[3331] | 1 | |
---|
| 2 | ! $Header$ |
---|
| 3 | |
---|
| 4 | SUBROUTINE conlmd(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, rain, snow, & |
---|
| 5 | ibas, itop) |
---|
| 6 | USE dimphy |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | ! ====================================================================== |
---|
| 9 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 10 | ! Objet: Schema de convection utilis'e dans le modele du LMD |
---|
| 11 | ! Ajustement humide (Manabe) + Ajustement convectif (Kuo) |
---|
| 12 | ! ====================================================================== |
---|
| 13 | include "YOMCST.h" |
---|
| 14 | include "YOETHF.h" |
---|
| 15 | |
---|
| 16 | ! Arguments: |
---|
| 17 | |
---|
| 18 | REAL dtime ! pas d'integration (s) |
---|
| 19 | REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
---|
| 20 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 21 | REAL t(klon, klev) ! temperature (K) |
---|
| 22 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 23 | REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
---|
| 24 | |
---|
| 25 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 26 | REAL d_q(klon, klev) ! incrementation humidite |
---|
| 27 | REAL rain(klon) ! pluies (mm/s) |
---|
| 28 | REAL snow(klon) ! neige (mm/s) |
---|
| 29 | INTEGER ibas(klon) ! niveau du bas |
---|
| 30 | INTEGER itop(klon) ! niveau du haut |
---|
| 31 | |
---|
| 32 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
---|
| 33 | PARAMETER (usekuo=.TRUE.) |
---|
| 34 | |
---|
| 35 | REAL d_t_bis(klon, klev) |
---|
| 36 | REAL d_q_bis(klon, klev) |
---|
| 37 | REAL rain_bis(klon) |
---|
| 38 | REAL snow_bis(klon) |
---|
| 39 | INTEGER ibas_bis(klon) |
---|
| 40 | INTEGER itop_bis(klon) |
---|
| 41 | REAL d_ql(klon, klev), d_ql_bis(klon, klev) |
---|
| 42 | REAL rneb(klon, klev), rneb_bis(klon, klev) |
---|
| 43 | |
---|
| 44 | INTEGER i, k |
---|
| 45 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
---|
| 46 | |
---|
| 47 | ! cc CALL fiajh ! ancienne version de Convection Manabe |
---|
| 48 | CALL conman & ! nouvelle version de Convection |
---|
| 49 | ! Manabe |
---|
| 50 | (dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, snow, ibas, itop) |
---|
| 51 | |
---|
| 52 | IF (usekuo) THEN |
---|
| 53 | ! cc CALL fiajc ! ancienne version de Convection Kuo |
---|
| 54 | CALL conkuo & ! nouvelle version de Convection |
---|
| 55 | ! Kuo |
---|
| 56 | (dtime, paprs, pplay, t, q, conv_q, d_t_bis, d_q_bis, d_ql_bis, & |
---|
| 57 | rneb_bis, rain_bis, snow_bis, ibas_bis, itop_bis) |
---|
| 58 | DO k = 1, klev |
---|
| 59 | DO i = 1, klon |
---|
| 60 | d_t(i, k) = d_t(i, k) + d_t_bis(i, k) |
---|
| 61 | d_q(i, k) = d_q(i, k) + d_q_bis(i, k) |
---|
| 62 | d_ql(i, k) = d_ql(i, k) + d_ql_bis(i, k) |
---|
| 63 | END DO |
---|
| 64 | END DO |
---|
| 65 | DO i = 1, klon |
---|
| 66 | rain(i) = rain(i) + rain_bis(i) |
---|
| 67 | snow(i) = snow(i) + snow_bis(i) |
---|
| 68 | ibas(i) = min(ibas(i), ibas_bis(i)) |
---|
| 69 | itop(i) = max(itop(i), itop_bis(i)) |
---|
| 70 | END DO |
---|
| 71 | END IF |
---|
| 72 | |
---|
| 73 | ! L'eau liquide convective est dispersee dans l'air: |
---|
| 74 | |
---|
| 75 | DO k = 1, klev |
---|
| 76 | DO i = 1, klon |
---|
| 77 | zlvdcp = rlvtt/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 78 | zlsdcp = rlstt/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 79 | zdelta = max(0., sign(1.,rtt-t(i,k))) |
---|
| 80 | zz = d_ql(i, k) ! re-evap. de l'eau liquide |
---|
| 81 | zb = max(0.0, zz) |
---|
| 82 | za = -max(0.0, zz)*(zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
---|
| 83 | d_t(i, k) = d_t(i, k) + za |
---|
| 84 | d_q(i, k) = d_q(i, k) + zb |
---|
| 85 | END DO |
---|
| 86 | END DO |
---|
| 87 | |
---|
| 88 | RETURN |
---|
| 89 | END SUBROUTINE conlmd |
---|
| 90 | SUBROUTINE conman(dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, & |
---|
| 91 | snow, ibas, itop) |
---|
| 92 | USE dimphy |
---|
| 93 | IMPLICIT NONE |
---|
| 94 | ! ====================================================================== |
---|
| 95 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19970324 |
---|
| 96 | ! Objet: ajustement humide convectif avec la possibilite de faire |
---|
| 97 | ! l'ajustement sur une fraction de la maille. |
---|
| 98 | ! Methode: On impose une distribution uniforme pour la vapeur d'eau |
---|
| 99 | ! au sein d'une maille. On applique la procedure d'ajustement |
---|
| 100 | ! successivement a la totalite, 75%, 50%, 25% et 5% de la maille |
---|
| 101 | ! jusqu'a ce que l'ajustement a lieu. J'espere que ceci augmente |
---|
| 102 | ! les activites convectives et corrige le biais "trop froid et sec" |
---|
| 103 | ! du modele. |
---|
| 104 | ! ====================================================================== |
---|
| 105 | include "YOMCST.h" |
---|
| 106 | |
---|
| 107 | REAL dtime ! pas d'integration (s) |
---|
| 108 | REAL t(klon, klev) ! temperature (K) |
---|
| 109 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 110 | REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
---|
| 111 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 112 | |
---|
| 113 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 114 | REAL d_q(klon, klev) ! incrementation humidite |
---|
| 115 | REAL d_ql(klon, klev) ! incrementation eau liquide |
---|
| 116 | REAL rneb(klon, klev) ! nebulosite |
---|
| 117 | REAL rain(klon) ! pluies (mm/s) |
---|
| 118 | REAL snow(klon) ! neige (mm/s) |
---|
| 119 | INTEGER ibas(klon) ! niveau du bas |
---|
| 120 | INTEGER itop(klon) ! niveau du haut |
---|
| 121 | |
---|
| 122 | LOGICAL afaire(klon) ! .TRUE. implique l'ajustement |
---|
| 123 | LOGICAL accompli(klon) ! .TRUE. si l'ajustement est effectif |
---|
| 124 | |
---|
| 125 | INTEGER nb ! nombre de sous-fractions a considere |
---|
| 126 | PARAMETER (nb=1) |
---|
| 127 | ! cc PARAMETER (nb=3) |
---|
| 128 | |
---|
| 129 | REAL ratqs ! largeur de la distribution pour vapeur d'eau |
---|
| 130 | PARAMETER (ratqs=0.05) |
---|
| 131 | |
