[3331] | 1 | |
---|
| 2 | ! $Id: wake.F90 2495 2016-04-14 14:20:44Z lguez $ |
---|
| 3 | |
---|
| 4 | SUBROUTINE wake(p, ph, pi, dtime, sigd_con, & |
---|
| 5 | te0, qe0, omgb, & |
---|
| 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, & |
---|
| 7 | wdtpbl, wdqpbl, udtpbl, udqpbl, & |
---|
| 8 | deltatw, deltaqw, dth, hw, sigmaw, wape, fip, gfl, & |
---|
| 9 | dtls, dqls, ktopw, omgbdth, dp_omgb, wdens, tu, qu, & |
---|
| 10 | dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & |
---|
| 11 | d_deltat_gw, d_deltatw2, d_deltaqw2) |
---|
| 12 | |
---|
| 13 | |
---|
| 14 | ! ************************************************************** |
---|
| 15 | ! * |
---|
| 16 | ! WAKE * |
---|
| 17 | ! retour a un Pupper fixe * |
---|
| 18 | ! * |
---|
| 19 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 20 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 21 | ! ************************************************************** |
---|
| 22 | |
---|
| 23 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 24 | USE dimphy |
---|
| 25 | use mod_phys_lmdz_para |
---|
| 26 | USE print_control_mod, ONLY: prt_level |
---|
| 27 | IMPLICIT NONE |
---|
| 28 | ! ============================================================================ |
---|
| 29 | |
---|
| 30 | |
---|
| 31 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 32 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 33 | ! le declenchement de nouvelles colonnes convectives. |
---|
| 34 | |
---|
| 35 | ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed |
---|
| 36 | ! area |
---|
| 37 | ! deltaqw : ecart d'humidite wake-undisturbed area |
---|
| 38 | ! sigmaw : fraction d'aire occupee par la poche. |
---|
| 39 | |
---|
| 40 | ! Variable de sortie : |
---|
| 41 | |
---|
| 42 | ! wape : WAke Potential Energy |
---|
| 43 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 44 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 45 | ! dtls : large scale temperature tendency due to wake |
---|
| 46 | ! dqls : large scale humidity tendency due to wake |
---|
| 47 | ! hw : hauteur de la poche |
---|
| 48 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 49 | ! wdens : densite de poches |
---|
| 50 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 51 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 52 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 53 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 54 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
| 55 | ! spread : spreading term in dt_wake and dq_wake |
---|
| 56 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 57 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 58 | ! sigmaw : updated wake fractional area. |
---|
| 59 | ! d_deltat_gw : delta T tendency due to GW |
---|
| 60 | |
---|
| 61 | ! Variables d'entree : |
---|
| 62 | |
---|
| 63 | ! aire : aire de la maille |
---|
| 64 | ! te0 : temperature dans l'environnement (K) |
---|
| 65 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 66 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 67 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 68 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 69 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 70 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 71 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 72 | ! surface de la maille (kg/m2/s) |
---|
| 73 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 74 | ! surface de la maille (kg/m2/s) |
---|
| 75 | ! p : pressions aux milieux des couches (Pa) |
---|
| 76 | ! ph : pressions aux interfaces (Pa) |
---|
| 77 | ! pi : (p/p_0)**kapa (adim) |
---|
| 78 | ! dtime: increment temporel (s) |
---|
| 79 | |
---|
| 80 | ! Variables internes : |
---|
| 81 | |
---|
| 82 | ! rhow : masse volumique de la poche froide |
---|
| 83 | ! rho : environment density at P levels |
---|
| 84 | ! rhoh : environment density at Ph levels |
---|
| 85 | ! te : environment temperature | may change within |
---|
| 86 | ! qe : environment humidity | sub-time-stepping |
---|
| 87 | ! the : environment potential temperature |
---|
| 88 | ! thu : potential temperature in undisturbed area |
---|
| 89 | ! tu : temperature in undisturbed area |
---|
| 90 | ! qu : humidity in undisturbed area |
---|
| 91 | ! dp_omgb: vertical gradient og LS omega |
---|
| 92 | ! omgbw : wake average vertical omega |
---|
| 93 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 94 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 95 | ! dth : potential temperature diff. wake-undist. |
---|
| 96 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 97 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 98 | ! q1 : first humidity for vertical advection |
---|
| 99 | ! q2 : second humidity for vertical advection |
---|
| 100 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 101 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 102 | ! deltatw0 : deltatw initial |
---|
| 103 | ! deltaqw0 : deltaqw initial |
---|
| 104 | ! hw0 : hw initial |
---|
| 105 | ! sigmaw0: sigmaw initial |
---|
| 106 | ! amflux : horizontal mass flux through wake boundary |
---|
| 107 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 108 | ! unit length (2D), at the beginning of each time step |
---|
| 109 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 110 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 111 | ! LL : distance entre 2 poches |
---|
| 112 | |
---|
| 113 | ! ------------------------------------------------------------------------- |
---|
| 114 | ! Déclaration de variables |
---|
| 115 | ! ------------------------------------------------------------------------- |
---|
| 116 | |
---|
| 117 | include "YOMCST.h" |
---|
| 118 | include "cvthermo.h" |
---|
| 119 | |
---|
| 120 | ! Arguments en entree |
---|
| 121 | ! -------------------- |
---|
| 122 | |
---|
| 123 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
| 124 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph, omgb |
---|
| 125 | REAL, INTENT(IN) :: dtime |
---|
| 126 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
| 127 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
| 128 | REAL, DIMENSION (klon, klev), INTENT(IN) :: wdtpbl, wdqpbl, udtpbl, udqpbl ! UNUSED |
---|
| 129 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
| 130 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
| 131 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
| 132 | |
---|
| 133 | ! |
---|
| 134 | ! Input/Output |
---|
| 135 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
| 136 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
| 137 | |
---|
| 138 | ! Sorties |
---|
| 139 | ! -------- |
---|
| 140 | |
---|
| 141 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
| 142 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
| 143 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
| 144 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
| 145 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtpbl, dqpbl |
---|
| 146 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread |
---|
| 147 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
| 148 | REAL, DIMENSION (klon, klev+1), INTENT(OUT) :: omgbdth, omg |
---|
| 149 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
| 150 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
| 151 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
| 152 | REAL, DIMENSION (klon), INTENT(OUT) :: wdens |
---|
| 153 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
| 154 | |
---|
| 155 | ! Variables internes |
---|
| 156 | ! ------------------- |
---|
| 157 | |
---|
| 158 | ! Variables à fixer |
---|
| 159 | REAL alon |
---|
| 160 | LOGICAL, SAVE :: first = .TRUE. |
---|
| 161 | !$OMP THREADPRIVATE(first) |
---|
| 162 | REAL, SAVE :: stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol |
---|
| 163 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
| 164 | |
---|
| 165 | REAL delta_t_min |
---|
| 166 | INTEGER nsub |
---|
| 167 | REAL dtimesub |
---|
| 168 | REAL sigmad, hwmin, wapecut |
---|
| 169 | REAL :: sigmaw_max |
---|
| 170 | REAL :: dens_rate |
---|
| 171 | REAL wdens0 |
---|
| 172 | ! IM 080208 |
---|
| 173 | LOGICAL, DIMENSION (klon) :: gwake |
---|
| 174 | |
---|
| 175 | ! Variables de sauvegarde |
---|
| 176 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 177 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 178 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
| 179 | REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 |
---|
| 180 | |
---|
| 181 | ! Variables pour les GW |
---|
| 182 | REAL, DIMENSION (klon) :: ll |
---|
| 183 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 184 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 185 | REAL, DIMENSION (klon, klev) :: tgw |
---|
| 186 | |
---|
