source: LMDZ5/branches/IPSLCM6.0.10/libf/phylmd/ener_conserv.F90 @ 5442

Last change on this file since 5442 was 2839, checked in by Laurent Fairhead, 8 years ago

Merged trunk changes r2785:2838 into testing branch

  • Property copyright set to
    Name of program: LMDZ
    Creation date: 1984
    Version: LMDZ5
    License: CeCILL version 2
    Holder: Laboratoire de m\'et\'eorologie dynamique, CNRS, UMR 8539
    See the license file in the root directory
File size: 6.3 KB
Line 
1subroutine ener_conserv(klon,klev,pdtphys, &
2 &    puo,pvo,pto,pqo,pun,pvn,ptn,pqn,dtke,masse,exner,d_t_ec)
3
4!=============================================================
5! Energy conservation
6! Based on the TKE equation
7! The M2 and N2 terms at the origin of TKE production are
8! concerted into heating in the d_t_ec term
9! Option 1 is the standard
10!        101 is for M2 term only
11!        101 for N2 term only
12!         -1 is a previours treatment for kinetic energy only
13!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
14!=============================================================
15
16!=============================================================
17! Declarations
18!=============================================================
19
20! From module
21USE phys_local_var_mod, ONLY : d_u_vdf,d_v_vdf,d_t_vdf,d_u_ajs,d_v_ajs,d_t_ajs,d_u_con,d_v_con,d_t_con,d_t_diss
22USE phys_local_var_mod, ONLY : d_t_eva,d_t_lsc,d_q_eva,d_q_lsc
23USE phys_output_var_mod, ONLY : bils_ec,bils_ech,bils_tke,bils_kinetic,bils_enthalp,bils_latent,bils_diss
24
25IMPLICIT none
26#include "YOMCST.h"
27#include "YOETHF.h"
28#include "clesphys.h"
29#include "compbl.h"
30
31! Arguments
32INTEGER, INTENT(IN) :: klon,klev
33REAL, INTENT(IN) :: pdtphys
34REAL, DIMENSION(klon,klev),INTENT(IN) :: puo,pvo,pto,pqo
35REAL, DIMENSION(klon,klev),INTENT(IN) :: pun,pvn,ptn,pqn
36REAL, DIMENSION(klon,klev),INTENT(IN) :: masse,exner
37REAL, DIMENSION(klon,klev+1),INTENT(IN) :: dtke
38REAL, DIMENSION(klon,klev),INTENT(OUT) :: d_t_ec
39      integer k,i
40
41! Local
42REAL, DIMENSION(klon,klev+1) :: fluxu,fluxv,fluxt
43REAL, DIMENSION(klon,klev+1) :: dddu,dddv,dddt
44REAL, DIMENSION(klon,klev) :: d_u,d_v,d_t,zv,zu,d_t_ech
45REAL ZRCPD
46
47character*80 abort_message
48character*20 :: modname
49
50
51modname='ener_conser'
52d_t_ec(:,:)=0.
53
54IF (iflag_ener_conserv==-1) THEN
55!+jld ec_conser
56   DO k = 1, klev
57   DO i = 1, klon
58      ZRCPD = RCPD*(1.0+RVTMP2*pqn(i,k))
59      d_t_ec(i,k)=0.5/ZRCPD &
60 &      *(puo(i,k)**2+pvo(i,k)**2-pun(i,k)**2-pvn(i,k)**2)
61      ENDDO
62      ENDDO
63!-jld ec_conser
64
65
66
67ELSEIF (iflag_ener_conserv>=1) THEN
68
69   IF (iflag_ener_conserv<=2) THEN
70!     print*,'ener_conserv pbl=',iflag_pbl
71      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN !d_t_diss accounts for conserv
72         d_t(:,:)=d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
73         d_u(:,:)=d_u_ajs(:,:)+d_u_con(:,:)
74         d_v(:,:)=d_v_ajs(:,:)+d_v_con(:,:)
75      ELSE
76         d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)   ! d_t_ajs = adjust + thermals
77         d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
78         d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
79      ENDIF
80   ELSEIF (iflag_ener_conserv==101) THEN
81      d_t(:,:)=0.
82      d_u(:,:)=d_u_vdf(:,:)+d_u_ajs(:,:)+d_u_con(:,:)
83      d_v(:,:)=d_v_vdf(:,:)+d_v_ajs(:,:)+d_v_con(:,:)
84   ELSEIF (iflag_ener_conserv==110) THEN
85      d_t(:,:)=d_t_vdf(:,:)+d_t_ajs(:,:)
86      d_u(:,:)=0.
87      d_v(:,:)=0.
88   ELSE
89      abort_message = 'iflag_ener_conserv non prevu'
90      CALL abort_physic (modname,abort_message,1)
91   ENDIF
92
93!----------------------------------------------------------------------------