---|
| 132 | REAL w_q(klon, klev) |
---|
| 133 | REAL w_d_t(klon, klev), w_d_q(klon, klev), w_d_ql(klon, klev) |
---|
| 134 | REAL w_rneb(klon, klev) |
---|
| 135 | REAL w_rain(klon), w_snow(klon) |
---|
| 136 | INTEGER w_ibas(klon), w_itop(klon) |
---|
| 137 | REAL zq1, zq2 |
---|
| 138 | INTEGER i, k, n |
---|
| 139 | |
---|
| 140 | REAL t_coup |
---|
| 141 | PARAMETER (t_coup=234.0) |
---|
| 142 | REAL zdp1, zdp2 |
---|
| 143 | REAL zqs1, zqs2, zdqs1, zdqs2 |
---|
| 144 | REAL zgamdz |
---|
| 145 | REAL zflo ! flotabilite |
---|
| 146 | REAL zsat ! sur-saturation |
---|
| 147 | REAL zdelta, zcor, zcvm5 |
---|
| 148 | LOGICAL imprim |
---|
| 149 | |
---|
| 150 | INTEGER ncpt |
---|
| 151 | SAVE ncpt |
---|
| 152 | !$OMP THREADPRIVATE(ncpt) |
---|
| 153 | REAL frac(nb) ! valeur de la maille fractionnelle |
---|
| 154 | SAVE frac |
---|
| 155 | !$OMP THREADPRIVATE(frac) |
---|
| 156 | INTEGER opt_cld(nb) ! option pour le modele nuageux |
---|
| 157 | SAVE opt_cld |
---|
| 158 | !$OMP THREADPRIVATE(opt_cld) |
---|
| 159 | LOGICAL appel1er |
---|
| 160 | SAVE appel1er |
---|
| 161 | !$OMP THREADPRIVATE(appel1er) |
---|
| 162 | |
---|
| 163 | ! Fonctions thermodynamiques: |
---|
| 164 | |
---|
| 165 | include "YOETHF.h" |
---|
| 166 | include "FCTTRE.h" |
---|
| 167 | |
---|
| 168 | DATA frac/1.0/ |
---|
| 169 | DATA opt_cld/4/ |
---|
| 170 | ! cc DATA frac / 1.0, 0.50, 0.25/ |
---|
| 171 | ! cc DATA opt_cld / 4, 4, 4/ |
---|
| 172 | |
---|
| 173 | DATA appel1er/.TRUE./ |
---|
| 174 | DATA ncpt/0/ |
---|
| 175 | |
---|
| 176 | IF (appel1er) THEN |
---|
| 177 | PRINT *, 'conman, nb:', nb |
---|
| 178 | PRINT *, 'conman, frac:', frac |
---|
| 179 | PRINT *, 'conman, opt_cld:', opt_cld |
---|
| 180 | appel1er = .FALSE. |
---|
| 181 | END IF |
---|
| 182 | |
---|
| 183 | ! Initialiser les sorties a zero: |
---|
| 184 | |
---|
| 185 | DO k = 1, klev |
---|
| 186 | DO i = 1, klon |
---|
| 187 | d_t(i, k) = 0.0 |
---|
| 188 | d_q(i, k) = 0.0 |
---|
| 189 | d_ql(i, k) = 0.0 |
---|
| 190 | rneb(i, k) = 0.0 |
---|
| 191 | END DO |
---|
| 192 | END DO |
---|
| 193 | DO i = 1, klon |
---|
| 194 | ibas(i) = klev |
---|
| 195 | itop(i) = 1 |
---|
| 196 | rain(i) = 0.0 |
---|
| 197 | snow(i) = 0.0 |
---|
| 198 | END DO |
---|
| 199 | |
---|
| 200 | ! S'il n'y a pas d'instabilite conditionnelle, |
---|
| 201 | ! pas la penne de se fatiguer: |
---|
| 202 | |
---|
| 203 | DO i = 1, klon |
---|
| 204 | afaire(i) = .FALSE. |
---|
| 205 | END DO |
---|
| 206 | DO k = 1, klev - 1 |
---|
| 207 | DO i = 1, klon |
---|
| 208 | IF (thermcep) THEN |
---|
| 209 | zdelta = max(0., sign(1.,rtt-t(i,k))) |
---|
| 210 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 211 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 212 | zqs1 = r2es*foeew(t(i,k), zdelta)/pplay(i, k) |
---|
| 213 | zqs1 = min(0.5, zqs1) |
---|
| 214 | zcor = 1./(1.-retv*zqs1) |
---|
| 215 | zqs1 = zqs1*zcor |
---|
| 216 | zdqs1 = foede(t(i,k), zdelta, zcvm5, zqs1, zcor) |
---|
| 217 | |
---|
| 218 | zdelta = max(0., sign(1.,rtt-t(i,k+1))) |
---|
| 219 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 220 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k+1)) |
---|
| 221 | zqs2 = r2es*foeew(t(i,k+1), zdelta)/pplay(i, k+1) |
---|
| 222 | zqs2 = min(0.5, zqs2) |
---|
| 223 | zcor = 1./(1.-retv*zqs2) |
---|
| 224 | zqs2 = zqs2*zcor |
---|
| 225 | zdqs2 = foede(t(i,k+1), zdelta, zcvm5, zqs2, zcor) |
---|
| 226 | ELSE |
---|
| 227 | IF (t(i,k)<t_coup) THEN |
---|
| 228 | zqs1 = qsats(t(i,k))/pplay(i, k) |
---|
| 229 | zdqs1 = dqsats(t(i,k), zqs1) |
---|
| 230 | |
---|
| 231 | zqs2 = qsats(t(i,k+1))/pplay(i, k+1) |
---|
| 232 | zdqs2 = dqsats(t(i,k+1), zqs2) |
---|
| 233 | ELSE |
---|
| 234 | zqs1 = qsatl(t(i,k))/pplay(i, k) |
---|
| 235 | zdqs1 = dqsatl(t(i,k), zqs1) |
---|
| 236 | |
---|
| 237 | zqs2 = qsatl(t(i,k+1))/pplay(i, k+1) |
---|
| 238 | zdqs2 = dqsatl(t(i,k+1), zqs2) |
---|
| 239 | END IF |
---|
| 240 | END IF |
---|
| 241 | zdp1 = paprs(i, k) - paprs(i, k+1) |
---|
| 242 | zdp2 = paprs(i, k+1) - paprs(i, k+2) |
---|
| 243 | zgamdz = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*(t(i, & |
---|
| 244 | k)*zdp1+t(i,k+1)*zdp2)/(zdp1+zdp2)+rlvtt*(zqs1*zdp1+zqs2*zdp2)/(zdp1+ & |
---|
| 245 | zdp2))/(1.0+(zdqs1*zdp1+zdqs2*zdp2)/(zdp1+zdp2)) |
---|
| 246 | zflo = t(i, k) + zgamdz - t(i, k+1) |
---|
| 247 | zsat = (q(i,k)-zqs1)*zdp1 + (q(i,k+1)-zqs2)*zdp2 |
---|
| 248 | IF (zflo>0.0) afaire(i) = .TRUE. |
---|
| 249 | ! erreur IF (zflo.GT.0.0 .AND. zsat.GT.0.0) afaire(i) = .TRUE. |
---|
| 250 | END DO |
---|
| 251 | END DO |
---|
| 252 | |
---|
| 253 | imprim = mod(ncpt, 48) == 0 |
---|
| 254 | DO n = 1, nb |
---|
| 255 | |
---|
| 256 | DO k = 1, klev |
---|
| 257 | DO i = 1, klon |
---|
| 258 | IF (afaire(i)) THEN |
---|
| 259 | zq1 = q(i, k)*(1.0-ratqs) |
---|
| 260 | zq2 = q(i, k)*(1.0+ratqs) |
---|
| 261 | w_q(i, k) = zq2 - frac(n)/2.0*(zq2-zq1) |
---|
| 262 | END IF |
---|
| 263 | END DO |
---|
| 264 | END DO |
---|
| 265 | |
---|
| 266 | CALL conmanv(dtime, paprs, pplay, t, w_q, afaire, opt_cld(n), w_d_t, & |
---|
| 267 | w_d_q, w_d_ql, w_rneb, w_rain, w_snow, w_ibas, w_itop, accompli, & |
---|
| 268 | imprim) |
---|
| 269 | DO k = 1, klev |
---|
| 270 | DO i = 1, klon |
---|
| 271 | IF (afaire(i) .AND. accompli(i)) THEN |
---|
| 272 | d_t(i, k) = w_d_t(i, k)*frac(n) |
---|
| 273 | d_q(i, k) = w_d_q(i, k)*frac(n) |
---|
| 274 | d_ql(i, k) = w_d_ql(i, k)*frac(n) |
---|
| 275 | IF (nint(w_rneb(i,k))==1) rneb(i, k) = frac(n) |
---|
| 276 | END IF |
---|
| 277 | END DO |
---|
| 278 | END DO |
---|
| 279 | DO i = 1, klon |
---|
| 280 | IF (afaire(i) .AND. accompli(i)) THEN |
---|
| 281 | rain(i) = w_rain(i)*frac(n) |
---|
| 282 | snow(i) = w_snow(i)*frac(n) |
---|
| 283 | ibas(i) = min(ibas(i), w_ibas(i)) |
---|
| 284 | itop(i) = max(itop(i), w_itop(i)) |
---|
| 285 | END IF |
---|
| 286 | END DO |
---|
| 287 | DO i = 1, klon |
---|
| 288 | IF (afaire(i) .AND. accompli(i)) afaire(i) = .FALSE. |
---|
| 289 | END DO |
---|
| 290 | |
---|
| 291 | END DO |
---|
| 292 | |
---|
