1 | ! |
---|
2 | ! $Id: 1D_interp_cases.h 2565 2016-06-10 14:01:28Z aborella $ |
---|
3 | ! |
---|
4 | !--------------------------------------------------------------------- |
---|
5 | ! Forcing_LES case: constant dq_dyn |
---|
6 | !--------------------------------------------------------------------- |
---|
7 | if (forcing_LES) then |
---|
8 | DO l = 1,llm |
---|
9 | d_q_adv(l,1) = dq_dyn(l,1) |
---|
10 | ENDDO |
---|
11 | endif ! forcing_LES |
---|
12 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
13 | !--------------------------------------------------------------------- |
---|
14 | ! Interpolation forcing in time and onto model levels |
---|
15 | !--------------------------------------------------------------------- |
---|
16 | if (forcing_GCSSold) then |
---|
17 | |
---|
18 | call get_uvd(it,timestep,fich_gcssold_ctl,fich_gcssold_dat, & |
---|
19 | & ht_gcssold,hq_gcssold,hw_gcssold, & |
---|
20 | & hu_gcssold,hv_gcssold, & |
---|
21 | & hthturb_gcssold,hqturb_gcssold,Ts_gcssold, & |
---|
22 | & imp_fcg_gcssold,ts_fcg_gcssold, & |
---|
23 | & Tp_fcg_gcssold,Turb_fcg_gcssold) |
---|
24 | if (prt_level.ge.1) then |
---|
25 | print *,' get_uvd -> hqturb_gcssold ',it,hqturb_gcssold |
---|
26 | endif |
---|
27 | ! large-scale forcing : |
---|
28 | !!! tsurf = ts_gcssold |
---|
29 | do l = 1, llm |
---|
30 | ! u(l) = hu_gcssold(l) ! on prescrit le vent |
---|
31 | ! v(l) = hv_gcssold(l) ! on prescrit le vent |
---|
32 | ! omega(l) = hw_gcssold(l) |
---|
33 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
34 | ! omega2(l)=-rho(l)*omega(l) |
---|
35 | omega(l) = hw_gcssold(l) |
---|
36 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
37 | |
---|
38 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
39 | d_th_adv(l) = ht_gcssold(l) |
---|
40 | d_q_adv(l,1) = hq_gcssold(l) |
---|
41 | dt_cooling(l) = 0.0 |
---|
42 | enddo |
---|
43 | |
---|
44 | endif ! forcing_GCSSold |
---|
45 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
46 | !--------------------------------------------------------------------- |
---|
47 | ! Interpolation Toga forcing |
---|
48 | !--------------------------------------------------------------------- |
---|
49 | if (forcing_toga) then |
---|
50 | |
---|
51 | if (prt_level.ge.1) then |
---|
52 | print*, & |
---|
53 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_toga=', & |
---|
54 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_toga |
---|
55 | endif |
---|
56 | |
---|
57 | ! time interpolation: |
---|
58 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
59 | & ,year_ini_toga,day_ju_ini_toga,nt_toga,dt_toga & |
---|
60 | & ,nlev_toga,ts_toga,plev_toga,t_toga,q_toga,u_toga & |
---|
61 | & ,v_toga,w_toga,ht_toga,vt_toga,hq_toga,vq_toga & |
---|
62 | & ,ts_prof,plev_prof,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
63 | & ,ht_prof,vt_prof,hq_prof,vq_prof) |
---|
64 | |
---|
65 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
66 | |
---|
67 | ! vertical interpolation: |
---|
68 | CALL interp_toga_vertical(play,nlev_toga,plev_prof & |
---|
69 | & ,t_prof,q_prof,u_prof,v_prof,w_prof & |
---|
70 | & ,ht_prof,vt_prof,hq_prof,vq_prof & |
---|
71 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
72 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
73 | |
---|
74 | ! large-scale forcing : |
---|
75 | tsurf = ts_prof |
---|
76 | do l = 1, llm |
---|
77 | u(l) = u_mod(l) ! sb: on prescrit le vent |
---|
78 | v(l) = v_mod(l) ! sb: on prescrit le vent |
---|
79 | ! omega(l) = w_prof(l) |
---|
80 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
81 | ! omega2(l)=-rho(l)*omega(l) |
---|
82 | omega(l) = w_mod(l) |
---|
83 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
84 | |
---|
85 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
86 | d_th_adv(l) = alpha*omega(l)/rcpd-(ht_mod(l)+vt_mod(l)) |
---|
87 | d_q_adv(l,1) = -(hq_mod(l)+vq_mod(l)) |
---|
88 | dt_cooling(l) = 0.0 |
---|
89 | enddo |
---|
90 | |
---|
91 | endif ! forcing_toga |
---|
92 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
93 | ! Interpolation DICE forcing |
---|