| 187 | ! Variables liées au calcul de hw |
---|
| 188 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 189 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 190 | REAL, DIMENSION (klon) :: dthmin |
---|
| 191 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 192 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
| 193 | |
---|
| 194 | ! Sub-timestep tendencies and related variables |
---|
| 195 | REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) |
---|
| 196 | REAL d_te(klon, klev), d_qe(klon, klev) |
---|
| 197 | REAL d_sigmaw(klon), alpha(klon) |
---|
| 198 | REAL q0_min(klon), q1_min(klon) |
---|
| 199 | LOGICAL wk_adv(klon), ok_qx_qw(klon) |
---|
| 200 | REAL epsilon |
---|
| 201 | DATA epsilon/1.E-15/ |
---|
| 202 | |
---|
| 203 | ! Autres variables internes |
---|
| 204 | INTEGER isubstep, k, i |
---|
| 205 | |
---|
| 206 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 207 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 208 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 209 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 210 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 211 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
| 212 | |
---|
| 213 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 214 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 215 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 216 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 217 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 218 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
| 219 | |
---|
| 220 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
| 221 | |
---|
| 222 | ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw |
---|
| 223 | |
---|
| 224 | REAL, DIMENSION (klon, klev+1) :: omgbw |
---|
| 225 | REAL, DIMENSION (klon) :: pupper |
---|
| 226 | REAL, DIMENSION (klon) :: omgtop |
---|
| 227 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 228 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 229 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
| 230 | |
---|
| 231 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 232 | REAL :: rrd1, rrd2 |
---|
| 233 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 234 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 235 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 236 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
| 237 | |
---|
| 238 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 239 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
| 240 | |
---|
| 241 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 242 | |
---|
| 243 | REAL, DIMENSION (klon, klev) :: ppi |
---|
| 244 | |
---|
| 245 | ! cc nrlmd |
---|
| 246 | REAL, DIMENSION (klon) :: death_rate, nat_rate |
---|
| 247 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 248 | REAL, DIMENSION (klon, klev) :: detr |
---|
| 249 | |
---|
| 250 | ! ------------------------------------------------------------------------- |
---|
| 251 | ! Initialisations |
---|
| 252 | ! ------------------------------------------------------------------------- |
---|
| 253 | |
---|
| 254 | ! print*, 'wake initialisations' |
---|
| 255 | |
---|
| 256 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 257 | ! ------------------------------------------------------------------------- |
---|
| 258 | |
---|
| 259 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 260 | ! cc nrlmd |
---|
| 261 | DATA sigmaw_max/0.4/ |
---|
| 262 | DATA dens_rate/0.1/ |
---|
| 263 | ! cc |
---|
| 264 | ! Longueur de maille (en m) |
---|
| 265 | ! ------------------------------------------------------------------------- |
---|
| 266 | |
---|
| 267 | ! ALON = 3.e5 |
---|
| 268 | alon = 1.E6 |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
| 272 | |
---|
| 273 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 274 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 275 | ! wdens : Densité de poche froide par maille |
---|
| 276 | ! ------------------------------------------------------------------------- |
---|
| 277 | |
---|
| 278 | ! cc nrlmd coefgw=10 |
---|
| 279 | ! coefgw=1 |
---|
| 280 | ! wdens0 = 1.0/(alon**2) |
---|
| 281 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 282 | ! cc nrlmd stark = 0.50 |
---|
| 283 | ! CRtest |
---|
| 284 | ! cc nrlmd alpk=0.1 |
---|
| 285 | ! alpk = 1.0 |
---|
| 286 | ! alpk = 0.5 |
---|
| 287 | ! alpk = 0.05 |
---|
| 288 | |
---|
| 289 | if (first) then |
---|
| 290 | crep_upper = 0.9 |
---|
| 291 | crep_sol = 1.0 |
---|
| 292 | |
---|
| 293 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
| 294 | stark=0.33 |
---|
| 295 | CALL getin_p('stark',stark) |
---|
| 296 | alpk=0.25 |
---|
| 297 | CALL getin_p('alpk',alpk) |
---|
| 298 | wdens_ref=8.E-12 |
---|
| 299 | CALL getin_p('wdens_ref',wdens_ref) |
---|
| 300 | coefgw=4. |
---|
| 301 | CALL getin_p('coefgw',coefgw) |
---|
| 302 | |
---|
| 303 | WRITE(*,*) 'stark=', stark |
---|
| 304 | WRITE(*,*) 'alpk=', alpk |
---|
| 305 | WRITE(*,*) 'wdens_ref=', wdens_ref |
---|
| 306 | WRITE(*,*) 'coefgw=', coefgw |
---|
| 307 | |
---|
| 308 | first=.false. |
---|
| 309 | endif |
---|
| 310 | |
---|
| 311 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 312 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 313 | ! (voir au tout debut de la boucle sur les substeps) |
---|
| 314 | wdens = wdens_ref |
---|
| 315 | |
---|
| 316 | ! print*,'stark',stark |
---|
| 317 | ! print*,'alpk',alpk |
---|
| 318 | ! print*,'wdens',wdens |
---|
| 319 | ! print*,'coefgw',coefgw |
---|
| 320 | ! cc |
---|
| 321 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 322 | ! ------------------------------------------------------------------------- |
---|
| 323 | |
---|
| 324 | delta_t_min = 0.2 |
---|
| 325 | |
---|
| 326 | ! 1. - Save initial values and initialize tendencies |
---|
| 327 | ! -------------------------------------------------- |
---|
| 328 | |
---|
| 329 | DO k = 1, klev |
---|
| 330 | DO i = 1, klon |
---|
| 331 | ppi(i, k) = pi(i, k) |
---|
| 332 | deltatw0(i, k) = deltatw(i, k) |
---|
| 333 | deltaqw0(i, k) = deltaqw(i, k) |
---|
| 334 | te(i, k) = te0(i, k) |
---|
| 335 | qe(i, k) = qe0(i, k) |
---|
| 336 | dtls(i, k) = 0. |
---|
| 337 | dqls(i, k) = 0. |
---|
| 338 | d_deltat_gw(i, k) = 0. |
---|
| 339 | d_te(i, k) = 0. |
---|
| 340 | d_qe(i, k) = 0. |
---|
| 341 | d_deltatw(i, k) = 0. |
---|
| 342 | d_deltaqw(i, k) = 0. |
---|
| 343 | ! IM 060508 beg |
---|
| 344 | d_deltatw2(i, k) = 0. |
---|
| 345 | d_deltaqw2(i, k) = 0. |
---|
| 346 | ! IM 060508 end |
---|
| 347 | END DO |
---|
| 348 | END DO |
---|
| 349 | ! sigmaw1=sigmaw |
---|
| 350 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 351 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 352 | ! ENDIF |
---|
| 353 | DO i = 1, klon |
---|
| 354 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
| 355 | sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 356 | sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 357 | sigmaw0(i) = sigmaw(i) |
---|
| 358 | wape(i) = 0. |
---|
| 359 | wape2(i) = 0. |
---|
| 360 | d_sigmaw(i) = 0. |
---|
| 361 | ktopw(i) = 0 |
---|
| 362 | END DO |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | ! 2. - Prognostic part |
---|
| 366 | ! -------------------- |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 370 | ! --------------------------------------------------------- |
---|
| 371 | |
---|
| 372 | DO i = 1, klon |
---|
| 373 | z(i) = 0. |
---|
| 374 | ktop(i) = 0 |
---|
| 375 | kupper(i) = 0 |
---|
| 376 | sum_thu(i) = 0. |
---|
| 377 | sum_tu(i) = 0. |
---|
| 378 | sum_qu(i) = 0. |
---|
| 379 | sum_thvu(i) = 0. |
---|
| 380 | sum_dth(i) = 0. |
---|
| 381 | sum_dq(i) = 0. |
---|
| 382 | sum_rho(i) = 0. |
---|
| 383 | sum_dtdwn(i) = 0. |
---|
| 384 | sum_dqdwn(i) = 0. |
---|
| 385 | |
---|
| 386 | av_thu(i) = 0. |
---|
| 387 | av_tu(i) = 0. |
---|
| 388 | av_qu(i) = 0. |
---|
| 389 | av_thvu(i) = 0. |
---|
| 390 | av_dth(i) = 0. |
---|
| 391 | av_dq(i) = 0. |
---|
| 392 | av_rho(i) = 0. |
---|
| 393 | av_dtdwn(i) = 0. |
---|
| 394 | av_dqdwn(i) = 0. |
---|
| 395 | END DO |
---|
| 396 | |
---|
| 397 | ! Distance between wakes |
---|
| 398 | DO i = 1, klon |
---|
| 399 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 400 | END DO |
---|
| 401 | ! Potential temperatures and humidity |
---|
| 402 | ! ---------------------------------------------------------- |
---|
| 403 | DO k = 1, klev |
---|
| 404 | DO i = 1, klon |
---|
| 405 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 406 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 407 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 408 | IF (k==1) THEN |
---|
| 409 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 410 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 411 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 412 | zhh(i, k) = 0 |