| 293 | ncpt = ncpt + 1 |
---|
| 294 | |
---|
| 295 | RETURN |
---|
| 296 | END SUBROUTINE conman |
---|
| 297 | SUBROUTINE conmanv(dtime, paprs, pplay, t, q, afaire, opt_cld, d_t, d_q, & |
---|
| 298 | d_ql, rneb, rain, snow, ibas, itop, accompli, imprim) |
---|
| 299 | USE dimphy |
---|
| 300 | IMPLICIT NONE |
---|
| 301 | ! ====================================================================== |
---|
| 302 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 303 | ! Objet: ajustement humide (convection proposee par Manabe). |
---|
| 304 | ! Pour une colonne verticale, il peut avoir plusieurs blocs |
---|
| 305 | ! necessitant l'ajustement. ibas est le bas du plus bas bloc |
---|
| 306 | ! et itop est le haut du plus haut bloc |
---|
| 307 | ! ====================================================================== |
---|
| 308 | include "YOMCST.h" |
---|
| 309 | |
---|
| 310 | ! Arguments: |
---|
| 311 | |
---|
| 312 | REAL dtime ! pas d'integration (s) |
---|
| 313 | REAL t(klon, klev) ! temperature (K) |
---|
| 314 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 315 | REAL paprs(klon, klev+1) ! pression inter-couche (Pa) |
---|
| 316 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 317 | INTEGER opt_cld ! comment traiter l'eau liquide |
---|
| 318 | LOGICAL afaire(klon) ! .TRUE. si le point est a faire (Input) |
---|
| 319 | LOGICAL imprim ! .T. pour imprimer quelques diagnostiques |
---|
| 320 | |
---|
| 321 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 322 | REAL d_q(klon, klev) ! incrementation humidite |
---|
| 323 | REAL d_ql(klon, klev) ! incrementation eau liquide |
---|
| 324 | REAL rneb(klon, klev) ! nebulosite |
---|
| 325 | REAL rain(klon) ! pluies (mm/s) |
---|
| 326 | REAL snow(klon) ! neige (mm/s) |
---|
| 327 | INTEGER ibas(klon) ! niveau du bas |
---|
| 328 | INTEGER itop(klon) ! niveau du haut |
---|
| 329 | LOGICAL accompli(klon) ! .TRUE. si l'ajustement a eu lieu (Output) |
---|
| 330 | |
---|
| 331 | ! Quelques options: |
---|
| 332 | |
---|
| 333 | LOGICAL new_top ! re-calculer sommet quand re-ajustement est fait |
---|
| 334 | PARAMETER (new_top=.FALSE.) |
---|
| 335 | LOGICAL evap_prec ! evaporation de pluie au-dessous de convection |
---|
| 336 | PARAMETER (evap_prec=.TRUE.) |
---|
| 337 | REAL coef_eva |
---|
| 338 | PARAMETER (coef_eva=1.0E-05) |
---|
| 339 | REAL t_coup |
---|
| 340 | PARAMETER (t_coup=234.0) |
---|
| 341 | REAL seuil_vap |
---|
| 342 | PARAMETER (seuil_vap=1.0E-10) |
---|
| 343 | LOGICAL old_tau ! implique precip nulle, si vrai. |
---|
| 344 | PARAMETER (old_tau=.FALSE.) |
---|
| 345 | REAL toliq(klon) ! rapport entre l'eau nuageuse et l'eau precipitante |
---|
| 346 | REAL dpmin, tomax !Epaisseur faible, rapport eau liquide plus grande |
---|
| 347 | PARAMETER (dpmin=0.15, tomax=0.97) |
---|
| 348 | REAL dpmax, tomin !Epaisseur grande, rapport eau liquide plus faible |
---|
| 349 | PARAMETER (dpmax=0.30, tomin=0.05) |
---|
| 350 | REAL deep_sig, deep_to ! au dela de deep_sig, utiliser deep_to |
---|
| 351 | PARAMETER (deep_sig=0.50, deep_to=0.05) |
---|
| 352 | LOGICAL exigent ! implique un calcul supplementaire pour Qs |
---|
| 353 | PARAMETER (exigent=.FALSE.) |
---|
| 354 | |
---|
| 355 | INTEGER kbase |
---|
| 356 | PARAMETER (kbase=0) |
---|
| 357 | |
---|
| 358 | ! Variables locales: |
---|
| 359 | |
---|
| 360 | INTEGER nexpo |
---|
| 361 | INTEGER i, k, k1min, k1max, k2min, k2max, is |
---|
| 362 | REAL zgamdz(klon, klev-1) |
---|
| 363 | REAL zt(klon, klev), zq(klon, klev) |
---|
| 364 | REAL zqs(klon, klev), zdqs(klon, klev) |
---|
| 365 | REAL zqmqsdp(klon, klev) |
---|
| 366 | REAL ztnew(klon, klev), zqnew(klon, klev) |
---|
| 367 | REAL zcond(klon), zvapo(klon), zrapp(klon) |
---|
| 368 | REAL zrfl(klon), zrfln, zqev, zqevt |
---|
| 369 | REAL zsat(klon) ! sur-saturation |
---|
| 370 | REAL zflo(klon) ! flotabilite |
---|
| 371 | REAL za(klon), zb(klon), zc(klon) |
---|
| 372 | INTEGER k1(klon), k2(klon) |
---|
| 373 | REAL zdelta, zcor, zcvm5 |
---|
| 374 | REAL delp(klon, klev) |
---|
| 375 | LOGICAL possible(klon), todo(klon), etendre(klon) |
---|
| 376 | LOGICAL aller(klon), todobis(klon) |
---|
| 377 | REAL zalfa |
---|
| 378 | INTEGER nbtodo, nbdone |
---|
| 379 | |
---|
| 380 | ! Fonctions thermodynamiques: |
---|
| 381 | |
---|
| 382 | include "YOETHF.h" |
---|
| 383 | include "FCTTRE.h" |
---|
| 384 | |
---|
| 385 | DO k = 1, klev |
---|
| 386 | DO i = 1, klon |
---|
| 387 | delp(i, k) = paprs(i, k) - paprs(i, k+1) |
---|
| 388 | END DO |
---|
| 389 | END DO |
---|
| 390 | |
---|
| 391 | ! Initialiser les sorties a zero |
---|
| 392 | |
---|
| 393 | DO k = 1, klev |
---|
| 394 | DO i = 1, klon |
---|
| 395 | d_t(i, k) = 0.0 |
---|
| 396 | d_q(i, k) = 0.0 |
---|
| 397 | d_ql(i, k) = 0.0 |
---|
| 398 | rneb(i, k) = 0.0 |
---|
| 399 | END DO |
---|
| 400 | END DO |
---|
| 401 | DO i = 1, klon |
---|
| 402 | ibas(i) = klev |
---|
| 403 | itop(i) = 1 |
---|
| 404 | rain(i) = 0.0 |
---|
| 405 | snow(i) = 0.0 |
---|
| 406 | accompli(i) = .FALSE. |
---|
| 407 | END DO |
---|
| 408 | |
---|
| 409 | ! Preparations |
---|
| 410 | |
---|
| 411 | DO k = 1, klev |
---|
| 412 | DO i = 1, klon |
---|
| 413 | IF (afaire(i)) THEN |
---|
| 414 | zt(i, k) = t(i, k) |
---|
| 415 | zq(i, k) = q(i, k) |
---|
| 416 | |
---|
| 417 | ! Calculer Qs et L/Cp*dQs/dT |
---|
| 418 | |
---|
| 419 | IF (thermcep) THEN |
---|
| 420 | zdelta = max(0., sign(1.,rtt-zt(i,k))) |
---|
| 421 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 422 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zq(i,k)) |
---|
| 423 | zqs(i, k) = r2es*foeew(zt(i,k), zdelta)/pplay(i, k) |
---|
| 424 | zqs(i, k) = min(0.5, zqs(i,k)) |
---|
| 425 | zcor = 1./(1.-retv*zqs(i,k)) |
---|
| 426 | zqs(i, k) = zqs(i, k)*zcor |
---|
| 427 | zdqs(i, k) = foede(zt(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
---|
| 428 | ELSE |
---|
| 429 | IF (zt(i,k)<t_coup) THEN |
---|
| 430 | zqs(i, k) = qsats(zt(i,k))/pplay(i, k) |
---|
| 431 | zdqs(i, k) = dqsats(zt(i,k), zqs(i,k)) |
---|
| 432 | ELSE |
---|
