 50 perc. humidity |
---|
294 | surf_PM25_sulf(i)=surf_PM25_sulf(i)+tr_seri(i,1,it+nbtr_sulgas) & |
---|
295 | & *132./98.*dens_aer_dry*4./3.*RPI*(mdw(it)/2.)**3 & |
---|
296 | & *pplay(i,1)/t_seri(i,1)/RD*1.e9 |
---|
297 | ENDIF |
---|
298 | ENDDO |
---|
299 | ENDDO |
---|
300 | |
---|
301 | ! CALL minmaxsimple(tr_seri(:,:,id_SO2_strat),0.0,0.0,'fin SO2') |
---|
302 | ! DO it=1, nbtr_bin |
---|
303 | ! CALL minmaxsimple(tr_seri(:,:,nbtr_sulgas+it),0.0,0.0,'fin bin ') |
---|
304 | ! ENDDO |
---|
305 | |
---|
306 | END SUBROUTINE traccoag |
---|
307 | |
---|
308 | END MODULE traccoag_mod |
---|