---|
| 413 | ELSE |
---|
| 414 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 415 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 416 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 417 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 418 | END IF |
---|
| 419 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 420 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 421 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 422 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 423 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 424 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 425 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 426 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 427 | END DO |
---|
| 428 | END DO |
---|
| 429 | |
---|
| 430 | DO k = 1, klev - 1 |
---|
| 431 | DO i = 1, klon |
---|
| 432 | IF (k==1) THEN |
---|
| 433 | n2(i, k) = 0 |
---|
| 434 | ELSE |
---|
| 435 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & |
---|
| 436 | k-1))/(p(i,k+1)-p(i,k-1))) |
---|
| 437 | END IF |
---|
| 438 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
| 439 | |
---|
| 440 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 441 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 442 | END DO |
---|
| 443 | END DO |
---|
| 444 | |
---|
| 445 | DO i = 1, klon |
---|
| 446 | n2(i, klev) = 0 |
---|
| 447 | zh(i, klev) = 0 |
---|
| 448 | cgw(i, klev) = 0 |
---|
| 449 | tgw(i, klev) = 0 |
---|
| 450 | END DO |
---|
| 451 | |
---|
| 452 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 453 | ! ----------------------------------------------------------------- |
---|
| 454 | |
---|
| 455 | DO k = 1, klev |
---|
| 456 | DO i = 1, klon |
---|
| 457 | epaisseur1(i, k) = 0. |
---|
| 458 | epaisseur2(i, k) = 0. |
---|
| 459 | END DO |
---|
| 460 | END DO |
---|
| 461 | |
---|
| 462 | DO i = 1, klon |
---|
| 463 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 464 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 465 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 466 | END DO |
---|
| 467 | |
---|
| 468 | DO k = 2, klev |
---|
| 469 | DO i = 1, klon |
---|
| 470 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 471 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 472 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 473 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 474 | END DO |
---|
| 475 | END DO |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | ! Choose an integration bound well above wake top |
---|
| 479 | ! ----------------------------------------------------------------- |
---|
| 480 | |
---|
| 481 | ! Pupper = 50000. ! melting level |
---|
| 482 | ! Pupper = 60000. |
---|
| 483 | ! Pupper = 80000. ! essais pour case_e |
---|
| 484 | DO i = 1, klon |
---|
| 485 | pupper(i) = 0.6*ph(i, 1) |
---|
| 486 | pupper(i) = max(pupper(i), 45000.) |
---|
| 487 | ! cc Pupper(i) = 60000. |
---|
| 488 | END DO |
---|
| 489 | |
---|
| 490 | |
---|
| 491 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 492 | ! -------------------------------------------------------- |
---|
| 493 | |
---|
| 494 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 495 | |
---|
| 496 | DO i = 1, klon |
---|
| 497 | ptop_provis(i) = ph(i, 1) |
---|
| 498 | END DO |
---|
| 499 | DO k = 2, klev |
---|
| 500 | DO i = 1, klon |
---|
| 501 | |
---|
| 502 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 503 | |
---|
| 504 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 505 | ptop_provis(i)==ph(i,1)) THEN |
---|
| 506 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 507 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 508 | END IF |
---|
| 509 | END DO |
---|
| 510 | END DO |
---|
| 511 | |
---|
| 512 | ! -2/ dth integral |
---|
| 513 | |
---|
| 514 | DO i = 1, klon |
---|
| 515 | sum_dth(i) = 0. |
---|
| 516 | dthmin(i) = -delta_t_min |
---|
| 517 | z(i) = 0. |
---|
| 518 | END DO |
---|
| 519 | |
---|
| 520 | DO k = 1, klev |
---|
| 521 | DO i = 1, klon |
---|
| 522 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 523 | IF (dz(i)>0) THEN |
---|
| 524 | z(i) = z(i) + dz(i) |
---|
| 525 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 526 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 527 | END IF |
---|
| 528 | END DO |
---|
| 529 | END DO |
---|
| 530 | |
---|
| 531 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 532 | |
---|
| 533 | DO i = 1, klon |
---|
| 534 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 535 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 536 | END DO |
---|
| 537 | |
---|
| 538 | ! -4/ now, get Ptop |
---|
| 539 | |
---|
| 540 | DO i = 1, klon |
---|
| 541 | z(i) = 0. |
---|
| 542 | ptop(i) = ph(i, 1) |
---|
| 543 | END DO |
---|
| 544 | |
---|
| 545 | DO k = 1, klev |
---|
| 546 | DO i = 1, klon |
---|
| 547 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 548 | IF (dz(i)>0) THEN |
---|
| 549 | z(i) = z(i) + dz(i) |
---|
| 550 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 551 | END IF |
---|
| 552 | END DO |
---|
| 553 | END DO |
---|
| 554 | |
---|
| 555 | |
---|
| 556 | ! -5/ Determination de ktop et kupper |
---|
| 557 | |
---|
| 558 | DO k = klev, 1, -1 |
---|
| 559 | DO i = 1, klon |
---|
| 560 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 561 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 562 | END DO |
---|
| 563 | END DO |
---|
| 564 | |
---|
| 565 | ! On evite kupper = 1 et kupper = klev |
---|
| 566 | DO i = 1, klon |
---|
| 567 | kupper(i) = max(kupper(i), 2) |
---|
| 568 | kupper(i) = min(kupper(i), klev-1) |
---|
| 569 | END DO |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | ! -6/ Correct ktop and ptop |
---|
| 573 | |
---|
| 574 | DO i = 1, klon |
---|
| 575 | ptop_new(i) = ptop(i) |
---|
| 576 | END DO |
---|
| 577 | DO k = klev, 2, -1 |
---|
| 578 | DO i = 1, klon |
---|
| 579 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 580 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 581 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 582 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 583 | END IF |
---|
| 584 | END DO |
---|
| 585 | END DO |
---|
| 586 | |
---|
| 587 | DO i = 1, klon |
---|
| 588 | ptop(i) = ptop_new(i) |
---|
| 589 | END DO |
---|
| 590 | |
---|
| 591 | DO k = klev, 1, -1 |
---|
| 592 | DO i = 1, klon |
---|
| 593 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 594 | END DO |
---|
| 595 | END DO |
---|
| 596 | |
---|
| 597 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 598 | |
---|
| 599 | DO k = 1, klev |
---|
| 600 | DO i = 1, klon |
---|
| 601 | IF (k>=kupper(i)) THEN |
---|
| 602 | deltatw(i, k) = 0. |
---|
| 603 | deltaqw(i, k) = 0. |
---|
| 604 | END IF |
---|
| 605 | END DO |
---|
| 606 | END DO |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | ! Vertical gradient of LS omega |
---|
| 610 | |
---|
| 611 | DO k = 1, klev |
---|
| 612 | DO i = 1, klon |
---|
| 613 | IF (k<=kupper(i)) THEN |
---|
| 614 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 615 | END IF |
---|
| 616 | END DO |
---|
| 617 | END DO |
---|
| 618 | |
---|
| 619 | ! Integrals (and wake top level number) |
---|
| 620 | ! -------------------------------------- |
---|
| 621 | |
---|
| 622 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 623 | |
---|
| 624 | DO i = 1, klon |
---|
| 625 | z(i) = 1. |
---|
| 626 | dz(i) = 1. |
---|
| 627 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 628 | sum_dth(i) = 0. |
---|
| 629 | END DO |
---|
| 630 | |
---|
| 631 | DO k = 1, klev |
---|
| 632 | DO i = 1, klon |
---|
| 633 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 634 | IF (dz(i)>0) THEN |
---|
| 635 | z(i) = z(i) + dz(i) |
---|
| 636 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 637 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 638 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 639 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 640 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 641 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 642 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 643 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 644 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 645 | END IF |
---|
| 646 | END DO |
---|
| 647 | END DO |
---|
| 648 | |
---|
| 649 | DO i = 1, klon |
---|
| 650 | hw0(i) = z(i) |
---|
| 651 | END DO |
---|
| 652 | |
---|
| 653 | |
---|
| 654 | ! 2.1 - WAPE and mean forcing computation |
---|
| 655 | ! --------------------------------------- |
---|
| 656 | |
---|
| 657 | ! --------------------------------------- |
---|
| 658 | |
---|
| 659 | ! Means |
---|
| 660 | |
---|
| 661 | DO i = 1, klon |
---|