| 433 | zqs(i, k) = qsatl(zt(i,k))/pplay(i, k) |
---|
| 434 | zdqs(i, k) = dqsatl(zt(i,k), zqs(i,k)) |
---|
| 435 | END IF |
---|
| 436 | END IF |
---|
| 437 | |
---|
| 438 | ! Calculer (q-qs)*dp |
---|
| 439 | zqmqsdp(i, k) = (zq(i,k)-zqs(i,k))*delp(i, k) |
---|
| 440 | END IF |
---|
| 441 | END DO |
---|
| 442 | END DO |
---|
| 443 | |
---|
| 444 | ! -----zgama is the moist convective lapse rate (-dT/dz). |
---|
| 445 | ! -----zgamdz(*,k) est la difference minimale autorisee des temperatures |
---|
| 446 | ! -----entre deux couches (k et k+1), c.a.d. si T(k+1)-T(k) est inferieur |
---|
| 447 | ! -----a zgamdz(*,k), alors ces 2 couches sont instables conditionnellement |
---|
| 448 | |
---|
| 449 | DO k = 1, klev - 1 |
---|
| 450 | DO i = 1, klon |
---|
| 451 | IF (afaire(i)) THEN |
---|
| 452 | zgamdz(i, k) = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*(zt( & |
---|
| 453 | i,k)*delp(i,k)+zt(i,k+1)*delp(i,k+1))/(delp(i,k)+delp(i, & |
---|
| 454 | k+1))+rlvtt*(zqs(i,k)*delp(i,k)+zqs(i,k+1)*delp(i,k+1))/(delp(i, & |
---|
| 455 | k)+delp(i,k+1)))/(1.0+(zdqs(i,k)*delp(i,k)+zdqs(i,k+1)*delp(i, & |
---|
| 456 | k+1))/(delp(i,k)+delp(i,k+1))) |
---|
| 457 | END IF |
---|
| 458 | END DO |
---|
| 459 | END DO |
---|
| 460 | |
---|
| 461 | ! On cherche la presence simultanee d'instabilite conditionnelle |
---|
| 462 | ! et de sur-saturation. Sinon, pas la penne de se fatiguer: |
---|
| 463 | |
---|
| 464 | DO i = 1, klon |
---|
| 465 | possible(i) = .FALSE. |
---|
| 466 | END DO |
---|
| 467 | DO k = 2, klev |
---|
| 468 | DO i = 1, klon |
---|
| 469 | IF (afaire(i)) THEN |
---|
| 470 | zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
---|
| 471 | zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k-1) |
---|
| 472 | IF (zflo(i)>0.0 .AND. zsat(i)>0.0) possible(i) = .TRUE. |
---|
| 473 | END IF |
---|
| 474 | END DO |
---|
| 475 | END DO |
---|
| 476 | |
---|
| 477 | DO i = 1, klon |
---|
| 478 | IF (possible(i)) THEN |
---|
| 479 | k1(i) = kbase |
---|
| 480 | k2(i) = k1(i) + 1 |
---|
| 481 | END IF |
---|
| 482 | END DO |
---|
| 483 | |
---|
| 484 | 810 CONTINUE ! chercher le bas de la colonne a ajuster |
---|
| 485 | |
---|
| 486 | k2min = klev |
---|
| 487 | DO i = 1, klon |
---|
| 488 | todo(i) = .FALSE. |
---|
| 489 | aller(i) = .TRUE. |
---|
| 490 | IF (possible(i)) k2min = min(k2min, k2(i)) |
---|
| 491 | END DO |
---|
| 492 | IF (k2min==klev) GO TO 860 |
---|
| 493 | DO k = k2min, klev - 1 |
---|
| 494 | DO i = 1, klon |
---|
| 495 | IF (possible(i) .AND. k>=k2(i) .AND. aller(i)) THEN |
---|
| 496 | zflo(i) = zt(i, k) + zgamdz(i, k) - zt(i, k+1) |
---|
| 497 | zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k+1) |
---|
| 498 | IF (zflo(i)>0.0 .AND. zsat(i)>0.0) THEN |
---|
| 499 | k1(i) = k |
---|
| 500 | k2(i) = k + 1 |
---|
| 501 | todo(i) = .TRUE. |
---|
| 502 | aller(i) = .FALSE. |
---|
| 503 | END IF |
---|
| 504 | END IF |
---|
| 505 | END DO |
---|
| 506 | END DO |
---|
| 507 | DO i = 1, klon |
---|
| 508 | IF (possible(i) .AND. aller(i)) THEN |
---|
| 509 | todo(i) = .FALSE. |
---|
| 510 | k1(i) = klev |
---|
| 511 | k2(i) = klev |
---|
| 512 | END IF |
---|
| 513 | END DO |
---|
| 514 | |
---|
| 515 | ! CC DO i = 1, klon |
---|
| 516 | ! CC IF (possible(i)) THEN |
---|
| 517 | ! CC 811 k2(i) = k2(i) + 1 |
---|
| 518 | ! CC IF (k2(i) .GT. klev) THEN |
---|
| 519 | ! CC todo(i) = .FALSE. |
---|
| 520 | ! CC GOTO 812 |
---|
| 521 | ! CC ENDIF |
---|
| 522 | ! CC k = k2(i) |
---|
| 523 | ! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
---|
| 524 | ! CC zsat(i) = zqmqsdp(i,k) + zqmqsdp(i,k-1) |
---|
| 525 | ! CC IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) GOTO 811 |
---|
| 526 | ! CC k1(i) = k2(i) - 1 |
---|
| 527 | ! CC todo(i) = .TRUE. |
---|
| 528 | ! CC ENDIF |
---|
| 529 | ! CC 812 CONTINUE |
---|
| 530 | ! CC ENDDO |
---|
| 531 | |
---|
| 532 | 820 CONTINUE ! chercher le haut de la colonne |
---|
| 533 | |
---|
| 534 | k2min = klev |
---|
| 535 | DO i = 1, klon |
---|
| 536 | aller(i) = .TRUE. |
---|
| 537 | IF (todo(i)) k2min = min(k2min, k2(i)) |
---|
| 538 | END DO |
---|
| 539 | IF (k2min<klev) THEN |
---|
| 540 | DO k = k2min, klev |
---|
| 541 | DO i = 1, klon |
---|
| 542 | IF (todo(i) .AND. k>k2(i) .AND. aller(i)) THEN |
---|
| 543 | zsat(i) = zsat(i) + zqmqsdp(i, k) |
---|
| 544 | zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
---|
| 545 | IF (zflo(i)<=0.0 .OR. zsat(i)<=0.0) THEN |
---|
| 546 | aller(i) = .FALSE. |
---|
| 547 | ELSE |
---|
| 548 | k2(i) = k |
---|
| 549 | END IF |
---|
| 550 | END IF |
---|
| 551 | END DO |
---|
| 552 | END DO |
---|
| 553 | ! error is = 0 |
---|
| 554 | ! error DO i = 1, klon |
---|
| 555 | ! error IF(todo(i).AND.aller(i)) THEN |
---|
| 556 | ! error is = is + 1 |
---|
| 557 | ! error todo(i) = .FALSE. |
---|
| 558 | ! error k2(i) = klev |
---|
| 559 | ! error ENDIF |
---|
| 560 | ! error ENDDO |
---|
| 561 | ! error IF (is.GT.0) THEN |
---|
| 562 | ! error PRINT*, "Bizard. je pourrais continuer mais j arrete" |
---|
| 563 | ! error CALL abort |
---|
| 564 | ! error ENDIF |
---|
| 565 | END IF |
---|
| 566 | |
---|
| 567 | ! CC DO i = 1, klon |
---|
| 568 | ! CC IF (todo(i)) THEN |
---|
| 569 | ! CC 821 CONTINUE |
---|
| 570 | ! CC IF (k2(i) .EQ. klev) GOTO 822 |
---|
| 571 | ! CC k = k2(i) + 1 |
---|
| 572 | ! CC zsat(i) = zsat(i) + zqmqsdp(i,k) |
---|
| 573 | ! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
---|
| 574 | ! CC IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) GOTO 822 |
---|
| 575 | ! CC k2(i) = k |
---|
| 576 | ! CC GOTO 821 |
---|
| 577 | ! CC ENDIF |
---|
| 578 | ! CC 822 CONTINUE |
---|
| 579 | ! CC ENDDO |
---|
| 580 | |
---|
| 581 | 830 CONTINUE ! faire l'ajustement en sachant k1 et k2 |
---|
| 582 | |
---|
| 583 | is = 0 |
---|
| 584 | DO i = 1, klon |
---|
| 585 | IF (todo(i)) THEN |
---|
| 586 | IF (k2(i)<=k1(i)) is = is + 1 |
---|
| 587 | END IF |
---|
| 588 | END DO |
---|
| 589 | IF (is>0) THEN |
---|
| 590 | PRINT *, 'Impossible: k1 trop grand ou k2 trop petit' |
---|
| 591 | PRINT *, 'is=', is |
---|
