[3331] | 1 | ! $Revision: 23 $, $Date: 2011-03-31 15:41:37 +0200 (jeu. 31 mars 2011) $ |
---|
| 2 | ! $URL: http://cfmip-obs-sim.googlecode.com/svn/stable/v1.4.0/quickbeam/math_lib.f90 $ |
---|
| 3 | ! MATH_LIB: Mathematics procedures for F90 |
---|
| 4 | ! Compiled/Modified: |
---|
| 5 | ! 07/01/06 John Haynes (haynes@atmos.colostate.edu) |
---|
| 6 | ! |
---|
| 7 | ! gamma (function) |
---|
| 8 | ! path_integral (function) |
---|
| 9 | ! avint (subroutine) |
---|
| 10 | |
---|
| 11 | module math_lib |
---|
| 12 | implicit none |
---|
| 13 | |
---|
| 14 | contains |
---|
| 15 | |
---|
| 16 | ! ---------------------------------------------------------------------------- |
---|
| 17 | ! function GAMMA |
---|
| 18 | ! ---------------------------------------------------------------------------- |
---|
| 19 | function gamma(x) |
---|
| 20 | implicit none |
---|
| 21 | ! |
---|
| 22 | ! Purpose: |
---|
| 23 | ! Returns the gamma function |
---|
| 24 | ! |
---|
| 25 | ! Input: |
---|
| 26 | ! [x] value to compute gamma function of |
---|
| 27 | ! |
---|
| 28 | ! Returns: |
---|
| 29 | ! gamma(x) |
---|
| 30 | ! |
---|
| 31 | ! Coded: |
---|
| 32 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
| 33 | ! (original code of unknown origin) |
---|
| 34 | |
---|
| 35 | ! ----- INPUTS ----- |
---|
| 36 | real*8, intent(in) :: x |
---|
| 37 | |
---|
| 38 | ! ----- OUTPUTS ----- |
---|
| 39 | real*8 :: gamma |
---|
| 40 | |
---|
| 41 | ! ----- INTERNAL ----- |
---|
| 42 | real*8 :: pi,ga,z,r,gr |
---|
| 43 | real*8 :: g(26) |
---|
| 44 | integer :: k,m1,m |
---|
| 45 | |
---|
| 46 | pi = acos(-1.) |
---|
| 47 | if (x ==int(x)) then |
---|
| 48 | if (x > 0.0) then |
---|
| 49 | ga=1.0 |
---|
| 50 | m1=x-1 |
---|
| 51 | do k=2,m1 |
---|
| 52 | ga=ga*k |
---|
| 53 | enddo |
---|
| 54 | else |
---|
| 55 | ga=1.0+300 |
---|
| 56 | endif |
---|
| 57 | else |
---|
| 58 | if (abs(x) > 1.0) then |
---|
| 59 | z=abs(x) |
---|
| 60 | m=int(z) |
---|
| 61 | r=1.0 |
---|
| 62 | do k=1,m |
---|
| 63 | r=r*(z-k) |
---|
| 64 | enddo |
---|
| 65 | z=z-m |
---|
| 66 | else |
---|
| 67 | z=x |
---|
| 68 | endif |
---|
| 69 | data g/1.0,0.5772156649015329, & |
---|
| 70 | -0.6558780715202538, -0.420026350340952d-1, & |
---|
| 71 | 0.1665386113822915,-.421977345555443d-1, & |
---|
| 72 | -.96219715278770d-2, .72189432466630d-2, & |
---|
| 73 | -.11651675918591d-2, -.2152416741149d-3, & |
---|
| 74 | .1280502823882d-3, -.201348547807d-4, & |
---|
| 75 | -.12504934821d-5, .11330272320d-5, & |
---|
| 76 | -.2056338417d-6, .61160950d-8, & |
---|
| 77 | .50020075d-8, -.11812746d-8, & |
---|
| 78 | .1043427d-9, .77823d-11, & |
---|
| 79 | -.36968d-11, .51d-12, & |
---|
| 80 | -.206d-13, -.54d-14, .14d-14, .1d-15/ |
---|
| 81 | gr=g(26) |
---|
| 82 | do k=25,1,-1 |
---|