94! Two options wether we consider time integration in the energy conservation
95!----------------------------------------------------------------------------
96
97   if (iflag_ener_conserv==2) then
98      zu(:,:)=puo(:,:)
99      zv(:,:)=pvo(:,:)
100   else
101      IF (iflag_pbl>=20 .AND. iflag_pbl<=27) THEN
102         zu(:,:)=puo(:,:)+d_u_vdf(:,:)+0.5*d_u(:,:)
103         zv(:,:)=pvo(:,:)+d_v_vdf(:,:)+0.5*d_v(:,:)
104      ELSE
105         zu(:,:)=puo(:,:)+0.5*d_u(:,:)
106         zv(:,:)=pvo(:,:)+0.5*d_v(:,:)
107      ENDIF
108   endif
109
110   fluxu(:,klev+1)=0.
111   fluxv(:,klev+1)=0.
112   fluxt(:,klev+1)=0.
113
114   do k=klev,1,-1
115      fluxu(:,k)=fluxu(:,k+1)+masse(:,k)*d_u(:,k)
116      fluxv(:,k)=fluxv(:,k+1)+masse(:,k)*d_v(:,k)
117      fluxt(:,k)=fluxt(:,k+1)+masse(:,k)*d_t(:,k)/exner(:,k)
118   enddo
119
120   dddu(:,1)=2*zu(:,1)*fluxu(:,1)
121   dddv(:,1)=2*zv(:,1)*fluxv(:,1)
122   dddt(:,1)=(exner(:,1)-1.)*fluxt(:,1)
123
124   do k=2,klev
125      dddu(:,k)=(zu(:,k)-zu(:,k-1))*fluxu(:,k)
126      dddv(:,k)=(zv(:,k)-zv(:,k-1))*fluxv(:,k)
127      dddt(:,k)=(exner(:,k)-exner(:,k-1))*fluxt(:,k)
128   enddo
129   dddu(:,klev+1)=0.
130   dddv(:,klev+1)=0.
131   dddt(:,klev+1)=0.
132
133   do k=1,klev
134      d_t_ech(:,k)=-(rcpd*(dddt(:,k)+dddt(:,k+1)))/(2.*rcpd*masse(:,k))
135      d_t_ec(:,k)=-(dddu(:,k)+dddu(:,k+1)+dddv(:,k)+dddv(:,k+1))/(2.*rcpd*masse(:,k))+d_t_ech(:,k)
136   enddo
137
138ENDIF
139
140!================================================================
141!  Computation of integrated enthalpie and kinetic energy variation
142!  FH (hourdin@lmd.jussieu.fr), 2013/04/25
143!  bils_ec : energie conservation term
144!  bils_ech : part of this term linked to temperature
145!  bils_tke : change of TKE
146!  bils_diss : dissipation of TKE (when activated)
147!  bils_kinetic : change of kinetic energie of the column
148!  bils_enthalp : change of enthalpie
149!  bils_latent  : change of latent heat. Computed between
150!          after reevaporation (at the beginning of the physics)
151!          and before large scale condensation (fisrtilp)
152!================================================================
153
154      bils_ec(:)=0.
155      bils_ech(:)=0.
156      bils_tke(:)=0.
157      bils_diss(:)=0.
158      bils_kinetic(:)=0.
159      bils_enthalp(:)=0.
160      bils_latent(:)=0.
161      DO k=1,klev
162        bils_ec(:)=bils_ec(:)-d_t_ec(:,k)*masse(:,k)
163        bils_tke(:)=bils_tke(:)+0.5*(dtke(:,k)+dtke(:,k+1))*masse(:,k)
164        bils_diss(:)=bils_diss(:)-d_t_diss(:,k)*masse(:,k)
165        bils_kinetic(:)=bils_kinetic(:)+masse(:,k)* &
166     &           (pun(:,k)*pun(:,k)+pvn(:,k)*pvn(:,k) &
167     &            -puo(:,k)*puo(:,k)-pvo(:,k)*pvo(:,k))
168        bils_enthalp(:)= &
169     &  bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k)-d_t_eva(:,k)-d_t_lsc(:,k))
170!    &  bils_enthalp(:)+masse(:,k)*(ptn(:,k)-pto(:,k)+d_t_ec(:,k))
171        bils_latent(:)=bils_latent(:)+masse(:,k)* &
172!    &             (pqn(:,k)-pqo(:,k))
173     &             (pqn(:,k)-pqo(:,k)-d_q_eva(:,k)-d_q_lsc(:,k))
174      ENDDO
175      bils_ec(:)=rcpd*bils_ec(:)/pdtphys
176      bils_tke(:)=bils_tke(:)/pdtphys
177      bils_diss(:)=rcpd*bils_diss(:)/pdtphys
178      bils_kinetic(:)= 0.5*bils_kinetic(:)/pdtphys
179      bils_enthalp(:)=rcpd*bils_enthalp(:)/pdtphys
180      bils_latent(:)=rlvtt*bils_latent(:)/pdtphys
181
182IF (iflag_ener_conserv>=1) THEN
183      bils_ech(:)=0.
184      DO k=1,klev
185        bils_ech(:)=bils_ech(:)-d_t_ech(:,k)*masse(:,k)
186      ENDDO
187      bils_ech(:)=rcpd*bils_ech(:)/pdtphys
188ENDIF
189
190RETURN
191
192END
Note: See TracBrowser for help on using the repository browser.