94 | !--------------------------------------------------------------------- |
---|
95 | if (forcing_dice) then |
---|
96 | |
---|
97 | if (prt_level.ge.1) then |
---|
98 | print*,'#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_dice=',& |
---|
99 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_dice |
---|
100 | endif |
---|
101 | |
---|
102 | ! time interpolation: |
---|
103 | CALL interp_dice_time(daytime,day1,annee_ref & |
---|
104 | & ,year_ini_dice,day_ju_ini_dice,nt_dice,dt_dice & |
---|
105 | & ,nlev_dice,shf_dice,lhf_dice,lwup_dice,swup_dice & |
---|
106 | & ,tg_dice,ustar_dice,psurf_dice,ug_dice,vg_dice & |
---|
107 | & ,ht_dice,hq_dice,hu_dice,hv_dice,w_dice,omega_dice & |
---|
108 | & ,shf_prof,lhf_prof,lwup_prof,swup_prof,tg_prof & |
---|
109 | & ,ustar_prof,psurf_prof,ug_profd,vg_profd & |
---|
110 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd & |
---|
111 | & ,omega_profd) |
---|
112 | ! do l = 1, llm |
---|
113 | ! print *,'llm l omega_profd',llm,l,omega_profd(l) |
---|
114 | ! enddo |
---|
115 | |
---|
116 | if (type_ts_forcing.eq.1) ts_cur = tg_prof ! SST used in read_tsurf1d |
---|
117 | |
---|
118 | ! vertical interpolation: |
---|
119 | CALL interp_dice_vertical(play,nlev_dice,nt_dice,plev_dice & |
---|
120 | & ,th_dice,qv_dice,u_dice,v_dice,o3_dice & |
---|
121 | & ,ht_profd,hq_profd,hu_profd,hv_profd,w_profd,omega_profd & |
---|
122 | & ,th_mod,qv_mod,u_mod,v_mod,o3_mod & |
---|
123 | & ,ht_mod,hq_mod,hu_mod,hv_mod,w_mod,omega_mod,mxcalc) |
---|
124 | ! do l = 1, llm |
---|
125 | ! print *,'llm l omega_mod',llm,l,omega_mod(l) |
---|
126 | ! enddo |
---|
127 | |
---|
128 | ! Les forcages DICE sont donnes /jour et non /seconde ! |
---|
129 | ht_mod(:)=ht_mod(:)/86400. |
---|
130 | hq_mod(:)=hq_mod(:)/86400. |
---|
131 | hu_mod(:)=hu_mod(:)/86400. |
---|
132 | hv_mod(:)=hv_mod(:)/86400. |
---|
133 | |
---|
134 | !calcul de l'advection verticale a partir du omega (repris cas TWPICE, MPL 05082013) |
---|
135 | !Calcul des gradients verticaux |
---|
136 | !initialisation |
---|
137 | d_t_z(:)=0. |
---|
138 | d_q_z(:)=0. |
---|
139 | d_u_z(:)=0. |
---|
140 | d_v_z(:)=0. |
---|
141 | DO l=2,llm-1 |
---|
142 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
143 | d_q_z(l)=(q(l+1,1)-q(l-1,1)) /(play(l+1)-play(l-1)) |
---|
144 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
145 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
146 | ENDDO |
---|
147 | d_t_z(1)=d_t_z(2) |
---|
148 | d_q_z(1)=d_q_z(2) |
---|
149 | ! d_u_z(1)=u(2)/(play(2)-psurf)/5. |
---|
150 | ! d_v_z(1)=v(2)/(play(2)-psurf)/5. |
---|
151 | d_u_z(1)=0. |
---|
152 | d_v_z(1)=0. |
---|
153 | d_t_z(llm)=d_t_z(llm-1) |
---|
154 | d_q_z(llm)=d_q_z(llm-1) |
---|
155 | d_u_z(llm)=d_u_z(llm-1) |
---|
156 | d_v_z(llm)=d_v_z(llm-1) |
---|
157 | |
---|
158 | !Calcul de l advection verticale: |
---|
159 | ! utiliser omega (Pa/s) et non w (m/s) !! MP 20131108 |
---|
160 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
161 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
162 | d_u_dyn_z(:)=omega_mod(:)*d_u_z(:) |
---|
163 | d_v_dyn_z(:)=omega_mod(:)*d_v_z(:) |
---|
164 | |
---|
165 | ! large-scale forcing : |
---|
166 | ! tsurf = tg_prof MPL 20130925 commente |
---|
167 | psurf = psurf_prof |
---|
168 | ! For this case, fluxes are imposed |
---|
169 | fsens=-1*shf_prof |
---|
170 | flat=-1*lhf_prof |
---|
171 | ust=ustar_prof |
---|
172 | tg=tg_prof |
---|
173 | print *,'ust= ',ust |
---|
174 | do l = 1, llm |
---|
175 | ug(l)= ug_profd |
---|
176 | vg(l)= vg_profd |
---|
177 | ! omega(l) = w_prof(l) |
---|
178 | ! rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
179 | ! omega2(l)=-rho(l)*omega(l) |
---|
180 | ! omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
181 | omega(l) = omega_mod(l) |
---|
182 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
183 | |
---|
184 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
185 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
186 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
187 | d_u_adv(l) = hu_mod(l)-d_u_dyn_z(l) |
---|
188 | d_v_adv(l) = hv_mod(l)-d_v_dyn_z(l) |