| 83 | gr=gr*z+g(k) |
---|
| 84 | enddo |
---|
| 85 | ga=1.0/(gr*z) |
---|
| 86 | if (abs(x) > 1.0) then |
---|
| 87 | ga=ga*r |
---|
| 88 | if (x < 0.0) ga=-pi/(x*ga*sin(pi*x)) |
---|
| 89 | endif |
---|
| 90 | endif |
---|
| 91 | gamma = ga |
---|
| 92 | return |
---|
| 93 | end function gamma |
---|
| 94 | |
---|
| 95 | ! ---------------------------------------------------------------------------- |
---|
| 96 | ! function PATH_INTEGRAL |
---|
| 97 | ! ---------------------------------------------------------------------------- |
---|
| 98 | function path_integral(f,s,i1,i2) |
---|
| 99 | use m_mrgrnk |
---|
| 100 | use array_lib |
---|
| 101 | implicit none |
---|
| 102 | ! |
---|
| 103 | ! Purpose: |
---|
| 104 | ! evalues the integral (f ds) between f(index=i1) and f(index=i2) |
---|
| 105 | ! using the AVINT procedure |
---|
| 106 | ! |
---|
| 107 | ! Inputs: |
---|
| 108 | ! [f] functional values |
---|
| 109 | ! [s] abscissa values |
---|
| 110 | ! [i1] index of lower limit |
---|
| 111 | ! [i2] index of upper limit |
---|
| 112 | ! |
---|
| 113 | ! Returns: |
---|
| 114 | ! result of path integral |
---|
| 115 | ! |
---|
| 116 | ! Notes: |
---|
| 117 | ! [s] may be in forward or reverse numerical order |
---|
| 118 | ! |
---|
| 119 | ! Requires: |
---|
| 120 | ! mrgrnk package |
---|
| 121 | ! |
---|
| 122 | ! Created: |
---|
| 123 | ! 02/02/06 John Haynes (haynes@atmos.colostate.edu) |
---|
| 124 | |
---|
| 125 | ! ----- INPUTS ----- |
---|
| 126 | real*8, intent(in), dimension(:) :: f,s |
---|
| 127 | integer, intent(in) :: i1, i2 |
---|
| 128 | |
---|
| 129 | ! ---- OUTPUTS ----- |
---|
| 130 | real*8 :: path_integral |
---|
| 131 | |
---|
| 132 | ! ----- INTERNAL ----- |
---|
| 133 | real*8 :: sumo, deltah, val |
---|
| 134 | integer*4 :: nelm, j |
---|
| 135 | integer*4, dimension(i2-i1+1) :: idx |
---|
| 136 | real*8, dimension(i2-i1+1) :: f_rev, s_rev |
---|
| 137 | |
---|
| 138 | nelm = i2-i1+1 |
---|
| 139 | if (nelm > 3) then |
---|
| 140 | call mrgrnk(s(i1:i2),idx) |
---|
| 141 | s_rev = s(idx) |
---|
| 142 | f_rev = f(idx) |
---|
| 143 | call avint(f_rev(i1:i2),s_rev(i1:i2),(i2-i1+1), & |
---|
| 144 | s_rev(i1),s_rev(i2), val) |
---|
| 145 | path_integral = val |
---|
| 146 | else |
---|
| 147 | sumo = 0. |
---|
| 148 | do j=i1,i2 |
---|
| 149 | deltah = abs(s(i1+1)-s(i1)) |
---|
| 150 | sumo = sumo + f(j)*deltah |
---|
| 151 | enddo |
---|
| 152 | path_integral = sumo |
---|
| 153 | endif |
---|
| 154 | ! print *, sumo |
---|
| 155 | |
---|
| 156 | return |
---|
| 157 | end function path_integral |
---|
| 158 | |
---|
| 159 | ! ---------------------------------------------------------------------------- |
---|
| 160 | ! subroutine AVINT |
---|
| 161 | ! ---------------------------------------------------------------------------- |