| 592 | CALL abort |
---|
| 593 | END IF |
---|
| 594 | |
---|
| 595 | k1min = klev |
---|
| 596 | k1max = 1 |
---|
| 597 | k2max = 1 |
---|
| 598 | DO i = 1, klon |
---|
| 599 | IF (todo(i)) THEN |
---|
| 600 | k1min = min(k1min, k1(i)) |
---|
| 601 | k1max = max(k1max, k1(i)) |
---|
| 602 | k2max = max(k2max, k2(i)) |
---|
| 603 | END IF |
---|
| 604 | END DO |
---|
| 605 | |
---|
| 606 | DO i = 1, klon |
---|
| 607 | IF (todo(i)) THEN |
---|
| 608 | k = k1(i) |
---|
| 609 | za(i) = 0. |
---|
| 610 | zb(i) = (rcpd*(1.+zdqs(i,k))*(zt(i,k)-za(i))-rlvtt*(zqs(i,k)-zq(i, & |
---|
| 611 | k)))*delp(i, k) |
---|
| 612 | zc(i) = delp(i, k)*rcpd*(1.+zdqs(i,k)) |
---|
| 613 | END IF |
---|
| 614 | END DO |
---|
| 615 | |
---|
| 616 | DO k = k1min, k2max |
---|
| 617 | DO i = 1, klon |
---|
| 618 | IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) THEN |
---|
| 619 | za(i) = za(i) + zgamdz(i, k-1) |
---|
| 620 | zb(i) = zb(i) + (rcpd*(1.+zdqs(i,k))*(zt(i,k)-za(i))-rlvtt*(zqs(i, & |
---|
| 621 | k)-zq(i,k)))*delp(i, k) |
---|
| 622 | zc(i) = zc(i) + delp(i, k)*rcpd*(1.+zdqs(i,k)) |
---|
| 623 | END IF |
---|
| 624 | END DO |
---|
| 625 | END DO |
---|
| 626 | |
---|
| 627 | DO i = 1, klon |
---|
| 628 | IF (todo(i)) THEN |
---|
| 629 | k = k1(i) |
---|
| 630 | ztnew(i, k) = zb(i)/zc(i) |
---|
| 631 | zqnew(i, k) = zqs(i, k) + (ztnew(i,k)-zt(i,k))*rcpd/rlvtt*zdqs(i, k) |
---|
| 632 | END IF |
---|
| 633 | END DO |
---|
| 634 | |
---|
| 635 | DO k = k1min, k2max |
---|
| 636 | DO i = 1, klon |
---|
| 637 | IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) THEN |
---|
| 638 | ztnew(i, k) = ztnew(i, k-1) + zgamdz(i, k-1) |
---|
| 639 | zqnew(i, k) = zqs(i, k) + (ztnew(i,k)-zt(i,k))*rcpd/rlvtt*zdqs(i, k) |
---|
| 640 | END IF |
---|
| 641 | END DO |
---|
| 642 | END DO |
---|
| 643 | |
---|
| 644 | ! Quantite de condensation produite pendant l'ajustement: |
---|
| 645 | |
---|
| 646 | DO i = 1, klon |
---|
| 647 | zcond(i) = 0.0 |
---|
| 648 | END DO |
---|
| 649 | DO k = k1min, k2max |
---|
| 650 | DO i = 1, klon |
---|
| 651 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
---|
| 652 | rneb(i, k) = 1.0 |
---|
| 653 | zcond(i) = zcond(i) + (zq(i,k)-zqnew(i,k))*delp(i, k)/rg |
---|
| 654 | END IF |
---|
| 655 | END DO |
---|
| 656 | END DO |
---|
| 657 | |
---|
| 658 | ! Si condensation negative, effort completement perdu: |
---|
| 659 | |
---|
| 660 | DO i = 1, klon |
---|
| 661 | IF (todo(i) .AND. zcond(i)<=0.) todo(i) = .FALSE. |
---|
| 662 | END DO |
---|
| 663 | |
---|
| 664 | ! L'ajustement a ete accompli, meme les calculs accessoires |
---|
| 665 | ! ne sont pas encore faits: |
---|
| 666 | |
---|
| 667 | DO i = 1, klon |
---|
| 668 | IF (todo(i)) accompli(i) = .TRUE. |
---|
| 669 | END DO |
---|
| 670 | |
---|
| 671 | ! ===== |
---|
| 672 | ! Une fois que la condensation a lieu, on doit construire un |
---|
| 673 | ! "modele nuageux" pour partager la condensation entre l'eau |
---|
| 674 | ! liquide nuageuse et la precipitation (leur rapport toliq |
---|
| 675 | ! est calcule selon l'epaisseur nuageuse). Je suppose que |
---|
| 676 | ! toliq=tomax quand l'epaisseur nuageuse est inferieure a dpmin, |
---|
| 677 | ! et que toliq=tomin quand l'epaisseur depasse dpmax (interpolation |
---|
| 678 | ! lineaire entre dpmin et dpmax). |
---|
| 679 | ! ===== |
---|
| 680 | DO i = 1, klon |
---|
| 681 | IF (todo(i)) THEN |
---|
| 682 | toliq(i) = tomax - ((paprs(i,k1(i))-paprs(i,k2(i)+1))/paprs(i,1)-dpmin) & |
---|
| 683 | *(tomax-tomin)/(dpmax-dpmin) |
---|
| 684 | toliq(i) = max(tomin, min(tomax,toliq(i))) |
---|
| 685 | IF (pplay(i,k2(i))/paprs(i,1)<=deep_sig) toliq(i) = deep_to |
---|
| 686 | IF (old_tau) toliq(i) = 1.0 |
---|
| 687 | END IF |
---|
| 688 | END DO |
---|
| 689 | ! ===== |
---|
| 690 | ! On doit aussi determiner la distribution verticale de |
---|
| 691 | ! l'eau nuageuse. Plusieurs options sont proposees: |
---|
| 692 | |
---|
| 693 | ! (0) La condensation precipite integralement (toliq ne sera |
---|
| 694 | ! pas utilise). |
---|
| 695 | ! (1) L'eau liquide est distribuee entre k1 et k2 et proportionnelle |
---|
| 696 | ! a la vapeur d'eau locale. |
---|
| 697 | ! (2) Elle est distribuee entre k1 et k2 avec une valeur constante. |
---|
| 698 | ! (3) Elle est seulement distribuee aux couches ou la vapeur d'eau |
---|
| 699 | ! est effectivement diminuee pendant le processus d'ajustement. |
---|
| 700 | ! (4) Elle est en fonction (lineaire ou exponentielle) de la |
---|
| 701 | ! distance (epaisseur en pression) avec le niveau k1 (la couche |
---|
| 702 | ! k1 n'aura donc pas d'eau liquide). |
---|
| 703 | ! ===== |
---|
| 704 | |
---|
| 705 | IF (opt_cld==0) THEN |
---|
| 706 | |
---|
| 707 | DO i = 1, klon |
---|
| 708 | IF (todo(i)) zrfl(i) = zcond(i)/dtime |
---|
| 709 | END DO |
---|
| 710 | |
---|
| 711 | ELSE IF (opt_cld==1) THEN |
---|
| 712 | |
---|
| 713 | DO i = 1, klon |
---|
| 714 | IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de vapeur d'eau |
---|
| 715 | END DO |
---|
| 716 | DO k = k1min, k2max |
---|
| 717 | DO i = 1, klon |
---|
| 718 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
---|
| 719 | zqnew(i, k)*delp(i, k)/rg |
---|
| 720 | END DO |
---|
| 721 | END DO |
---|
| 722 | DO i = 1, klon |
---|
| 723 | IF (todo(i)) THEN |
---|
| 724 | zrapp(i) = toliq(i)*zcond(i)/zvapo(i) |
---|
| 725 | zrapp(i) = max(0., min(1.,zrapp(i))) |
---|
| 726 | zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 727 | END IF |
---|
| 728 | END DO |
---|
| 729 | DO k = k1min, k2max |
---|
| 730 | DO i = 1, klon |
---|
| 731 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
---|
| 732 | d_ql(i, k) = d_ql(i, k) + zrapp(i)*zqnew(i, k) |
---|
| 733 | END IF |
---|
| 734 | END DO |
---|
| 735 | END DO |
---|
| 736 | |
---|
| 737 | ELSE IF (opt_cld==2) THEN |
---|
| 738 | |
---|
| 739 | DO i = 1, klon |
---|
| 740 | IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
---|
| 741 | END DO |
---|
| 742 | DO k = k1min, k2max |
---|
| 743 | DO i = 1, klon |
---|
| 744 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