---|
189 | dt_cooling(l) = 0.0 |
---|
190 | enddo |
---|
191 | |
---|
192 | endif ! forcing_dice |
---|
193 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
194 | !--------------------------------------------------------------------- |
---|
195 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
196 | !--------------------------------------------------------------------- |
---|
197 | ! Interpolation forcing TWPice |
---|
198 | !--------------------------------------------------------------------- |
---|
199 | if (forcing_twpice) then |
---|
200 | |
---|
201 | print*, & |
---|
202 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_twpi=', & |
---|
203 | & daytime,day1,(daytime-day1)*86400., & |
---|
204 | & (daytime-day1)*86400/dt_twpi |
---|
205 | |
---|
206 | ! time interpolation: |
---|
207 | CALL interp_toga_time(daytime,day1,annee_ref & |
---|
208 | & ,year_ini_twpi,day_ju_ini_twpi,nt_twpi,dt_twpi,nlev_twpi & |
---|
209 | & ,ts_twpi,plev_twpi,t_twpi,q_twpi,u_twpi,v_twpi,w_twpi & |
---|
210 | & ,ht_twpi,vt_twpi,hq_twpi,vq_twpi & |
---|
211 | & ,ts_proftwp,plev_proftwp,t_proftwp,q_proftwp,u_proftwp & |
---|
212 | & ,v_proftwp,w_proftwp & |
---|
213 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp) |
---|
214 | |
---|
215 | ! vertical interpolation: |
---|
216 | CALL interp_toga_vertical(play,nlev_twpi,plev_proftwp & |
---|
217 | & ,t_proftwp,q_proftwp,u_proftwp,v_proftwp,w_proftwp & |
---|
218 | & ,ht_proftwp,vt_proftwp,hq_proftwp,vq_proftwp & |
---|
219 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
220 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
221 | |
---|
222 | |
---|
223 | !calcul de l'advection verticale a partir du omega |
---|
224 | !Calcul des gradients verticaux |
---|
225 | !initialisation |
---|
226 | d_t_z(:)=0. |
---|
227 | d_q_z(:)=0. |
---|
228 | d_t_dyn_z(:)=0. |
---|
229 | d_q_dyn_z(:)=0. |
---|
230 | DO l=2,llm-1 |
---|
231 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
232 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
233 | ENDDO |
---|
234 | d_t_z(1)=d_t_z(2) |
---|
235 | d_q_z(1)=d_q_z(2) |
---|
236 | d_t_z(llm)=d_t_z(llm-1) |
---|
237 | d_q_z(llm)=d_q_z(llm-1) |
---|
238 | |
---|
239 | !Calcul de l advection verticale |
---|
240 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
241 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
242 | |
---|
243 | !wind nudging above 500m with a 2h time scale |
---|
244 | do l=1,llm |
---|
245 | if (nudge_wind) then |
---|
246 | ! if (phi(l).gt.5000.) then |
---|
247 | if (phi(l).gt.0.) then |
---|
248 | u(l)=u(l)+timestep*(u_mod(l)-u(l))/(2.*3600.) |
---|
249 | v(l)=v(l)+timestep*(v_mod(l)-v(l))/(2.*3600.) |
---|
250 | endif |
---|
251 | else |
---|
252 | u(l) = u_mod(l) |
---|
253 | v(l) = v_mod(l) |
---|
254 | endif |
---|
255 | enddo |
---|
256 | |
---|
257 | !CR:nudging of q and theta with a 6h time scale above 15km |
---|
258 | if (nudge_thermo) then |
---|
259 | do l=1,llm |
---|
260 | zz(l)=phi(l)/9.8 |
---|
261 | if ((zz(l).le.16000.).and.(zz(l).gt.15000.)) then |
---|
262 | zfact=(zz(l)-15000.)/1000. |
---|
263 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.)*zfact |
---|
264 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.)*zfact |
---|
265 | else if (zz(l).gt.16000.) then |
---|
266 | q(l,1)=q(l,1)+timestep*(q_mod(l)-q(l,1))/(6.*3600.) |
---|
267 | temp(l)=temp(l)+timestep*(t_mod(l)-temp(l))/(6.*3600.) |
---|
268 | endif |
---|
269 | enddo |
---|
270 | endif |
---|
271 | |
---|
272 | do l = 1, llm |
---|
273 | omega(l) = w_mod(l) |
---|
274 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
275 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
276 | !calcul de l'advection totale |
---|
277 | if (cptadvw) then |
---|
278 | d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-d_t_dyn_z(l) |
---|
279 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
280 | d_q_adv(l,1) = hq_mod(l)-d_q_dyn_z(l) |
---|
281 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
282 | else |
---|
283 | d_th_adv(l) = alpha*omega(l)/rcpd+(ht_mod(l)+vt_mod(l)) |
---|
284 | d_q_adv(l,1) = (hq_mod(l)+vq_mod(l)) |