| 662 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 663 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 664 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 665 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 666 | ! av_thve = sum_thve/hw0 |
---|
| 667 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 668 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 669 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 670 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 671 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 672 | |
---|
| 673 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & |
---|
| 674 | )+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 675 | END DO |
---|
| 676 | |
---|
| 677 | ! 2.2 Prognostic variable update |
---|
| 678 | ! ------------------------------ |
---|
| 679 | |
---|
| 680 | ! Filter out bad wakes |
---|
| 681 | |
---|
| 682 | DO k = 1, klev |
---|
| 683 | DO i = 1, klon |
---|
| 684 | IF (wape(i)<0.) THEN |
---|
| 685 | deltatw(i, k) = 0. |
---|
| 686 | deltaqw(i, k) = 0. |
---|
| 687 | dth(i, k) = 0. |
---|
| 688 | END IF |
---|
| 689 | END DO |
---|
| 690 | END DO |
---|
| 691 | |
---|
| 692 | DO i = 1, klon |
---|
| 693 | IF (wape(i)<0.) THEN |
---|
| 694 | wape(i) = 0. |
---|
| 695 | cstar(i) = 0. |
---|
| 696 | hw(i) = hwmin |
---|
| 697 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 698 | fip(i) = 0. |
---|
| 699 | gwake(i) = .FALSE. |
---|
| 700 | ELSE |
---|
| 701 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 702 | gwake(i) = .TRUE. |
---|
| 703 | END IF |
---|
| 704 | END DO |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | ! Check qx and qw positivity |
---|
| 708 | ! -------------------------- |
---|
| 709 | DO i = 1, klon |
---|
| 710 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & |
---|
| 711 | 1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
| 712 | END DO |
---|
| 713 | DO k = 2, klev |
---|
| 714 | DO i = 1, klon |
---|
| 715 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & |
---|
| 716 | k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
| 717 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 718 | q0_min(i) = q1_min(i) |
---|
| 719 | END IF |
---|
| 720 | END DO |
---|
| 721 | END DO |
---|
| 722 | |
---|
| 723 | DO i = 1, klon |
---|
| 724 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 725 | alpha(i) = 1. |
---|
| 726 | END DO |
---|
| 727 | |
---|
| 728 | ! C ----------------------------------------------------------------- |
---|
| 729 | ! Sub-time-stepping |
---|
| 730 | ! ----------------- |
---|
| 731 | |
---|
| 732 | nsub = 10 |
---|
| 733 | dtimesub = dtime/nsub |
---|
| 734 | |
---|
| 735 | ! ------------------------------------------------------------ |
---|
| 736 | DO isubstep = 1, nsub |
---|
| 737 | ! ------------------------------------------------------------ |
---|
| 738 | |
---|
| 739 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 740 | ! loop |
---|
| 741 | DO i = 1, klon |
---|
| 742 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 743 | END DO |
---|
| 744 | |
---|
| 745 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 746 | ! négatif de ktop à kupper -------- |
---|
| 747 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 748 | ! aurait un entrainement nul --- |
---|
| 749 | DO i = 1, klon |
---|
| 750 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 751 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 752 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 753 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 754 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 755 | wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & |
---|
| 756 | ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
| 757 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 758 | wdens(i) = wdens0 |
---|
| 759 | END IF |
---|
| 760 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 761 | ! c $ ,ph(i,1)-pupper(i)', |
---|
| 762 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 763 | ! c $ ,ph(i,1)-pupper(i) |
---|
| 764 | END IF |
---|
| 765 | END DO |
---|
| 766 | |
---|
| 767 | ! cc nrlmd |
---|
| 768 | |
---|
| 769 | DO i = 1, klon |
---|
| 770 | IF (wk_adv(i)) THEN |
---|
| 771 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
| 772 | sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 773 | END IF |
---|
| 774 | END DO |
---|
| 775 | DO i = 1, klon |
---|
| 776 | IF (wk_adv(i)) THEN |
---|
| 777 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 778 | ! test sur sigmaw_max=0.4 |
---|
| 779 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 780 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 781 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 782 | ELSE |
---|
| 783 | death_rate(i) = 0. |
---|
| 784 | END IF |
---|
| 785 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 786 | dtimesub |
---|
| 787 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 788 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 789 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 790 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 791 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
| 792 | |
---|
| 793 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 794 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 795 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 796 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 797 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 798 | END IF |
---|
| 799 | END DO |
---|
| 800 | |
---|
| 801 | |
---|
| 802 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 803 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
| 804 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on |
---|
| 805 | ! definit |
---|
| 806 | ! IM 060208 au niveau k=1..? |
---|
| 807 | DO k = 1, klev |
---|
| 808 | DO i = 1, klon |
---|
| 809 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 810 | dp_deltomg(i, k) = 0. |
---|
| 811 | END IF |
---|
| 812 | END DO |
---|
| 813 | END DO |
---|
| 814 | DO k = 1, klev + 1 |
---|
| 815 | DO i = 1, klon |
---|
| 816 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 817 | omg(i, k) = 0. |
---|
| 818 | END IF |
---|
| 819 | END DO |
---|
| 820 | END DO |
---|
| 821 | |
---|
| 822 | DO i = 1, klon |
---|
| 823 | IF (wk_adv(i)) THEN |
---|
| 824 | z(i) = 0. |
---|
| 825 | omg(i, 1) = 0. |
---|
| 826 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 827 | END IF |
---|
| 828 | END DO |
---|
| 829 | |
---|
| 830 | DO k = 2, klev |
---|
| 831 | DO i = 1, klon |
---|
| 832 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 833 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
| 834 | z(i) = z(i) + dz(i) |
---|
| 835 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 836 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 837 | END IF |
---|
| 838 | END DO |
---|
| 839 | END DO |
---|
| 840 | |
---|
| 841 | DO i = 1, klon |
---|
| 842 | IF (wk_adv(i)) THEN |
---|
| 843 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 844 | ztop(i) = z(i) + dztop(i) |
---|
| 845 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 846 | END IF |
---|
| 847 | END DO |
---|
| 848 | |
---|
| 849 | ! ----------------- |
---|
| 850 | ! From m/s to Pa/s |
---|
| 851 | ! ----------------- |
---|
| 852 | |
---|
| 853 | DO i = 1, klon |
---|
| 854 | IF (wk_adv(i)) THEN |
---|
| 855 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 856 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 857 | END IF |
---|
| 858 | END DO |
---|
| 859 | |
---|
| 860 | DO k = 1, klev |
---|
| 861 | DO i = 1, klon |
---|
| 862 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 863 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 864 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 865 | END IF |
---|
| 866 | END DO |
---|
| 867 | END DO |
---|
| 868 | |
---|
| 869 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 870 | |
---|
| 871 | DO i = 1, klon |
---|
| 872 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 873 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 874 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 875 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 876 | (ptop(i)-pupper(i)) |
---|
| 877 | END IF |
---|
| 878 | END DO |
---|
| 879 | |
---|
| 880 | ! c DO i=1,klon |
---|
| 881 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 882 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 883 | ! c print*,'Pente entre ktop et kupper' |
---|
| 884 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 885 | ! c ENDDO |
---|
| 886 | ! c |
---|
| 887 | DO k = 1, klev |
---|
| 888 | DO i = 1, klon |
---|
| 889 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 890 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 891 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 892 | END IF |