---|
| 745 | delp(i, k)/rg |
---|
| 746 | END DO |
---|
| 747 | END DO |
---|
| 748 | DO k = k1min, k2max |
---|
| 749 | DO i = 1, klon |
---|
| 750 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
---|
| 751 | d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i) |
---|
| 752 | END IF |
---|
| 753 | END DO |
---|
| 754 | END DO |
---|
| 755 | DO i = 1, klon |
---|
| 756 | IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 757 | END DO |
---|
| 758 | |
---|
| 759 | ELSE IF (opt_cld==3) THEN |
---|
| 760 | |
---|
| 761 | DO i = 1, klon |
---|
| 762 | IF (todo(i)) zvapo(i) = 0.0 ! quantite de l'eau strictement condensee |
---|
| 763 | END DO |
---|
| 764 | DO k = k1min, k2max |
---|
| 765 | DO i = 1, klon |
---|
| 766 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
---|
| 767 | max(0.0, zq(i,k)-zqnew(i,k))*delp(i, k)/rg |
---|
| 768 | END DO |
---|
| 769 | END DO |
---|
| 770 | DO k = k1min, k2max |
---|
| 771 | DO i = 1, klon |
---|
| 772 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i) .AND. zvapo(i)>0.0) d_ql(i, & |
---|
| 773 | k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*max(0.0, zq(i,k)-zqnew & |
---|
| 774 | (i,k)) |
---|
| 775 | END DO |
---|
| 776 | END DO |
---|
| 777 | DO i = 1, klon |
---|
| 778 | IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 779 | END DO |
---|
| 780 | |
---|
| 781 | ELSE IF (opt_cld==4) THEN |
---|
| 782 | |
---|
| 783 | nexpo = 3 |
---|
| 784 | ! cc nexpo = 1 ! distribution lineaire |
---|
| 785 | |
---|
| 786 | DO i = 1, klon |
---|
| 787 | IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
---|
| 788 | END DO ! (avec ponderation) |
---|
| 789 | DO k = k1min, k2max |
---|
| 790 | DO i = 1, klon |
---|
| 791 | IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) zvapo(i) = zvapo(i) + & |
---|
| 792 | delp(i, k)/rg*(pplay(i,k1(i))-pplay(i,k))**nexpo |
---|
| 793 | END DO |
---|
| 794 | END DO |
---|
| 795 | DO k = k1min, k2max |
---|
| 796 | DO i = 1, klon |
---|
| 797 | IF (todo(i) .AND. k>=(k1(i)+1) .AND. k<=k2(i)) d_ql(i, k) = d_ql(i, & |
---|
| 798 | k) + toliq(i)*zcond(i)/zvapo(i)*(pplay(i,k1(i))-pplay(i,k))**nexpo |
---|
| 799 | END DO |
---|
| 800 | END DO |
---|
| 801 | DO i = 1, klon |
---|
| 802 | IF (todo(i)) zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 803 | END DO |
---|
| 804 | |
---|
| 805 | ELSE ! valeur non-prevue pour opt_cld |
---|
| 806 | |
---|
| 807 | PRINT *, 'opt_cld est faux:', opt_cld |
---|
| 808 | CALL abort |
---|
| 809 | |
---|
| 810 | END IF ! fin de opt_cld |
---|
| 811 | |
---|
| 812 | ! L'eau precipitante peut etre evaporee: |
---|
| 813 | |
---|
| 814 | zalfa = 0.05 |
---|
| 815 | IF (evap_prec .AND. (k1max>=2)) THEN |
---|
| 816 | DO k = k1max - 1, 1, -1 |
---|
| 817 | DO i = 1, klon |
---|
| 818 | IF (todo(i) .AND. k<k1(i) .AND. zrfl(i)>0.0) THEN |
---|
| 819 | zqev = max(0.0, (zqs(i,k)-zq(i,k))*zalfa) |
---|
| 820 | zqevt = coef_eva*(1.0-zq(i,k)/zqs(i,k))*sqrt(zrfl(i))*delp(i, k)/ & |
---|
| 821 | pplay(i, k)*zt(i, k)*rd/rg |
---|
| 822 | zqevt = max(0.0, min(zqevt,zrfl(i)))*rg*dtime/delp(i, k) |
---|
| 823 | zqev = min(zqev, zqevt) |
---|
| 824 | zrfln = zrfl(i) - zqev*(delp(i,k))/rg/dtime |
---|
| 825 | zq(i, k) = zq(i, k) - (zrfln-zrfl(i))*(rg/(delp(i,k)))*dtime |
---|
| 826 | zt(i, k) = zt(i, k) + (zrfln-zrfl(i))*(rg/(delp(i, & |
---|
| 827 | k)))*dtime*rlvtt/rcpd/(1.0+rvtmp2*zq(i,k)) |
---|
| 828 | zrfl(i) = zrfln |
---|
| 829 | END IF |
---|
| 830 | END DO |
---|
| 831 | END DO |
---|
| 832 | END IF |
---|
| 833 | |
---|
| 834 | ! La temperature de la premiere couche determine la pluie ou la neige: |
---|
| 835 | |
---|
| 836 | DO i = 1, klon |
---|
| 837 | IF (todo(i)) THEN |
---|
| 838 | IF (zt(i,1)>rtt) THEN |
---|
| 839 | rain(i) = rain(i) + zrfl(i) |
---|
| 840 | ELSE |
---|
| 841 | snow(i) = snow(i) + zrfl(i) |
---|
| 842 | END IF |
---|
| 843 | END IF |
---|
| 844 | END DO |
---|
| 845 | |
---|
| 846 | ! Mise a jour de la temperature et de l'humidite |
---|
| 847 | |
---|
| 848 | DO k = k1min, k2max |
---|
| 849 | DO i = 1, klon |
---|
| 850 | IF (todo(i) .AND. k>=k1(i) .AND. k<=k2(i)) THEN |
---|
| 851 | zt(i, k) = ztnew(i, k) |
---|
| 852 | zq(i, k) = zqnew(i, k) |
---|
| 853 | END IF |
---|
| 854 | END DO |
---|
| 855 | END DO |
---|
| 856 | |
---|
| 857 | ! Re-calculer certaines variables pour etendre et re-ajuster la colonne |
---|
| 858 | |
---|
| 859 | IF (exigent) THEN |
---|
| 860 | DO k = 1, klev |
---|
| 861 | DO i = 1, klon |
---|
| 862 | IF (todo(i)) THEN |
---|
| 863 | IF (thermcep) THEN |
---|
| 864 | zdelta = max(0., sign(1.,rtt-zt(i,k))) |
---|
| 865 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 866 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*zq(i,k)) |
---|
| 867 | zqs(i, k) = r2es*foeew(zt(i,k), zdelta)/pplay(i, k) |
---|
| 868 | zqs(i, k) = min(0.5, zqs(i,k)) |
---|
| 869 | zcor = 1./(1.-retv*zqs(i,k)) |
---|
| 870 | zqs(i, k) = zqs(i, k)*zcor |
---|
| 871 | zdqs(i, k) = foede(zt(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
---|
| 872 | ELSE |
---|
| 873 | IF (zt(i,k)<t_coup) THEN |
---|
| 874 | zqs(i, k) = qsats(zt(i,k))/pplay(i, k) |
---|
| 875 | zdqs(i, k) = dqsats(zt(i,k), zqs(i,k)) |
---|
| 876 | ELSE |
---|
| 877 | zqs(i, k) = qsatl(zt(i,k))/pplay(i, k) |
---|
| 878 | zdqs(i, k) = dqsatl(zt(i,k), zqs(i,k)) |
---|
| 879 | END IF |
---|
| 880 | END IF |
---|
| 881 | END IF |
---|
| 882 | END DO |
---|
| 883 | END DO |
---|
| 884 | END IF |
---|
| 885 | |
---|
| 886 | IF (exigent) THEN |
---|
| 887 | DO k = 1, klev - 1 |
---|
| 888 | DO i = 1, klon |
---|
| 889 | IF (todo(i)) THEN |
---|
| 890 | zgamdz(i, k) = -(pplay(i,k)-pplay(i,k+1))/paprs(i, k+1)/rcpd*(rd*( & |
---|
| 891 | zt(i,k)*delp(i,k)+zt(i,k+1)*delp(i,k+1))/(delp(i,k)+delp(i, & |
---|
| 892 | k+1))+rlvtt*(zqs(i,k)*delp(i,k)+zqs(i,k+1)*delp(i,k+1))/(delp(i, & |
---|
| 893 | k)+delp(i,k+1)))/(1.0+(zdqs(i,k)*delp(i,k)+zdqs(i,k+1)*delp(i, & |
---|
| 894 | k+1))/(delp(i,k)+delp(i,k+1))) |
---|
| 895 | END IF |
---|
| 896 | END DO |
---|
| 897 | END DO |
---|
| 898 | END IF |