---|
285 | endif |
---|
286 | dt_cooling(l) = 0.0 |
---|
287 | enddo |
---|
288 | |
---|
289 | endif ! forcing_twpice |
---|
290 | |
---|
291 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
292 | !--------------------------------------------------------------------- |
---|
293 | ! Interpolation forcing AMMA |
---|
294 | !--------------------------------------------------------------------- |
---|
295 | |
---|
296 | if (forcing_amma) then |
---|
297 | |
---|
298 | print*, & |
---|
299 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_amma=', & |
---|
300 | & daytime,day1,(daytime-day1)*86400., & |
---|
301 | & (daytime-day1)*86400/dt_amma |
---|
302 | |
---|
303 | ! time interpolation using TOGA interpolation routine |
---|
304 | CALL interp_amma_time(daytime,day1,annee_ref & |
---|
305 | & ,year_ini_amma,day_ju_ini_amma,nt_amma,dt_amma,nlev_amma & |
---|
306 | & ,vitw_amma,ht_amma,hq_amma,lat_amma,sens_amma & |
---|
307 | & ,vitw_profamma,ht_profamma,hq_profamma,lat_profamma & |
---|
308 | & ,sens_profamma) |
---|
309 | |
---|
310 | print*,'apres interpolation temporelle AMMA' |
---|
311 | |
---|
312 | do k=1,nlev_amma |
---|
313 | th_profamma(k)=0. |
---|
314 | q_profamma(k)=0. |
---|
315 | u_profamma(k)=0. |
---|
316 | v_profamma(k)=0. |
---|
317 | vt_profamma(k)=0. |
---|
318 | vq_profamma(k)=0. |
---|
319 | enddo |
---|
320 | ! vertical interpolation using TOGA interpolation routine: |
---|
321 | ! write(*,*)'avant interp vert', t_proftwp |
---|
322 | CALL interp_toga_vertical(play,nlev_amma,plev_amma & |
---|
323 | & ,th_profamma,q_profamma,u_profamma,v_profamma & |
---|
324 | & ,vitw_profamma & |
---|
325 | & ,ht_profamma,vt_profamma,hq_profamma,vq_profamma & |
---|
326 | & ,t_mod,q_mod,u_mod,v_mod,w_mod & |
---|
327 | & ,ht_mod,vt_mod,hq_mod,vq_mod,mxcalc) |
---|
328 | write(*,*) 'Profil initial forcing AMMA interpole' |
---|
329 | |
---|
330 | |
---|
331 | !calcul de l'advection verticale a partir du omega |
---|
332 | !Calcul des gradients verticaux |
---|
333 | !initialisation |
---|
334 | do l=1,llm |
---|
335 | d_t_z(l)=0. |
---|
336 | d_q_z(l)=0. |
---|
337 | enddo |
---|
338 | |
---|
339 | DO l=2,llm-1 |
---|
340 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
341 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
342 | ENDDO |
---|
343 | d_t_z(1)=d_t_z(2) |
---|
344 | d_q_z(1)=d_q_z(2) |
---|
345 | d_t_z(llm)=d_t_z(llm-1) |
---|
346 | d_q_z(llm)=d_q_z(llm-1) |
---|
347 | |
---|
348 | |
---|
349 | do l = 1, llm |
---|
350 | rho(l) = play(l)/(rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))) |
---|
351 | omega(l) = w_mod(l)*(-rg*rho(l)) |
---|
352 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
353 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
354 | !calcul de l'advection totale |
---|
355 | ! d_th_adv(l) = alpha*omega(l)/rcpd+ht_mod(l)-omega(l)*d_t_z(l) |
---|
356 | !attention: on impose dth |
---|
357 | d_th_adv(l) = alpha*omega(l)/rcpd+ & |
---|
358 | & ht_mod(l)*(play(l)/pzero)**rkappa-omega(l)*d_t_z(l) |
---|
359 | ! d_th_adv(l) = 0. |
---|
360 | ! print*,'temp vert adv',l,ht_mod(l),vt_mod(l),-d_t_dyn_z(l) |
---|
361 | d_q_adv(l,1) = hq_mod(l)-omega(l)*d_q_z(l) |
---|
362 | ! d_q_adv(l,1) = 0. |
---|
363 | ! print*,'q vert adv',l,hq_mod(l),vq_mod(l),-d_q_dyn_z(l) |
---|
364 | |
---|
365 | dt_cooling(l) = 0.0 |
---|
366 | enddo |
---|
367 | |
---|
368 | |
---|
369 | ! ok_flux_surf=.false. |
---|
370 | fsens=-1.*sens_profamma |
---|
371 | flat=-1.*lat_profamma |
---|
372 | |
---|
373 | endif ! forcing_amma |
---|
374 | |
---|
375 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
376 | !--------------------------------------------------------------------- |
---|
377 | ! Interpolation forcing Rico |
---|
378 | !--------------------------------------------------------------------- |
---|
379 | if (forcing_rico) then |
---|
380 | ! call lstendH(llm,omega,dt_dyn,dq_dyn,du_dyn, dv_dyn, |
---|
381 | ! : q,temp,u,v,play) |
---|
382 | call lstendH(llm,nqtot,omega,dt_dyn,dq_dyn,q,temp,u,v,play) |
---|
383 | |
---|
384 | do l=1,llm |
---|