---|
| 893 | END DO |
---|
| 894 | END DO |
---|
| 895 | ! cc nrlmd |
---|
| 896 | ! c DO i=1,klon |
---|
| 897 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 898 | ! c END DO |
---|
| 899 | ! cc |
---|
| 900 | |
---|
| 901 | |
---|
| 902 | ! -- Compute wake average vertical velocity omgbw |
---|
| 903 | |
---|
| 904 | |
---|
| 905 | DO k = 1, klev + 1 |
---|
| 906 | DO i = 1, klon |
---|
| 907 | IF (wk_adv(i)) THEN |
---|
| 908 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 909 | END IF |
---|
| 910 | END DO |
---|
| 911 | END DO |
---|
| 912 | ! -- and its vertical gradient dp_omgbw |
---|
| 913 | |
---|
| 914 | DO k = 1, klev |
---|
| 915 | DO i = 1, klon |
---|
| 916 | IF (wk_adv(i)) THEN |
---|
| 917 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 918 | END IF |
---|
| 919 | END DO |
---|
| 920 | END DO |
---|
| 921 | |
---|
| 922 | ! -- Upstream coefficients for omgb velocity |
---|
| 923 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 924 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 925 | DO k = 1, klev |
---|
| 926 | DO i = 1, klon |
---|
| 927 | IF (wk_adv(i)) THEN |
---|
| 928 | alpha_up(i, k) = 0. |
---|
| 929 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 930 | END IF |
---|
| 931 | END DO |
---|
| 932 | END DO |
---|
| 933 | |
---|
| 934 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
| 935 | |
---|
| 936 | DO i = 1, klon |
---|
| 937 | IF (wk_adv(i)) THEN |
---|
| 938 | rre1(i) = 1. - sigmaw(i) |
---|
| 939 | rre2(i) = sigmaw(i) |
---|
| 940 | END IF |
---|
| 941 | END DO |
---|
| 942 | rrd1 = -1. |
---|
| 943 | rrd2 = 1. |
---|
| 944 | |
---|
| 945 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
| 946 | |
---|
| 947 | DO k = 1, klev |
---|
| 948 | DO i = 1, klon |
---|
| 949 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 950 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 951 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 952 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 953 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 954 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 955 | END IF |
---|
| 956 | END DO |
---|
| 957 | END DO |
---|
| 958 | |
---|
| 959 | DO i = 1, klon |
---|
| 960 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 961 | d_th1(i, 1) = 0. |
---|
| 962 | d_th2(i, 1) = 0. |
---|
| 963 | d_dth(i, 1) = 0. |
---|
| 964 | d_q1(i, 1) = 0. |
---|
| 965 | d_q2(i, 1) = 0. |
---|
| 966 | d_dq(i, 1) = 0. |
---|
| 967 | END IF |
---|
| 968 | END DO |
---|
| 969 | |
---|
| 970 | DO k = 2, klev |
---|
| 971 | DO i = 1, klon |
---|
| 972 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 973 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 974 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 975 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 976 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 977 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 978 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 979 | END IF |
---|
| 980 | END DO |
---|
| 981 | END DO |
---|
| 982 | |
---|
| 983 | DO i = 1, klon |
---|
| 984 | IF (wk_adv(i)) THEN |
---|
| 985 | omgbdth(i, 1) = 0. |
---|
| 986 | omgbdq(i, 1) = 0. |
---|
| 987 | END IF |
---|
| 988 | END DO |
---|
| 989 | |
---|
| 990 | DO k = 2, klev |
---|
| 991 | DO i = 1, klon |
---|
| 992 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 993 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 994 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 995 | END IF |
---|
| 996 | END DO |
---|
| 997 | END DO |
---|
| 998 | |
---|
| 999 | ! ----------------------------------------------------------------- |
---|
| 1000 | DO k = 1, klev |
---|
| 1001 | DO i = 1, klon |
---|
| 1002 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1003 | ! ----------------------------------------------------------------- |
---|
| 1004 | |
---|
| 1005 | ! Compute redistribution (advective) term |
---|
| 1006 | |
---|
| 1007 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1008 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 1009 | i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & |
---|
| 1010 | omgbdth(i,k+1))*ppi(i, k) |
---|
| 1011 | ! print*,'d_deltatw=',d_deltatw(i,k) |
---|
| 1012 | |
---|
| 1013 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
| 1014 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & |
---|
| 1015 | i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & |
---|
| 1016 | omgbdq(i,k+1)) |
---|
| 1017 | ! print*,'d_deltaqw=',d_deltaqw(i,k) |
---|
| 1018 | |
---|
| 1019 | ! and increment large scale tendencies |
---|
| 1020 | |
---|
| 1021 | |
---|
| 1022 | |
---|
| 1023 | |
---|
| 1024 | ! C |
---|
| 1025 | ! ----------------------------------------------------------------- |
---|
| 1026 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1027 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1028 | k+1)) & ! cc nrlmd $ |
---|
| 1029 | ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) |
---|
| 1030 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & |
---|
| 1031 | k)-ph(i,k+1)) & ! cc |
---|
| 1032 | )*ppi(i, k) |
---|
| 1033 | |
---|
| 1034 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1035 | k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & |
---|
| 1036 | k+1)) & ! cc nrlmd $ |
---|
| 1037 | ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) |
---|
| 1038 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & |
---|
| 1039 | k+1))/(ph(i,k)-ph(i,k+1)) & ! cc |
---|
| 1040 | ) |
---|
| 1041 | ! cc nrlmd |
---|
| 1042 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
| 1043 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & |
---|
| 1044 | k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) |
---|
| 1045 | |
---|
| 1046 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & |
---|
| 1047 | k)/(ph(i,k)-ph(i,k+1)))) |
---|
| 1048 | |
---|
| 1049 | END IF |
---|
| 1050 | ! cc |
---|
| 1051 | END DO |
---|
| 1052 | END DO |
---|
| 1053 | ! ------------------------------------------------------------------ |
---|
| 1054 | |
---|
| 1055 | ! Increment state variables |
---|
| 1056 | |
---|
| 1057 | DO k = 1, klev |
---|
| 1058 | DO i = 1, klon |
---|
| 1059 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1060 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1061 | ! cc |
---|
| 1062 | |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | ! Coefficient de répartition |
---|
| 1066 | |
---|
| 1067 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1068 | (ph(i,kupper(i))-ph(i,1)) |
---|
| 1069 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & |
---|
| 1070 | ,kupper(i))) |
---|
| 1071 | |
---|
| 1072 | |
---|
| 1073 | ! Reintroduce compensating subsidence term. |
---|
| 1074 | |
---|
| 1075 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1076 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1077 | ! . /(1-sigmaw) |
---|
| 1078 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1079 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1080 | ! . /(1-sigmaw) |
---|
| 1081 | |
---|
| 1082 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1083 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1084 | ! . /(1-sigmaw) |
---|
| 1085 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1086 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1087 | ! . /(1-sigmaw) |
---|
| 1088 | |
---|
| 1089 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1090 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1091 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
| 1092 | |
---|
| 1093 | !jyg< |
---|
| 1094 | !! |
---|
| 1095 | !!--------------------------------------------------------------- |
---|
| 1096 | !! The change of delta_T due to PBL (vertical diffusion plus thermal plumes) |
---|
| 1097 | !! is accounted for by the PBL and the Thermals schemes. It is now set to zero |
---|
| 1098 | !! within the Wake scheme. |
---|
| 1099 | !!--------------------------------------------------------------- |
---|
| 1100 | dtPBL(i,k) = 0. |
---|
| 1101 | dqPBL(i,k) = 0. |
---|
| 1102 | ! |
---|
| 1103 | !! dtPBL(i,k)=wdtPBL(i,k) - udtPBL(i,k) |
---|
| 1104 | !! dqPBL(i,k)=wdqPBL(i,k) - udqPBL(i,k) |
---|
| 1105 | ! |
---|
| 1106 | !! dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1107 | !! dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) |
---|
| 1108 | ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) |
---|
| 1109 | !>jyg |
---|
| 1110 | ! |
---|
| 1111 | |
---|
| 1112 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1113 | ! cc Définitions de entr, detr |
---|
| 1114 | detr(i, k) = 0. |
---|
| 1115 | |
---|
| 1116 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1117 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
| 1118 | |
---|