---|
| 162 | subroutine avint ( ftab, xtab, ntab, a_in, b_in, result ) |
---|
| 163 | implicit none |
---|
| 164 | ! |
---|
| 165 | ! Purpose: |
---|
| 166 | ! estimate the integral of unevenly spaced data |
---|
| 167 | ! |
---|
| 168 | ! Inputs: |
---|
| 169 | ! [ftab] functional values |
---|
| 170 | ! [xtab] abscissa values |
---|
| 171 | ! [ntab] number of elements of [ftab] and [xtab] |
---|
| 172 | ! [a] lower limit of integration |
---|
| 173 | ! [b] upper limit of integration |
---|
| 174 | ! |
---|
| 175 | ! Outputs: |
---|
| 176 | ! [result] approximate value of integral |
---|
| 177 | ! |
---|
| 178 | ! Reference: |
---|
| 179 | ! From SLATEC libraries, in public domain |
---|
| 180 | ! |
---|
| 181 | !*********************************************************************** |
---|
| 182 | ! |
---|
| 183 | ! AVINT estimates the integral of unevenly spaced data. |
---|
| 184 | ! |
---|
| 185 | ! Discussion: |
---|
| 186 | ! |
---|
| 187 | ! The method uses overlapping parabolas and smoothing. |
---|
| 188 | ! |
---|
| 189 | ! Modified: |
---|
| 190 | ! |
---|
| 191 | ! 30 October 2000 |
---|
| 192 | ! 4 January 2008, A. Bodas-Salcedo. Error control for XTAB taken out of |
---|
| 193 | ! loop to allow vectorization. |
---|
| 194 | ! |
---|
| 195 | ! Reference: |
---|
| 196 | ! |
---|
| 197 | ! Philip Davis and Philip Rabinowitz, |
---|
| 198 | ! Methods of Numerical Integration, |
---|
| 199 | ! Blaisdell Publishing, 1967. |
---|
| 200 | ! |
---|
| 201 | ! P E Hennion, |
---|
| 202 | ! Algorithm 77, |
---|
| 203 | ! Interpolation, Differentiation and Integration, |
---|
| 204 | ! Communications of the Association for Computing Machinery, |
---|
| 205 | ! Volume 5, page 96, 1962. |
---|
| 206 | ! |
---|
| 207 | ! Parameters: |
---|
| 208 | ! |
---|
| 209 | ! Input, real ( kind = 8 ) FTAB(NTAB), the function values, |
---|
| 210 | ! FTAB(I) = F(XTAB(I)). |
---|
| 211 | ! |
---|
| 212 | ! Input, real ( kind = 8 ) XTAB(NTAB), the abscissas at which the |
---|
| 213 | ! function values are given. The XTAB's must be distinct |
---|
| 214 | ! and in ascending order. |
---|
| 215 | ! |
---|
| 216 | ! Input, integer NTAB, the number of entries in FTAB and |
---|
| 217 | ! XTAB. NTAB must be at least 3. |
---|
| 218 | ! |
---|
| 219 | ! Input, real ( kind = 8 ) A, the lower limit of integration. A should |
---|
| 220 | ! be, but need not be, near one endpoint of the interval |
---|
| 221 | ! (X(1), X(NTAB)). |
---|
| 222 | ! |
---|
| 223 | ! Input, real ( kind = 8 ) B, the upper limit of integration. B should |
---|
| 224 | ! be, but need not be, near one endpoint of the interval |
---|
| 225 | ! (X(1), X(NTAB)). |
---|
| 226 | ! |
---|
| 227 | ! Output, real ( kind = 8 ) RESULT, the approximate value of the integral. |
---|