385 | d_th_adv(l) = (dth_rico(l) + dt_dyn(l)) |
---|
386 | d_q_adv(l,1) = (dqh_rico(l) + dq_dyn(l,1)) |
---|
387 | d_q_adv(l,2) = 0. |
---|
388 | enddo |
---|
389 | endif ! forcing_rico |
---|
390 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
391 | !--------------------------------------------------------------------- |
---|
392 | ! Interpolation forcing Arm_cu |
---|
393 | !--------------------------------------------------------------------- |
---|
394 | if (forcing_armcu) then |
---|
395 | |
---|
396 | print*, & |
---|
397 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_armcu=', & |
---|
398 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_armcu |
---|
399 | |
---|
400 | ! time interpolation: |
---|
401 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
402 | ! revoir 1DUTILS.h et les arguments |
---|
403 | CALL interp_armcu_time(daytime,day1,annee_ref & |
---|
404 | & ,year_ini_armcu,day_ju_ini_armcu,nt_armcu,dt_armcu & |
---|
405 | & ,nlev_armcu,sens_armcu,flat_armcu,adv_theta_armcu & |
---|
406 | & ,rad_theta_armcu,adv_qt_armcu,sens_prof,flat_prof & |
---|
407 | & ,adv_theta_prof,rad_theta_prof,adv_qt_prof) |
---|
408 | |
---|
409 | ! vertical interpolation: |
---|
410 | ! No vertical interpolation if nlev imposed to 19 or 40 |
---|
411 | |
---|
412 | ! For this case, fluxes are imposed |
---|
413 | fsens=-1*sens_prof |
---|
414 | flat=-1*flat_prof |
---|
415 | |
---|
416 | ! Advective forcings are given in K or g/kg ... BY HOUR |
---|
417 | do l = 1, llm |
---|
418 | ug(l)= u_mod(l) |
---|
419 | vg(l)= v_mod(l) |
---|
420 | IF((phi(l)/RG).LT.1000) THEN |
---|
421 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)/3600. |
---|
422 | d_q_adv(l,1) = adv_qt_prof/1000./3600. |
---|
423 | d_q_adv(l,2) = 0.0 |
---|
424 | ! print *,'INF1000: phi dth dq1 dq2', |
---|
425 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
426 | ELSEIF ((phi(l)/RG).GE.1000.AND.(phi(l)/RG).lt.3000) THEN |
---|
427 | fact=((phi(l)/RG)-1000.)/2000. |
---|
428 | fact=1-fact |
---|
429 | d_th_adv(l) = (adv_theta_prof + rad_theta_prof)*fact/3600. |
---|
430 | d_q_adv(l,1) = adv_qt_prof*fact/1000./3600. |
---|
431 | d_q_adv(l,2) = 0.0 |
---|
432 | ! print *,'SUP1000: phi fact dth dq1 dq2', |
---|
433 | ! : phi(l)/RG,fact,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
434 | ELSE |
---|
435 | d_th_adv(l) = 0.0 |
---|
436 | d_q_adv(l,1) = 0.0 |
---|
437 | d_q_adv(l,2) = 0.0 |
---|
438 | ! print *,'SUP3000: phi dth dq1 dq2', |
---|
439 | ! : phi(l)/RG,d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
440 | ENDIF |
---|
441 | dt_cooling(l) = 0.0 |
---|
442 | ! print *,'Interp armcu: phi dth dq1 dq2', |
---|
443 | ! : l,phi(l),d_th_adv(l),d_q_adv(l,1),d_q_adv(l,2) |
---|
444 | enddo |
---|
445 | endif ! forcing_armcu |
---|
446 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
447 | !--------------------------------------------------------------------- |
---|
448 | ! Interpolation forcing in time and onto model levels |
---|
449 | !--------------------------------------------------------------------- |
---|
450 | if (forcing_sandu) then |
---|
451 | |
---|
452 | print*, & |
---|
453 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_sandu=', & |
---|
454 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_sandu |
---|
455 | |
---|
456 | ! time interpolation: |
---|
457 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
458 | ! revoir 1DUTILS.h et les arguments |
---|
459 | CALL interp_sandu_time(daytime,day1,annee_ref & |
---|
460 | & ,year_ini_sandu,day_ju_ini_sandu,nt_sandu,dt_sandu & |
---|
461 | & ,nlev_sandu & |
---|
462 | & ,ts_sandu,ts_prof) |
---|
463 | |
---|
464 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
465 | |
---|
466 | ! vertical interpolation: |
---|
467 | CALL interp_sandu_vertical(play,nlev_sandu,plev_profs & |
---|
468 | & ,t_profs,thl_profs,q_profs,u_profs,v_profs,w_profs & |
---|
469 | & ,omega_profs,o3mmr_profs & |
---|
470 | & ,t_mod,thl_mod,q_mod,u_mod,v_mod,w_mod & |
---|
471 | & ,omega_mod,o3mmr_mod,mxcalc) |
---|
472 | !calcul de l'advection verticale |
---|
473 | !Calcul des gradients verticaux |