| 1119 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1120 | ! cc spread(i,k) = |
---|
| 1121 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1122 | ! cc $ sigmaw(i) |
---|
| 1123 | |
---|
| 1124 | |
---|
| 1125 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1126 | ! Jingmei |
---|
| 1127 | |
---|
| 1128 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1129 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1130 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1131 | dtimesub |
---|
| 1132 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1133 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
| 1134 | |
---|
| 1135 | ! Sans GW |
---|
| 1136 | |
---|
| 1137 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
| 1138 | |
---|
| 1139 | ! GW formule 1 |
---|
| 1140 | |
---|
| 1141 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1142 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1143 | |
---|
| 1144 | ! GW formule 2 |
---|
| 1145 | |
---|
| 1146 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
| 1147 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc |
---|
| 1148 | ! $ |
---|
| 1149 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1150 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1151 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1152 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1153 | ELSE |
---|
| 1154 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & |
---|
| 1155 | k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ |
---|
| 1156 | ! -spread(i,k)*deltatw(i,k) |
---|
| 1157 | -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & |
---|
| 1158 | i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc |
---|
| 1159 | -tgw(i,k)*deltatw(i,k)) |
---|
| 1160 | END IF |
---|
| 1161 | |
---|
| 1162 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1163 | |
---|
| 1164 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1165 | |
---|
| 1166 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ |
---|
| 1167 | ! -spread(i,k)*deltaqw(i,k)) |
---|
| 1168 | -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & |
---|
| 1169 | i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
| 1170 | ! cc |
---|
| 1171 | |
---|
| 1172 | ! cc nrlmd |
---|
| 1173 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1174 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1175 | ! cc |
---|
| 1176 | END IF |
---|
| 1177 | END DO |
---|
| 1178 | END DO |
---|
| 1179 | |
---|
| 1180 | |
---|
| 1181 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1182 | |
---|
| 1183 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1184 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1185 | |
---|
| 1186 | ! cc nrlmd |
---|
| 1187 | ! c print*,'alpha' |
---|
| 1188 | ! c do i=1,klon |
---|
| 1189 | ! c print*,alpha(i) |
---|
| 1190 | ! c end do |
---|
| 1191 | ! cc |
---|
| 1192 | DO k = 1, klev |
---|
| 1193 | DO i = 1, klon |
---|
| 1194 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1195 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1196 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1197 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1198 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1199 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1200 | END IF |
---|
| 1201 | END DO |
---|
| 1202 | END DO |
---|
| 1203 | DO i = 1, klon |
---|
| 1204 | IF (wk_adv(i)) THEN |
---|
| 1205 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1206 | END IF |
---|
| 1207 | END DO |
---|
| 1208 | |
---|
| 1209 | ! Update large scale variables and wake variables |
---|
| 1210 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1211 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1212 | DO k = 1, klev |
---|
| 1213 | DO i = 1, klon |
---|
| 1214 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1215 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1216 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1217 | ! cc nrlmd |
---|
| 1218 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1219 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1220 | ! cc |
---|
| 1221 | END IF |
---|
| 1222 | END DO |
---|
| 1223 | END DO |
---|
| 1224 | DO k = 1, klev |
---|
| 1225 | DO i = 1, klon |
---|
| 1226 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1227 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1228 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1229 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1230 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1231 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1232 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1233 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1234 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1235 | END IF |
---|
| 1236 | END DO |
---|
| 1237 | END DO |
---|
| 1238 | DO i = 1, klon |
---|
| 1239 | IF (wk_adv(i)) THEN |
---|
| 1240 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
| 1241 | END IF |
---|
| 1242 | END DO |
---|
| 1243 | |
---|
| 1244 | |
---|
| 1245 | ! Determine Ptop from buoyancy integral |
---|
| 1246 | ! --------------------------------------- |
---|
| 1247 | |
---|
| 1248 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1249 | |
---|
| 1250 | DO i = 1, klon |
---|
| 1251 | IF (wk_adv(i)) THEN |
---|
| 1252 | ptop_provis(i) = ph(i, 1) |
---|
| 1253 | END IF |
---|
| 1254 | END DO |
---|
| 1255 | |
---|
| 1256 | DO k = 2, klev |
---|
| 1257 | DO i = 1, klon |
---|
| 1258 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1259 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1260 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1261 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1262 | END IF |
---|
| 1263 | END DO |
---|
| 1264 | END DO |
---|
| 1265 | |
---|
| 1266 | ! - 2/ dth integral |
---|
| 1267 | |
---|
| 1268 | DO i = 1, klon |
---|
| 1269 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1270 | sum_dth(i) = 0. |
---|
| 1271 | dthmin(i) = -delta_t_min |
---|
| 1272 | z(i) = 0. |
---|
| 1273 | END IF |
---|
| 1274 | END DO |
---|
| 1275 | |
---|
| 1276 | DO k = 1, klev |
---|
| 1277 | DO i = 1, klon |
---|
| 1278 | IF (wk_adv(i)) THEN |
---|
| 1279 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1280 | IF (dz(i)>0) THEN |
---|
| 1281 | z(i) = z(i) + dz(i) |
---|
| 1282 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1283 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1284 | END IF |
---|
| 1285 | END IF |
---|
| 1286 | END DO |
---|
| 1287 | END DO |
---|
| 1288 | |
---|
| 1289 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1290 | |
---|
| 1291 | DO i = 1, klon |
---|
| 1292 | IF (wk_adv(i)) THEN |
---|
| 1293 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1294 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1295 | END IF |
---|
| 1296 | END DO |
---|
| 1297 | |
---|
| 1298 | ! - 4/ now, get Ptop |
---|
| 1299 | |
---|
| 1300 | DO i = 1, klon |
---|
| 1301 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1302 | ktop(i) = 0 |
---|
| 1303 | z(i) = 0. |
---|
| 1304 | END IF |
---|
| 1305 | END DO |
---|
| 1306 | |
---|
| 1307 | DO k = 1, klev |
---|
| 1308 | DO i = 1, klon |
---|
| 1309 | IF (wk_adv(i)) THEN |
---|
| 1310 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1311 | IF (dz(i)>0) THEN |
---|
| 1312 | z(i) = z(i) + dz(i) |
---|
| 1313 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1314 | ktop(i) = k |
---|
| 1315 | END IF |
---|
| 1316 | END IF |
---|
| 1317 | END DO |
---|
| 1318 | END DO |
---|
| 1319 | |
---|
| 1320 | ! 4.5/Correct ktop and ptop |
---|
| 1321 | |
---|
| 1322 | DO i = 1, klon |
---|
| 1323 | IF (wk_adv(i)) THEN |
---|
| 1324 | ptop_new(i) = ptop(i) |
---|
| 1325 | END IF |
---|
| 1326 | END DO |
---|
| 1327 | |
---|
| 1328 | DO k = klev, 2, -1 |
---|
| 1329 | DO i = 1, klon |
---|
| 1330 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1331 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1332 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 1333 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 1334 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 1335 | END IF |
---|
| 1336 | END DO |
---|
| 1337 | END DO |
---|
| 1338 | |
---|
| 1339 | |
---|
| 1340 | DO i = 1, klon |
---|
| 1341 | IF (wk_adv(i)) THEN |
---|
| 1342 | ptop(i) = ptop_new(i) |
---|
| 1343 | END IF |
---|
| 1344 | END DO |
---|
| 1345 | |
---|
| 1346 | DO k = klev, 1, -1 |
---|
| 1347 | DO i = 1, klon |
---|
| 1348 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1349 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1350 | END IF |
---|
| 1351 | END DO |
---|
| 1352 | END DO |
---|
| 1353 | |
---|
| 1354 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1355 | |
---|
| 1356 | DO k = 1, klev |
---|
| 1357 | DO i = 1, klon |
---|