---|
| 899 | |
---|
| 900 | ! Puisque l'humidite a ete modifiee, on re-fait (q-qs)*dp |
---|
| 901 | |
---|
| 902 | DO k = 1, klev |
---|
| 903 | DO i = 1, klon |
---|
| 904 | IF (todo(i)) THEN |
---|
| 905 | zqmqsdp(i, k) = (zq(i,k)-zqs(i,k))*delp(i, k) |
---|
| 906 | END IF |
---|
| 907 | END DO |
---|
| 908 | END DO |
---|
| 909 | |
---|
| 910 | ! Verifier si l'on peut etendre le bas de la colonne |
---|
| 911 | |
---|
| 912 | DO i = 1, klon |
---|
| 913 | etendre(i) = .FALSE. |
---|
| 914 | END DO |
---|
| 915 | |
---|
| 916 | k1max = 1 |
---|
| 917 | DO i = 1, klon |
---|
| 918 | IF (todo(i) .AND. k1(i)>(kbase+1)) THEN |
---|
| 919 | k = k1(i) |
---|
| 920 | zflo(i) = zt(i, k-1) + zgamdz(i, k-1) - zt(i, k) |
---|
| 921 | zsat(i) = zqmqsdp(i, k) + zqmqsdp(i, k-1) |
---|
| 922 | ! sc voici l'ancienne ligne: |
---|
| 923 | ! sc IF (zflo(i).LE.0.0 .OR. zsat(i).LE.0.0) THEN |
---|
| 924 | ! sc sylvain: il faut RESPECTER les 2 criteres: |
---|
| 925 | IF (zflo(i)>0.0 .AND. zsat(i)>0.0) THEN |
---|
| 926 | etendre(i) = .TRUE. |
---|
| 927 | k1(i) = k1(i) - 1 |
---|
| 928 | k1max = max(k1max, k1(i)) |
---|
| 929 | aller(i) = .TRUE. |
---|
| 930 | END IF |
---|
| 931 | END IF |
---|
| 932 | END DO |
---|
| 933 | |
---|
| 934 | IF (k1max>(kbase+1)) THEN |
---|
| 935 | DO k = k1max, kbase + 1, -1 |
---|
| 936 | DO i = 1, klon |
---|
| 937 | IF (etendre(i) .AND. k<k1(i) .AND. aller(i)) THEN |
---|
| 938 | zsat(i) = zsat(i) + zqmqsdp(i, k) |
---|
| 939 | zflo(i) = zt(i, k) + zgamdz(i, k) - zt(i, k+1) |
---|
| 940 | IF (zsat(i)<=0.0 .OR. zflo(i)<=0.0) THEN |
---|
| 941 | aller(i) = .FALSE. |
---|
| 942 | ELSE |
---|
| 943 | k1(i) = k |
---|
| 944 | END IF |
---|
| 945 | END IF |
---|
| 946 | END DO |
---|
| 947 | END DO |
---|
| 948 | DO i = 1, klon |
---|
| 949 | IF (etendre(i) .AND. aller(i)) THEN |
---|
| 950 | k1(i) = 1 |
---|
| 951 | END IF |
---|
| 952 | END DO |
---|
| 953 | END IF |
---|
| 954 | |
---|
| 955 | ! CC DO i = 1, klon |
---|
| 956 | ! CC IF (etendre(i)) THEN |
---|
| 957 | ! CC 840 k = k1(i) |
---|
| 958 | ! CC IF (k.GT.1) THEN |
---|
| 959 | ! CC zsat(i) = zsat(i) + zqmqsdp(i,k-1) |
---|
| 960 | ! CC zflo(i) = zt(i,k-1) + zgamdz(i,k-1) - zt(i,k) |
---|
| 961 | ! CC IF (zflo(i).GT.0.0 .AND. zsat(i).GT.0.0) THEN |
---|
| 962 | ! CC k1(i) = k - 1 |
---|
| 963 | ! CC GOTO 840 |
---|
| 964 | ! CC ENDIF |
---|
| 965 | ! CC ENDIF |
---|
| 966 | ! CC ENDIF |
---|
| 967 | ! CC ENDDO |
---|
| 968 | |
---|
| 969 | DO i = 1, klon |
---|
| 970 | todobis(i) = todo(i) |
---|
| 971 | todo(i) = .FALSE. |
---|
| 972 | END DO |
---|
| 973 | is = 0 |
---|
| 974 | DO i = 1, klon |
---|
| 975 | IF (etendre(i)) THEN |
---|
| 976 | todo(i) = .TRUE. |
---|
| 977 | is = is + 1 |
---|
| 978 | END IF |
---|
| 979 | END DO |
---|
| 980 | IF (is>0) THEN |
---|
| 981 | IF (new_top) THEN |
---|
| 982 | GO TO 820 ! chercher de nouveau le sommet k2 |
---|
| 983 | ELSE |
---|
| 984 | GO TO 830 ! supposer que le sommet est celui deja trouve |
---|
| 985 | END IF |
---|
| 986 | END IF |
---|
| 987 | |
---|
| 988 | DO i = 1, klon |
---|
| 989 | possible(i) = .FALSE. |
---|
| 990 | END DO |
---|
| 991 | is = 0 |
---|
| 992 | DO i = 1, klon |
---|
| 993 | IF (todobis(i) .AND. k2(i)<klev) THEN |
---|
| 994 | is = is + 1 |
---|
| 995 | possible(i) = .TRUE. |
---|
| 996 | END IF |
---|
| 997 | END DO |
---|
| 998 | IF (is>0) GO TO 810 !on cherche en haut d'autres blocks |
---|
| 999 | ! a ajuster a partir du sommet de la colonne precedente |
---|
| 1000 | |
---|
| 1001 | 860 CONTINUE ! Calculer les tendances et diagnostiques |
---|
| 1002 | ! cc print*, "Apres 860" |
---|
| 1003 | |
---|
| 1004 | DO k = 1, klev |
---|
| 1005 | DO i = 1, klon |
---|
| 1006 | IF (accompli(i)) THEN |
---|
| 1007 | d_t(i, k) = zt(i, k) - t(i, k) |
---|
| 1008 | zq(i, k) = max(zq(i,k), seuil_vap) |
---|
| 1009 | d_q(i, k) = zq(i, k) - q(i, k) |
---|
| 1010 | END IF |
---|
| 1011 | END DO |
---|
| 1012 | END DO |
---|
| 1013 | |
---|
| 1014 | DO i = 1, klon |
---|
| 1015 | IF (accompli(i)) THEN |
---|
| 1016 | DO k = 1, klev |
---|
| 1017 | IF (rneb(i,k)>0.0) THEN |
---|
| 1018 | ibas(i) = k |
---|
| 1019 | GO TO 807 |
---|
| 1020 | END IF |
---|
| 1021 | END DO |
---|
| 1022 | 807 CONTINUE |
---|
| 1023 | DO k = klev, 1, -1 |
---|
| 1024 | IF (rneb(i,k)>0.0) THEN |
---|
| 1025 | itop(i) = k |
---|
| 1026 | GO TO 808 |
---|
| 1027 | END IF |
---|
| 1028 | END DO |
---|
| 1029 | 808 CONTINUE |
---|
| 1030 | END IF |
---|
| 1031 | END DO |
---|
| 1032 | |
---|
| 1033 | IF (imprim) THEN |
---|
| 1034 | nbtodo = 0 |
---|
| 1035 | nbdone = 0 |
---|
| 1036 | DO i = 1, klon |
---|
| 1037 | IF (afaire(i)) nbtodo = nbtodo + 1 |
---|
| 1038 | IF (accompli(i)) nbdone = nbdone + 1 |
---|
| 1039 | END DO |
---|
| 1040 | PRINT *, 'nbTodo, nbDone=', nbtodo, nbdone |
---|
| 1041 | END IF |
---|
| 1042 | |
---|
| 1043 | RETURN |
---|
| 1044 | END SUBROUTINE conmanv |
---|
| 1045 | SUBROUTINE conkuo(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, d_ql, rneb, & |
---|
| 1046 | rain, snow, ibas, itop) |
---|
| 1047 | USE dimphy |
---|
| 1048 | IMPLICIT NONE |
---|
| 1049 | ! ====================================================================== |
---|
| 1050 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 1051 | ! Objet: Schema de convection de type Kuo (1965). |
---|
| 1052 | ! Cette version du code peut calculer le niveau de depart |
---|
| 1053 | ! N.B. version vectorielle (le 6 oct. 1997) |
---|
| 1054 | ! ====================================================================== |
---|
| 1055 | include "YOMCST.h" |
---|
| 1056 | |
---|
| 1057 | ! Arguments: |
---|
| 1058 | |
---|
| 1059 | REAL dtime ! intervalle du temps (s) |
---|
| 1060 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 1061 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 1062 | REAL t(klon, klev) ! temperature (K) |
---|
| 1063 | REAL q(klon, klev) ! humidite specifique |
---|
| 1064 | REAL conv_q(klon, klev) ! taux de convergence humidite (g/g/s) |
---|
| 1065 | |
---|
| 1066 | REAL d_t(klon, klev) ! incrementation temperature |