---|
474 | !initialisation |
---|
475 | d_t_z(:)=0. |
---|
476 | d_q_z(:)=0. |
---|
477 | d_t_dyn_z(:)=0. |
---|
478 | d_q_dyn_z(:)=0. |
---|
479 | ! schema centre |
---|
480 | ! DO l=2,llm-1 |
---|
481 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
482 | ! & /(play(l+1)-play(l-1)) |
---|
483 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
484 | ! & /(play(l+1)-play(l-1)) |
---|
485 | ! schema amont |
---|
486 | DO l=2,llm-1 |
---|
487 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
488 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
489 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
490 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
491 | ENDDO |
---|
492 | d_t_z(1)=d_t_z(2) |
---|
493 | d_q_z(1)=d_q_z(2) |
---|
494 | d_t_z(llm)=d_t_z(llm-1) |
---|
495 | d_q_z(llm)=d_q_z(llm-1) |
---|
496 | |
---|
497 | ! calcul de l advection verticale |
---|
498 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
499 | d_t_dyn_z(:)=omega_mod(:)*d_t_z(:) |
---|
500 | d_q_dyn_z(:)=omega_mod(:)*d_q_z(:) |
---|
501 | ! do l=1,llm |
---|
502 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
503 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
504 | ! enddo |
---|
505 | |
---|
506 | |
---|
507 | ! large-scale forcing : pour le cas Sandu ces forcages sont la SST |
---|
508 | ! et une divergence constante -> profil de omega |
---|
509 | tsurf = ts_prof |
---|
510 | write(*,*) 'SST suivante: ',tsurf |
---|
511 | do l = 1, llm |
---|
512 | omega(l) = omega_mod(l) |
---|
513 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
514 | |
---|
515 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
516 | ! |
---|
517 | ! d_th_adv(l) = 0.0 |
---|
518 | ! d_q_adv(l,1) = 0.0 |
---|
519 | !CR:test advection=0 |
---|
520 | !calcul de l'advection verticale |
---|
521 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
522 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
523 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
524 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
525 | dt_cooling(l) = 0.0 |
---|
526 | enddo |
---|
527 | endif ! forcing_sandu |
---|
528 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
529 | !--------------------------------------------------------------------- |
---|
530 | ! Interpolation forcing in time and onto model levels |
---|
531 | !--------------------------------------------------------------------- |
---|
532 | if (forcing_astex) then |
---|
533 | |
---|
534 | print*, & |
---|
535 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/dt_astex=', & |
---|
536 | & day,day1,(day-day1)*86400.,(day-day1)*86400/dt_astex |
---|
537 | |
---|
538 | ! time interpolation: |
---|
539 | ! ATTENTION, cet appel ne convient pas pour TOGA !! |
---|
540 | ! revoir 1DUTILS.h et les arguments |
---|
541 | CALL interp_astex_time(daytime,day1,annee_ref & |
---|
542 | & ,year_ini_astex,day_ju_ini_astex,nt_astex,dt_astex & |
---|
543 | & ,nlev_astex,div_astex,ts_astex,ug_astex,vg_astex & |
---|
544 | & ,ufa_astex,vfa_astex,div_prof,ts_prof,ug_prof,vg_prof & |
---|
545 | & ,ufa_prof,vfa_prof) |
---|
546 | |
---|
547 | if (type_ts_forcing.eq.1) ts_cur = ts_prof ! SST used in read_tsurf1d |
---|
548 | |
---|
549 | ! vertical interpolation: |
---|
550 | CALL interp_astex_vertical(play,nlev_astex,plev_profa & |
---|
551 | & ,t_profa,thl_profa,qv_profa,ql_profa,qt_profa & |
---|
552 | & ,u_profa,v_profa,w_profa,tke_profa,o3mmr_profa & |
---|
553 | & ,t_mod,thl_mod,qv_mod,ql_mod,qt_mod,u_mod,v_mod,w_mod & |
---|
554 | & ,tke_mod,o3mmr_mod,mxcalc) |
---|
555 | !calcul de l'advection verticale |
---|
556 | !Calcul des gradients verticaux |
---|
557 | !initialisation |
---|
558 | d_t_z(:)=0. |
---|
559 | d_q_z(:)=0. |
---|
560 | d_t_dyn_z(:)=0. |
---|
561 | d_q_dyn_z(:)=0. |
---|
562 | ! schema centre |
---|
563 | ! DO l=2,llm-1 |
---|
564 | ! d_t_z(l)=(temp(l+1)-temp(l-1)) |
---|
565 | ! & /(play(l+1)-play(l-1)) |
---|
566 | ! d_q_z(l)=(q(l+1,1)-q(l-1,1)) |
---|
567 | ! & /(play(l+1)-play(l-1)) |
---|
568 | ! schema amont |
---|
569 | DO l=2,llm-1 |
---|