| 1358 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 1359 | deltatw(i, k) = 0. |
---|
| 1360 | deltaqw(i, k) = 0. |
---|
| 1361 | END IF |
---|
| 1362 | END DO |
---|
| 1363 | END DO |
---|
| 1364 | |
---|
| 1365 | |
---|
| 1366 | ! -------------Cstar computation--------------------------------- |
---|
| 1367 | DO i = 1, klon |
---|
| 1368 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1369 | sum_thu(i) = 0. |
---|
| 1370 | sum_tu(i) = 0. |
---|
| 1371 | sum_qu(i) = 0. |
---|
| 1372 | sum_thvu(i) = 0. |
---|
| 1373 | sum_dth(i) = 0. |
---|
| 1374 | sum_dq(i) = 0. |
---|
| 1375 | sum_rho(i) = 0. |
---|
| 1376 | sum_dtdwn(i) = 0. |
---|
| 1377 | sum_dqdwn(i) = 0. |
---|
| 1378 | |
---|
| 1379 | av_thu(i) = 0. |
---|
| 1380 | av_tu(i) = 0. |
---|
| 1381 | av_qu(i) = 0. |
---|
| 1382 | av_thvu(i) = 0. |
---|
| 1383 | av_dth(i) = 0. |
---|
| 1384 | av_dq(i) = 0. |
---|
| 1385 | av_rho(i) = 0. |
---|
| 1386 | av_dtdwn(i) = 0. |
---|
| 1387 | av_dqdwn(i) = 0. |
---|
| 1388 | END IF |
---|
| 1389 | END DO |
---|
| 1390 | |
---|
| 1391 | ! Integrals (and wake top level number) |
---|
| 1392 | ! -------------------------------------- |
---|
| 1393 | |
---|
| 1394 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1395 | |
---|
| 1396 | DO i = 1, klon |
---|
| 1397 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1398 | z(i) = 1. |
---|
| 1399 | dz(i) = 1. |
---|
| 1400 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 1401 | sum_dth(i) = 0. |
---|
| 1402 | END IF |
---|
| 1403 | END DO |
---|
| 1404 | |
---|
| 1405 | DO k = 1, klev |
---|
| 1406 | DO i = 1, klon |
---|
| 1407 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1408 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1409 | IF (dz(i)>0) THEN |
---|
| 1410 | z(i) = z(i) + dz(i) |
---|
| 1411 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1412 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1413 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1414 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 1415 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1416 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1417 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1418 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1419 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1420 | END IF |
---|
| 1421 | END IF |
---|
| 1422 | END DO |
---|
| 1423 | END DO |
---|
| 1424 | |
---|
| 1425 | DO i = 1, klon |
---|
| 1426 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1427 | hw0(i) = z(i) |
---|
| 1428 | END IF |
---|
| 1429 | END DO |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | ! - WAPE and mean forcing computation |
---|
| 1433 | ! --------------------------------------- |
---|
| 1434 | |
---|
| 1435 | ! --------------------------------------- |
---|
| 1436 | |
---|
| 1437 | ! Means |
---|
| 1438 | |
---|
| 1439 | DO i = 1, klon |
---|
| 1440 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1441 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1442 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1443 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1444 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1445 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1446 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1447 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1448 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1449 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1450 | |
---|
| 1451 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1452 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1453 | END IF |
---|
| 1454 | END DO |
---|
| 1455 | |
---|
| 1456 | ! Filter out bad wakes |
---|
| 1457 | |
---|
| 1458 | DO k = 1, klev |
---|
| 1459 | DO i = 1, klon |
---|
| 1460 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1461 | IF (wape(i)<0.) THEN |
---|
| 1462 | deltatw(i, k) = 0. |
---|
| 1463 | deltaqw(i, k) = 0. |
---|
| 1464 | dth(i, k) = 0. |
---|
| 1465 | END IF |
---|
| 1466 | END IF |
---|
| 1467 | END DO |
---|
| 1468 | END DO |
---|
| 1469 | |
---|
| 1470 | DO i = 1, klon |
---|
| 1471 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1472 | IF (wape(i)<0.) THEN |
---|
| 1473 | wape(i) = 0. |
---|
| 1474 | cstar(i) = 0. |
---|
| 1475 | hw(i) = hwmin |
---|
| 1476 | sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 1477 | fip(i) = 0. |
---|
| 1478 | gwake(i) = .FALSE. |
---|
| 1479 | ELSE |
---|
| 1480 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1481 | gwake(i) = .TRUE. |
---|
| 1482 | END IF |
---|
| 1483 | END IF |
---|
| 1484 | END DO |
---|
| 1485 | |
---|
| 1486 | END DO ! end sub-timestep loop |
---|
| 1487 | |
---|
| 1488 | ! ----------------------------------------------------------------- |
---|
| 1489 | ! Get back to tendencies per second |
---|
| 1490 | |
---|
| 1491 | DO k = 1, klev |
---|
| 1492 | DO i = 1, klon |
---|
| 1493 | |
---|
| 1494 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
| 1495 | IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 1496 | ! cc |
---|
| 1497 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 1498 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 1499 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 1500 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 1501 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 1502 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 1503 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 1504 | END IF |
---|
| 1505 | END DO |
---|
| 1506 | END DO |
---|
| 1507 | |
---|
| 1508 | |
---|
| 1509 | ! ---------------------------------------------------------- |
---|
| 1510 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1511 | ! filter out bad wakes. |
---|
| 1512 | ! ---------------------------------------------------------- |
---|
| 1513 | |
---|
| 1514 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 1515 | ! --------------------------------------------------------- |
---|
| 1516 | |
---|
| 1517 | DO i = 1, klon |
---|
| 1518 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 1519 | IF (ok_qx_qw(i)) THEN |
---|
| 1520 | ! cc |
---|
| 1521 | z(i) = 0. |
---|
| 1522 | sum_thu(i) = 0. |
---|
| 1523 | sum_tu(i) = 0. |
---|
| 1524 | sum_qu(i) = 0. |
---|
| 1525 | sum_thvu(i) = 0. |
---|
| 1526 | sum_dth(i) = 0. |
---|
| 1527 | sum_dq(i) = 0. |
---|
| 1528 | sum_rho(i) = 0. |
---|
| 1529 | sum_dtdwn(i) = 0. |
---|
| 1530 | sum_dqdwn(i) = 0. |
---|
| 1531 | |
---|
| 1532 | av_thu(i) = 0. |
---|
| 1533 | av_tu(i) = 0. |
---|
| 1534 | av_qu(i) = 0. |
---|
| 1535 | av_thvu(i) = 0. |
---|
| 1536 | av_dth(i) = 0. |
---|
| 1537 | av_dq(i) = 0. |
---|
| 1538 | av_rho(i) = 0. |
---|
| 1539 | av_dtdwn(i) = 0. |
---|
| 1540 | av_dqdwn(i) = 0. |
---|
| 1541 | END IF |
---|
| 1542 | END DO |
---|
| 1543 | ! Potential temperatures and humidity |
---|
| 1544 | ! ---------------------------------------------------------- |
---|
| 1545 | |
---|
| 1546 | DO k = 1, klev |
---|
| 1547 | DO i = 1, klon |
---|
| 1548 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1549 | IF (ok_qx_qw(i)) THEN |
---|
| 1550 | ! cc |
---|
| 1551 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 1552 | IF (k==1) THEN |
---|
| 1553 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 1554 | zhh(i, k) = 0 |
---|
| 1555 | ELSE |
---|
| 1556 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1557 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 1558 | END IF |
---|
| 1559 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1560 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 1561 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 1562 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 1563 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1564 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1565 | END IF |
---|
| 1566 | END DO |
---|
| 1567 | END DO |
---|
| 1568 | |
---|
| 1569 | ! Integrals (and wake top level number) |
---|
| 1570 | ! ----------------------------------------------------------- |
---|
| 1571 | |
---|
| 1572 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1573 | |
---|
| 1574 | DO i = 1, klon |
---|
| 1575 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1576 | IF (ok_qx_qw(i)) THEN |
---|
| 1577 | ! cc |
---|
| 1578 | z(i) = 1. |
---|
| 1579 | dz(i) = 1. |
---|
| 1580 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
| 1581 | sum_dth(i) = 0. |
---|
| 1582 | END IF |
---|
| 1583 | END DO |
---|
| 1584 | |
---|
| 1585 | DO k = 1, klev |
---|
| 1586 | DO i = 1, klon |
---|
| 1587 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1588 | IF (ok_qx_qw(i)) THEN |
---|
| 1589 | ! cc |
---|
| 1590 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1591 | IF (dz(i)>0) THEN |
---|
| 1592 | z(i) = z(i) + dz(i) |
---|