| 228 | |
---|
| 229 | integer, intent(in) :: ntab |
---|
| 230 | |
---|
| 231 | integer,parameter :: KR8 = selected_real_kind(15,300) |
---|
| 232 | real ( kind = KR8 ), intent(in) :: a_in |
---|
| 233 | real ( kind = KR8 ) a |
---|
| 234 | real ( kind = KR8 ) atemp |
---|
| 235 | real ( kind = KR8 ), intent(in) :: b_in |
---|
| 236 | real ( kind = KR8 ) b |
---|
| 237 | real ( kind = KR8 ) btemp |
---|
| 238 | real ( kind = KR8 ) ca |
---|
| 239 | real ( kind = KR8 ) cb |
---|
| 240 | real ( kind = KR8 ) cc |
---|
| 241 | real ( kind = KR8 ) ctemp |
---|
| 242 | real ( kind = KR8 ), intent(in) :: ftab(ntab) |
---|
| 243 | integer i |
---|
| 244 | integer ihi |
---|
| 245 | integer ilo |
---|
| 246 | integer ind |
---|
| 247 | real ( kind = KR8 ), intent(out) :: result |
---|
| 248 | real ( kind = KR8 ) sum1 |
---|
| 249 | real ( kind = KR8 ) syl |
---|
| 250 | real ( kind = KR8 ) term1 |
---|
| 251 | real ( kind = KR8 ) term2 |
---|
| 252 | real ( kind = KR8 ) term3 |
---|
| 253 | real ( kind = KR8 ) x1 |
---|
| 254 | real ( kind = KR8 ) x2 |
---|
| 255 | real ( kind = KR8 ) x3 |
---|
| 256 | real ( kind = KR8 ), intent(in) :: xtab(ntab) |
---|
| 257 | logical lerror |
---|
| 258 | |
---|
| 259 | lerror = .false. |
---|
| 260 | a = a_in |
---|
| 261 | b = b_in |
---|
| 262 | |
---|
| 263 | if ( ntab < 3 ) then |
---|
| 264 | write ( *, '(a)' ) ' ' |
---|
| 265 | write ( *, '(a)' ) 'AVINT - Fatal error!' |
---|
| 266 | write ( *, '(a,i6)' ) ' NTAB is less than 3. NTAB = ', ntab |
---|
| 267 | stop |
---|
| 268 | end if |
---|
| 269 | |
---|
| 270 | do i = 2, ntab |
---|
| 271 | if ( xtab(i) <= xtab(i-1) ) then |
---|
| 272 | lerror = .true. |
---|
| 273 | exit |
---|
| 274 | end if |
---|
| 275 | end do |
---|
| 276 | |
---|
| 277 | if (lerror) then |
---|
| 278 | write ( *, '(a)' ) ' ' |
---|
| 279 | write ( *, '(a)' ) 'AVINT - Fatal error!' |
---|
| 280 | write ( *, '(a)' ) ' XTAB(I) is not greater than XTAB(I-1).' |
---|
| 281 | write ( *, '(a,i6)' ) ' Here, I = ', i |
---|
| 282 | write ( *, '(a,g14.6)' ) ' XTAB(I-1) = ', xtab(i-1) |
---|
| 283 | write ( *, '(a,g14.6)' ) ' XTAB(I) = ', xtab(i) |
---|
| 284 | stop |
---|
| 285 | end if |
---|
| 286 | |
---|
| 287 | result = 0.0D+00 |
---|
| 288 | |
---|
| 289 | if ( a == b ) then |
---|
| 290 | write ( *, '(a)' ) ' ' |
---|
| 291 | write ( *, '(a)' ) 'AVINT - Warning!' |
---|
| 292 | write ( *, '(a)' ) ' A = B, integral=0.' |
---|
| 293 | return |
---|
| 294 | end if |
---|
| 295 | ! |
---|
| 296 | ! If B < A, temporarily switch A and B, and store sign. |
---|
| 297 | ! |
---|
| 298 | if ( b < a ) then |
---|
| 299 | syl = b |
---|
| 300 | b = a |
---|
| 301 | a = syl |
---|
| 302 | ind = -1 |
---|
| 303 | else |
---|
| 304 | syl = a |
---|
| 305 | ind = 1 |
---|
| 306 | end if |
---|