570 | d_t_z(l)=(temp(l+1)-temp(l))/(play(l+1)-play(l)) |
---|
571 | d_q_z(l)=(q(l+1,1)-q(l,1))/(play(l+1)-play(l)) |
---|
572 | ! print *,'l temp2 temp0 play2 play0 omega_mod', |
---|
573 | ! & temp(l+1),temp(l-1),play(l+1),play(l-1),omega_mod(l) |
---|
574 | ENDDO |
---|
575 | d_t_z(1)=d_t_z(2) |
---|
576 | d_q_z(1)=d_q_z(2) |
---|
577 | d_t_z(llm)=d_t_z(llm-1) |
---|
578 | d_q_z(llm)=d_q_z(llm-1) |
---|
579 | |
---|
580 | ! calcul de l advection verticale |
---|
581 | ! Confusion w (m/s) et omega (Pa/s) !! |
---|
582 | d_t_dyn_z(:)=w_mod(:)*d_t_z(:) |
---|
583 | d_q_dyn_z(:)=w_mod(:)*d_q_z(:) |
---|
584 | ! do l=1,llm |
---|
585 | ! print *,'d_t_dyn omega_mod d_t_z d_q_dyn d_q_z', |
---|
586 | ! :l,d_t_dyn_z(l),omega_mod(l),d_t_z(l),d_q_dyn_z(l),d_q_z(l) |
---|
587 | ! enddo |
---|
588 | |
---|
589 | |
---|
590 | ! large-scale forcing : pour le cas Astex ces forcages sont la SST |
---|
591 | ! la divergence,ug,vg,ufa,vfa |
---|
592 | tsurf = ts_prof |
---|
593 | write(*,*) 'SST suivante: ',tsurf |
---|
594 | do l = 1, llm |
---|
595 | omega(l) = w_mod(l) |
---|
596 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
597 | |
---|
598 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
599 | ! |
---|
600 | ! d_th_adv(l) = 0.0 |
---|
601 | ! d_q_adv(l,1) = 0.0 |
---|
602 | !CR:test advection=0 |
---|
603 | !calcul de l'advection verticale |
---|
604 | d_th_adv(l) = alpha*omega(l)/rcpd-d_t_dyn_z(l) |
---|
605 | ! print*,'temp adv',l,-d_t_dyn_z(l) |
---|
606 | d_q_adv(l,1) = -d_q_dyn_z(l) |
---|
607 | ! print*,'q adv',l,-d_q_dyn_z(l) |
---|
608 | dt_cooling(l) = 0.0 |
---|
609 | enddo |
---|
610 | endif ! forcing_astex |
---|
611 | |
---|
612 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
613 | !--------------------------------------------------------------------- |
---|
614 | ! Interpolation forcing standard case |
---|
615 | !--------------------------------------------------------------------- |
---|
616 | if (forcing_case) then |
---|
617 | |
---|
618 | print*, & |
---|
619 | & '#### ITAP,day,day1,(day-day1)*86400,(day-day1)*86400/pdt_cas=', & |
---|
620 | & daytime,day1,(daytime-day1)*86400., & |
---|
621 | & (daytime-day1)*86400/pdt_cas |
---|
622 | |
---|
623 | ! time interpolation: |
---|
624 | CALL interp_case_time(daytime,day1,annee_ref & |
---|
625 | ! & ,year_ini_cas,day_ju_ini_cas,nt_cas,pdt_cas,nlev_cas & |
---|
626 | & ,nt_cas,nlev_cas & |
---|
627 | & ,ts_cas,plev_cas,t_cas,q_cas,u_cas,v_cas,ug_cas,vg_cas & |
---|
628 | & ,vitw_cas,du_cas,hu_cas,vu_cas & |
---|
629 | & ,dv_cas,hv_cas,vv_cas,dt_cas,ht_cas,vt_cas,dtrad_cas & |
---|
630 | & ,dq_cas,hq_cas,vq_cas,lat_cas,sens_cas,ustar_cas & |
---|
631 | & ,uw_cas,vw_cas,q1_cas,q2_cas & |
---|
632 | & ,ts_prof_cas,plev_prof_cas,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas & |
---|
633 | & ,ug_prof_cas,vg_prof_cas,vitw_prof_cas,du_prof_cas,hu_prof_cas,vu_prof_cas & |
---|
634 | & ,dv_prof_cas,hv_prof_cas,vv_prof_cas,dt_prof_cas,ht_prof_cas,vt_prof_cas & |
---|
635 | & ,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas,lat_prof_cas & |
---|
636 | & ,sens_prof_cas,ustar_prof_cas,uw_prof_cas,vw_prof_cas,q1_prof_cas,q2_prof_cas) |
---|
637 | |
---|
638 | ts_cur = ts_prof_cas |
---|
639 | psurf=plev_prof_cas(1) |
---|
640 | |
---|
641 | ! vertical interpolation: |
---|
642 | CALL interp_case_vertical(play,nlev_cas,plev_prof_cas & |
---|
643 | & ,t_prof_cas,q_prof_cas,u_prof_cas,v_prof_cas,ug_prof_cas,vg_prof_cas,vitw_prof_cas & |
---|
644 | & ,du_prof_cas,hu_prof_cas,vu_prof_cas,dv_prof_cas,hv_prof_cas,vv_prof_cas & |
---|
645 | & ,dt_prof_cas,ht_prof_cas,vt_prof_cas,dtrad_prof_cas,dq_prof_cas,hq_prof_cas,vq_prof_cas & |
---|
646 | & ,t_mod_cas,q_mod_cas,u_mod_cas,v_mod_cas,ug_mod_cas,vg_mod_cas,w_mod_cas & |
---|
647 | & ,du_mod_cas,hu_mod_cas,vu_mod_cas,dv_mod_cas,hv_mod_cas,vv_mod_cas & |
---|
648 | & ,dt_mod_cas,ht_mod_cas,vt_mod_cas,dtrad_mod_cas,dq_mod_cas,hq_mod_cas,vq_mod_cas,mxcalc) |
---|
649 | |
---|
650 | |
---|
651 | !calcul de l'advection verticale a partir du omega |
---|
652 | !Calcul des gradients verticaux |
---|
653 | !initialisation |
---|