| 1593 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1594 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1595 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
| 1596 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
| 1597 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1598 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1599 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1600 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1601 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1602 | END IF |
---|
| 1603 | END IF |
---|
| 1604 | END DO |
---|
| 1605 | END DO |
---|
| 1606 | |
---|
| 1607 | DO i = 1, klon |
---|
| 1608 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1609 | IF (ok_qx_qw(i)) THEN |
---|
| 1610 | ! cc |
---|
| 1611 | hw0(i) = z(i) |
---|
| 1612 | END IF |
---|
| 1613 | END DO |
---|
| 1614 | |
---|
| 1615 | ! - WAPE and mean forcing computation |
---|
| 1616 | ! ------------------------------------------------------------- |
---|
| 1617 | |
---|
| 1618 | ! Means |
---|
| 1619 | |
---|
| 1620 | DO i = 1, klon |
---|
| 1621 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1622 | IF (ok_qx_qw(i)) THEN |
---|
| 1623 | ! cc |
---|
| 1624 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1625 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1626 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1627 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1628 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1629 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1630 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1631 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1632 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1633 | |
---|
| 1634 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)* & |
---|
| 1635 | av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 1636 | END IF |
---|
| 1637 | END DO |
---|
| 1638 | |
---|
| 1639 | ! Prognostic variable update |
---|
| 1640 | ! ------------------------------------------------------------ |
---|
| 1641 | |
---|
| 1642 | ! Filter out bad wakes |
---|
| 1643 | |
---|
| 1644 | DO k = 1, klev |
---|
| 1645 | DO i = 1, klon |
---|
| 1646 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 1647 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 1648 | ! cc |
---|
| 1649 | deltatw(i, k) = 0. |
---|
| 1650 | deltaqw(i, k) = 0. |
---|
| 1651 | dth(i, k) = 0. |
---|
| 1652 | END IF |
---|
| 1653 | END DO |
---|
| 1654 | END DO |
---|
| 1655 | |
---|
| 1656 | |
---|
| 1657 | DO i = 1, klon |
---|
| 1658 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1659 | IF (ok_qx_qw(i)) THEN |
---|
| 1660 | ! cc |
---|
| 1661 | IF (wape2(i)<0.) THEN |
---|
| 1662 | wape2(i) = 0. |
---|
| 1663 | cstar2(i) = 0. |
---|
| 1664 | hw(i) = hwmin |
---|
| 1665 | sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 1666 | fip(i) = 0. |
---|
| 1667 | gwake(i) = .FALSE. |
---|
| 1668 | ELSE |
---|
| 1669 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 1670 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
| 1671 | gwake(i) = .TRUE. |
---|
| 1672 | END IF |
---|
| 1673 | END IF |
---|
| 1674 | END DO |
---|
| 1675 | |
---|
| 1676 | DO i = 1, klon |
---|
| 1677 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1678 | IF (ok_qx_qw(i)) THEN |
---|
| 1679 | ! cc |
---|
| 1680 | ktopw(i) = ktop(i) |
---|
| 1681 | END IF |
---|
| 1682 | END DO |
---|
| 1683 | |
---|
| 1684 | DO i = 1, klon |
---|
| 1685 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1686 | IF (ok_qx_qw(i)) THEN |
---|
| 1687 | ! cc |
---|
| 1688 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
| 1689 | |
---|
| 1690 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 1691 | ! cc heff = 600. |
---|
| 1692 | ! Utilisation de la hauteur hw |
---|
| 1693 | ! c heff = 0.7*hw |
---|
| 1694 | heff(i) = hw(i) |
---|
| 1695 | |
---|
| 1696 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 1697 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 1698 | fip(i) = alpk*fip(i) |
---|
| 1699 | ! jyg2 |
---|
| 1700 | ELSE |
---|
| 1701 | fip(i) = 0. |
---|
| 1702 | END IF |
---|
| 1703 | END IF |
---|
| 1704 | END DO |
---|
| 1705 | |
---|
| 1706 | ! Limitation de sigmaw |
---|
| 1707 | |
---|
| 1708 | ! cc nrlmd |
---|
| 1709 | ! DO i=1,klon |
---|
| 1710 | ! IF (OK_qx_qw(i)) THEN |
---|
| 1711 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 1712 | ! ENDIF |
---|
| 1713 | ! ENDDO |
---|
| 1714 | ! cc |
---|
| 1715 | DO k = 1, klev |
---|
| 1716 | DO i = 1, klon |
---|
| 1717 | |
---|
| 1718 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
| 1719 | ! permanent |
---|
| 1720 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
| 1721 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1722 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1723 | ! cc |
---|
| 1724 | dtls(i, k) = 0. |
---|
| 1725 | dqls(i, k) = 0. |
---|
| 1726 | deltatw(i, k) = 0. |
---|
| 1727 | deltaqw(i, k) = 0. |
---|
| 1728 | END IF |
---|
| 1729 | END DO |
---|
| 1730 | END DO |
---|
| 1731 | |
---|
| 1732 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
| 1733 | DO i = 1, klon |
---|
| 1734 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1735 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1736 | wape(i) = 0. |
---|
| 1737 | cstar(i) = 0. |
---|
| 1738 | !!jyg Outside subroutine "Wake" hw and sigmaw are zero when there are no wakes |
---|
| 1739 | !! hw(i) = hwmin !jyg |
---|
| 1740 | !! sigmaw(i) = sigmad !jyg |
---|
| 1741 | hw(i) = 0. !jyg |
---|
| 1742 | sigmaw(i) = 0. !jyg |
---|
| 1743 | fip(i) = 0. |
---|
| 1744 | ELSE |
---|
| 1745 | wape(i) = wape2(i) |
---|
| 1746 | cstar(i) = cstar2(i) |
---|
| 1747 | END IF |
---|
| 1748 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 1749 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 1750 | END DO |
---|
| 1751 | |
---|
| 1752 | |
---|
| 1753 | RETURN |
---|
| 1754 | END SUBROUTINE wake |
---|
| 1755 | |
---|
| 1756 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1757 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1758 | ! ------------------------------------------------------ |
---|
| 1759 | ! Dtermination du coefficient alpha tel que les tendances |
---|
| 1760 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 1761 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 1762 | ! ------------------------------------------------------ |
---|
| 1763 | IMPLICIT NONE |
---|
| 1764 | |
---|
| 1765 | ! Input |
---|
| 1766 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 1767 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 1768 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 1769 | LOGICAL wk_adv(nlon) |
---|
| 1770 | INTEGER nl, nlon |
---|
| 1771 | ! Output |
---|
| 1772 | REAL alpha(nlon) |
---|
| 1773 | ! Internal variables |
---|
| 1774 | REAL zeta(nlon, nl) |
---|
| 1775 | REAL alpha1(nlon) |
---|
| 1776 | REAL x, a, b, c, discrim |
---|
| 1777 | REAL epsilon |
---|
| 1778 | ! DATA epsilon/1.e-15/ |
---|
| 1779 | INTEGER i,k |
---|
| 1780 | |
---|
| 1781 | DO k = 1, nl |
---|
| 1782 | DO i = 1, nlon |
---|
| 1783 | IF (wk_adv(i)) THEN |
---|
| 1784 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 1785 | zeta(i, k) = 0. |
---|
| 1786 | ELSE |
---|
| 1787 | zeta(i, k) = 1. |
---|
| 1788 | END IF |
---|
| 1789 | END IF |
---|
| 1790 | END DO |
---|
| 1791 | DO i = 1, nlon |
---|
| 1792 | IF (wk_adv(i)) THEN |
---|
| 1793 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
| 1794 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & |
---|
| 1795 | d_deltaqw(i,k)) |
---|
| 1796 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 1797 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 1798 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 1799 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 1800 | discrim = b*b - 4.*a*c |
---|
| 1801 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 1802 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 1803 | alpha1(i) = 1. |
---|
| 1804 | ELSE |
---|
| 1805 | IF (x>=0.) THEN |
---|
| 1806 | alpha1(i) = 1. |
---|
| 1807 | ELSE |
---|
| 1808 | IF (a>0.) THEN |
---|
| 1809 | alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1810 | ))/(2.*a)) |
---|
| 1811 | ELSE IF (a==0.) THEN |
---|
| 1812 | alpha1(i) = 0.9*(-c/b) |
---|
| 1813 | ELSE |
---|
| 1814 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
| 1815 | alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & |
---|
| 1816 | ))/(2.*a)) |
---|
| 1817 | END IF |
---|
| 1818 | END IF |
---|
| 1819 | END IF |
---|
| 1820 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 1821 | END IF |
---|
| 1822 | END DO |
---|
| 1823 | END DO |
---|
| 1824 | |
---|
| 1825 | RETURN |
---|
| 1826 | END SUBROUTINE wake_vec_modulation |
---|
| 1827 | |
---|
| 1828 | |
---|