| 307 | ! |
---|
| 308 | ! Bracket A and B between XTAB(ILO) and XTAB(IHI). |
---|
| 309 | ! |
---|
| 310 | ilo = 1 |
---|
| 311 | ihi = ntab |
---|
| 312 | |
---|
| 313 | do i = 1, ntab |
---|
| 314 | if ( a <= xtab(i) ) then |
---|
| 315 | exit |
---|
| 316 | end if |
---|
| 317 | ilo = ilo + 1 |
---|
| 318 | end do |
---|
| 319 | |
---|
| 320 | ilo = max ( 2, ilo ) |
---|
| 321 | ilo = min ( ilo, ntab - 1 ) |
---|
| 322 | |
---|
| 323 | do i = 1, ntab |
---|
| 324 | if ( xtab(i) <= b ) then |
---|
| 325 | exit |
---|
| 326 | end if |
---|
| 327 | ihi = ihi - 1 |
---|
| 328 | end do |
---|
| 329 | |
---|
| 330 | ihi = min ( ihi, ntab - 1 ) |
---|
| 331 | ihi = max ( ilo, ihi - 1 ) |
---|
| 332 | ! |
---|
| 333 | ! Carry out approximate integration from XTAB(ILO) to XTAB(IHI). |
---|
| 334 | ! |
---|
| 335 | sum1 = 0.0D+00 |
---|
| 336 | |
---|
| 337 | do i = ilo, ihi |
---|
| 338 | |
---|
| 339 | x1 = xtab(i-1) |
---|
| 340 | x2 = xtab(i) |
---|
| 341 | x3 = xtab(i+1) |
---|
| 342 | |
---|
| 343 | term1 = ftab(i-1) / ( ( x1 - x2 ) * ( x1 - x3 ) ) |
---|
| 344 | term2 = ftab(i) / ( ( x2 - x1 ) * ( x2 - x3 ) ) |
---|
| 345 | term3 = ftab(i+1) / ( ( x3 - x1 ) * ( x3 - x2 ) ) |
---|
| 346 | |
---|
| 347 | atemp = term1 + term2 + term3 |
---|
| 348 | |
---|
| 349 | btemp = - ( x2 + x3 ) * term1 & |
---|
| 350 | - ( x1 + x3 ) * term2 & |
---|
| 351 | - ( x1 + x2 ) * term3 |
---|
| 352 | |
---|
| 353 | ctemp = x2 * x3 * term1 + x1 * x3 * term2 + x1 * x2 * term3 |
---|
| 354 | |
---|
| 355 | if ( i <= ilo ) then |
---|
| 356 | ca = atemp |
---|
| 357 | cb = btemp |
---|
| 358 | cc = ctemp |
---|
| 359 | else |
---|
| 360 | ca = 0.5D+00 * ( atemp + ca ) |
---|
| 361 | cb = 0.5D+00 * ( btemp + cb ) |
---|
| 362 | cc = 0.5D+00 * ( ctemp + cc ) |
---|
| 363 | end if |
---|
| 364 | |
---|
| 365 | sum1 = sum1 & |
---|
| 366 | + ca * ( x2**3 - syl**3 ) / 3.0D+00 & |
---|
| 367 | + cb * 0.5D+00 * ( x2**2 - syl**2 ) & |
---|
| 368 | + cc * ( x2 - syl ) |
---|
| 369 | |
---|
| 370 | ca = atemp |
---|
| 371 | cb = btemp |
---|
| 372 | cc = ctemp |
---|
| 373 | |
---|
| 374 | syl = x2 |
---|
| 375 | |
---|
| 376 | end do |
---|
| 377 | |
---|
| 378 | result = sum1 & |
---|
| 379 | + ca * ( b**3 - syl**3 ) / 3.0D+00 & |
---|
| 380 | + cb * 0.5D+00 * ( b**2 - syl**2 ) & |
---|
| 381 | + cc * ( b - syl ) |
---|
| 382 | ! |
---|
| 383 | ! Restore original values of A and B, reverse sign of integral |
---|
| 384 | ! because of earlier switch. |
---|
| 385 | ! |
---|
| 386 | if ( ind /= 1 ) then |
---|
| 387 | ind = 1 |
---|
| 388 | syl = b |
---|
| 389 | b = a |
---|
| 390 | a = syl |
---|
| 391 | result = -result |
---|
| 392 | end if |
---|
| 393 | |
---|
| 394 | return |
---|
| 395 | end subroutine avint |
---|
| 396 | |
---|
| 397 | end module math_lib |
---|