654 | d_t_z(:)=0. |
---|
655 | d_q_z(:)=0. |
---|
656 | d_u_z(:)=0. |
---|
657 | d_v_z(:)=0. |
---|
658 | d_t_dyn_z(:)=0. |
---|
659 | d_q_dyn_z(:)=0. |
---|
660 | d_u_dyn_z(:)=0. |
---|
661 | d_v_dyn_z(:)=0. |
---|
662 | DO l=2,llm-1 |
---|
663 | d_t_z(l)=(temp(l+1)-temp(l-1))/(play(l+1)-play(l-1)) |
---|
664 | d_q_z(l)=(q(l+1,1)-q(l-1,1))/(play(l+1)-play(l-1)) |
---|
665 | d_u_z(l)=(u(l+1)-u(l-1))/(play(l+1)-play(l-1)) |
---|
666 | d_v_z(l)=(v(l+1)-v(l-1))/(play(l+1)-play(l-1)) |
---|
667 | ENDDO |
---|
668 | d_t_z(1)=d_t_z(2) |
---|
669 | d_q_z(1)=d_q_z(2) |
---|
670 | d_u_z(1)=d_u_z(2) |
---|
671 | d_v_z(1)=d_v_z(2) |
---|
672 | d_t_z(llm)=d_t_z(llm-1) |
---|
673 | d_q_z(llm)=d_q_z(llm-1) |
---|
674 | d_u_z(llm)=d_u_z(llm-1) |
---|
675 | d_v_z(llm)=d_v_z(llm-1) |
---|
676 | |
---|
677 | !Calcul de l advection verticale |
---|
678 | d_t_dyn_z(:)=w_mod_cas(:)*d_t_z(:) |
---|
679 | d_q_dyn_z(:)=w_mod_cas(:)*d_q_z(:) |
---|
680 | d_u_dyn_z(:)=w_mod_cas(:)*d_u_z(:) |
---|
681 | d_v_dyn_z(:)=w_mod_cas(:)*d_v_z(:) |
---|
682 | |
---|
683 | !wind nudging |
---|
684 | if (nudge_u.gt.0.) then |
---|
685 | do l=1,llm |
---|
686 | u(l)=u(l)+timestep*(u_mod_cas(l)-u(l))/(nudge_u) |
---|
687 | enddo |
---|
688 | else |
---|
689 | do l=1,llm |
---|
690 | u(l) = u_mod_cas(l) |
---|
691 | enddo |
---|
692 | endif |
---|
693 | |
---|
694 | if (nudge_v.gt.0.) then |
---|
695 | do l=1,llm |
---|
696 | v(l)=v(l)+timestep*(v_mod_cas(l)-v(l))/(nudge_v) |
---|
697 | enddo |
---|
698 | else |
---|
699 | do l=1,llm |
---|
700 | v(l) = v_mod_cas(l) |
---|
701 | enddo |
---|
702 | endif |
---|
703 | |
---|
704 | if (nudge_w.gt.0.) then |
---|
705 | do l=1,llm |
---|
706 | w(l)=w(l)+timestep*(w_mod_cas(l)-w(l))/(nudge_w) |
---|
707 | enddo |
---|
708 | else |
---|
709 | do l=1,llm |
---|
710 | w(l) = w_mod_cas(l) |
---|
711 | enddo |
---|
712 | endif |
---|
713 | |
---|
714 | !nudging of q and temp |
---|
715 | if (nudge_t.gt.0.) then |
---|
716 | do l=1,llm |
---|
717 | temp(l)=temp(l)+timestep*(t_mod_cas(l)-temp(l))/(nudge_t) |
---|
718 | enddo |
---|
719 | endif |
---|
720 | if (nudge_q.gt.0.) then |
---|
721 | do l=1,llm |
---|
722 | q(l,1)=q(l,1)+timestep*(q_mod_cas(l)-q(l,1))/(nudge_q) |
---|
723 | enddo |
---|
724 | endif |
---|
725 | |
---|
726 | do l = 1, llm |
---|
727 | omega(l) = w_mod_cas(l) |
---|
728 | omega2(l)= omega(l)/rg*airefi ! flxmass_w calcule comme ds physiq |
---|
729 | alpha = rd*temp(l)*(1.+(rv/rd-1.)*q(l,1))/play(l) |
---|
730 | |
---|
731 | !calcul advection |
---|
732 | if ((tend_u.eq.1).and.(tend_w.eq.0)) then |
---|
733 | d_u_adv(l)=du_mod_cas(l) |
---|
734 | else if ((tend_u.eq.1).and.(tend_w.eq.1)) then |
---|
735 | d_u_adv(l)=hu_mod_cas(l)-d_u_dyn_z(l) |
---|
736 | endif |
---|
737 | |
---|
738 | if ((tend_v.eq.1).and.(tend_w.eq.0)) then |
---|
739 | d_v_adv(l)=dv_mod_cas(l) |
---|
740 | else if ((tend_v.eq.1).and.(tend_w.eq.1)) then |
---|
741 | d_v_adv(l)=hv_mod_cas(l)-d_v_dyn_z(l) |
---|
742 | endif |
---|
743 | |
---|
744 | if ((tend_t.eq.1).and.(tend_w.eq.0)) then |
---|
745 | ! d_th_adv(l)=alpha*omega(l)/rcpd+dt_mod_cas(l) |
---|
746 | d_th_adv(l)=alpha*omega(l)/rcpd-dt_mod_cas(l) |
---|
747 | else if ((tend_t.eq.1).and.(tend_w.eq.1)) then |
---|
748 | ! d_th_adv(l)=alpha*omega(l)/rcpd+ht_mod_cas(l)-d_t_dyn_z(l) |
---|
749 | d_th_adv(l)=alpha*omega(l)/rcpd-ht_mod_cas(l)-d_t_dyn_z(l) |
---|
750 | endif |
---|
751 | |
---|
752 | if ((tend_q.eq.1).and.(tend_w.eq.0)) then |
---|
753 | ! d_q_adv(l,1)=dq_mod_cas(l) |
---|
754 | d_q_adv(l,1)=-1*dq_mod_cas(l) |
---|
755 | else if ((tend_q.eq.1).and.(tend_w.eq.1)) then |
---|
756 | ! d_q_adv(l,1)=hq_mod_cas(l)-d_q_dyn_z(l) |
---|
757 | d_q_adv(l,1)=-1*hq_mod_cas(l)-d_q_dyn_z(l) |
---|
758 | endif |
---|
759 | |
---|
760 | if (tend_rayo.eq.1) then |
---|
761 | dt_cooling(l) = dtrad_mod_cas(l) |
---|
762 | ! print *,'dt_cooling=',dt_cooling(l) |
---|
763 | else |
---|
764 | dt_cooling(l) = 0.0 |
---|
765 | endif |
---|
766 | enddo |
---|
767 | |
---|
768 | endif ! forcing_case |
---|
769 | |
---|
770 | |
---|
771 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
772 | |
---|