---|
| 1067 | REAL d_q(klon, klev) ! incrementation humidite |
---|
| 1068 | REAL d_ql(klon, klev) ! incrementation eau liquide |
---|
| 1069 | REAL rneb(klon, klev) ! nebulosite |
---|
| 1070 | REAL rain(klon) ! pluies (mm/s) |
---|
| 1071 | REAL snow(klon) ! neige (mm/s) |
---|
| 1072 | INTEGER itop(klon) ! niveau du sommet |
---|
| 1073 | INTEGER ibas(klon) ! niveau du bas |
---|
| 1074 | |
---|
| 1075 | LOGICAL ldcum(klon) ! convection existe |
---|
| 1076 | LOGICAL todo(klon) |
---|
| 1077 | |
---|
| 1078 | ! Quelsques options: |
---|
| 1079 | |
---|
| 1080 | LOGICAL calcfcl ! calculer le niveau de convection libre |
---|
| 1081 | PARAMETER (calcfcl=.TRUE.) |
---|
| 1082 | INTEGER ldepar ! niveau fixe de convection libre |
---|
| 1083 | PARAMETER (ldepar=4) |
---|
| 1084 | INTEGER opt_cld ! comment traiter l'eau liquide |
---|
| 1085 | PARAMETER (opt_cld=4) ! valeur possible: 0, 1, 2, 3 ou 4 |
---|
| 1086 | LOGICAL evap_prec ! evaporation de pluie au-dessous de convection |
---|
| 1087 | PARAMETER (evap_prec=.TRUE.) |
---|
| 1088 | REAL coef_eva |
---|
| 1089 | PARAMETER (coef_eva=1.0E-05) |
---|
| 1090 | LOGICAL new_deh ! nouvelle facon de calculer dH |
---|
| 1091 | PARAMETER (new_deh=.FALSE.) |
---|
| 1092 | REAL t_coup |
---|
| 1093 | PARAMETER (t_coup=234.0) |
---|
| 1094 | LOGICAL old_tau ! implique precipitation nulle |
---|
| 1095 | PARAMETER (old_tau=.FALSE.) |
---|
| 1096 | REAL toliq(klon) ! rapport entre l'eau nuageuse et l'eau precipitante |
---|
| 1097 | REAL dpmin, tomax !Epaisseur faible, rapport eau liquide plus grande |
---|
| 1098 | PARAMETER (dpmin=0.15, tomax=0.97) |
---|
| 1099 | REAL dpmax, tomin !Epaisseur grande, rapport eau liquide plus faible |
---|
| 1100 | PARAMETER (dpmax=0.30, tomin=0.05) |
---|
| 1101 | REAL deep_sig, deep_to ! au dela de deep_sig, utiliser deep_to |
---|
| 1102 | PARAMETER (deep_sig=0.50, deep_to=0.05) |
---|
| 1103 | |
---|
| 1104 | ! Variables locales: |
---|
| 1105 | |
---|
| 1106 | INTEGER nexpo |
---|
| 1107 | LOGICAL nuage(klon) |
---|
| 1108 | INTEGER i, k, kbmin, kbmax, khmax |
---|
| 1109 | REAL ztotal(klon, klev), zdeh(klon, klev) |
---|
| 1110 | REAL zgz(klon, klev) |
---|
| 1111 | REAL zqs(klon, klev) |
---|
| 1112 | REAL zdqs(klon, klev) |
---|
| 1113 | REAL ztemp(klon, klev) |
---|
| 1114 | REAL zpres(klon, klev) |
---|
| 1115 | REAL zconv(klon) ! convergence d'humidite |
---|
| 1116 | REAL zvirt(klon) ! convergence virtuelle d'humidite |
---|
| 1117 | REAL zfrac(klon) ! fraction convective |
---|
| 1118 | INTEGER kb(klon), kh(klon) |
---|
| 1119 | |
---|
| 1120 | REAL zcond(klon), zvapo(klon), zrapp(klon) |
---|
| 1121 | REAL zrfl(klon), zrfln, zqev, zqevt |
---|
| 1122 | REAL zdelta, zcvm5, zcor |
---|
| 1123 | REAL zvar |
---|
| 1124 | |
---|
| 1125 | LOGICAL appel1er |
---|
| 1126 | SAVE appel1er |
---|
| 1127 | !$OMP THREADPRIVATE(appel1er) |
---|
| 1128 | |
---|
| 1129 | ! Fonctions thermodynamiques |
---|
| 1130 | |
---|
| 1131 | include "YOETHF.h" |
---|
| 1132 | include "FCTTRE.h" |
---|
| 1133 | |
---|
| 1134 | DATA appel1er/.TRUE./ |
---|
| 1135 | |
---|
| 1136 | IF (appel1er) THEN |
---|
| 1137 | PRINT *, 'conkuo, calcfcl:', calcfcl |
---|
| 1138 | IF (.NOT. calcfcl) PRINT *, 'conkuo, ldepar:', ldepar |
---|
| 1139 | PRINT *, 'conkuo, opt_cld:', opt_cld |
---|
| 1140 | PRINT *, 'conkuo, evap_prec:', evap_prec |
---|
| 1141 | PRINT *, 'conkuo, new_deh:', new_deh |
---|
| 1142 | appel1er = .FALSE. |
---|
| 1143 | END IF |
---|
| 1144 | |
---|
| 1145 | ! Initialiser les sorties a zero |
---|
| 1146 | |
---|
| 1147 | DO k = 1, klev |
---|
| 1148 | DO i = 1, klon |
---|
| 1149 | d_q(i, k) = 0.0 |
---|
| 1150 | d_t(i, k) = 0.0 |
---|
| 1151 | d_ql(i, k) = 0.0 |
---|
| 1152 | rneb(i, k) = 0.0 |
---|
| 1153 | END DO |
---|
| 1154 | END DO |
---|
| 1155 | DO i = 1, klon |
---|
| 1156 | rain(i) = 0.0 |
---|
| 1157 | snow(i) = 0.0 |
---|
| 1158 | ibas(i) = 0 |
---|
| 1159 | itop(i) = 0 |
---|
| 1160 | END DO |
---|
| 1161 | |
---|
| 1162 | ! Calculer la vapeur d'eau saturante Qs et sa derive L/Cp * dQs/dT |
---|
| 1163 | |
---|
| 1164 | DO k = 1, klev |
---|
| 1165 | DO i = 1, klon |
---|
| 1166 | IF (thermcep) THEN |
---|
| 1167 | zdelta = max(0., sign(1.,rtt-t(i,k))) |
---|
| 1168 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 1169 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 1170 | zqs(i, k) = r2es*foeew(t(i,k), zdelta)/pplay(i, k) |
---|
| 1171 | zqs(i, k) = min(0.5, zqs(i,k)) |
---|
| 1172 | zcor = 1./(1.-retv*zqs(i,k)) |
---|
| 1173 | zqs(i, k) = zqs(i, k)*zcor |
---|
| 1174 | zdqs(i, k) = foede(t(i,k), zdelta, zcvm5, zqs(i,k), zcor) |
---|
| 1175 | ELSE |
---|
| 1176 | IF (t(i,k)<t_coup) THEN |
---|
| 1177 | zqs(i, k) = qsats(t(i,k))/pplay(i, k) |
---|
| 1178 | zdqs(i, k) = dqsats(t(i,k), zqs(i,k)) |
---|
| 1179 | ELSE |
---|
| 1180 | zqs(i, k) = qsatl(t(i,k))/pplay(i, k) |
---|
| 1181 | zdqs(i, k) = dqsatl(t(i,k), zqs(i,k)) |
---|
| 1182 | END IF |
---|
| 1183 | END IF |
---|
| 1184 | END DO |
---|
| 1185 | END DO |
---|
| 1186 | |
---|
| 1187 | ! Calculer gz (energie potentielle) |
---|
| 1188 | |
---|
| 1189 | DO i = 1, klon |
---|
| 1190 | zgz(i, 1) = rd*t(i, 1)/(0.5*(paprs(i,1)+pplay(i, & |
---|
| 1191 | 1)))*(paprs(i,1)-pplay(i,1)) |
---|
| 1192 | END DO |
---|
| 1193 | DO k = 2, klev |
---|
| 1194 | DO i = 1, klon |
---|
| 1195 | zgz(i, k) = zgz(i, k-1) + rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i & |
---|
| 1196 | ,k-1)-pplay(i,k)) |
---|
| 1197 | END DO |
---|
| 1198 | END DO |
---|
| 1199 | |
---|
| 1200 | ! Calculer l'energie statique humide saturee (Cp*T + gz + L*Qs) |
---|
| 1201 | |
---|
| 1202 | DO k = 1, klev |
---|
| 1203 | DO i = 1, klon |
---|
| 1204 | ztotal(i, k) = rcpd*t(i, k) + rlvtt*zqs(i, k) + zgz(i, k) |
---|
| 1205 | END DO |
---|
| 1206 | END DO |
---|
| 1207 | |
---|
| 1208 | ! Determiner le niveau de depart et calculer la difference de |
---|
| 1209 | ! l'energie statique humide saturee (ztotal) entre la couche |
---|
| 1210 | ! de depart et chaque couche au-dessus. |
---|
| 1211 | |
---|
| 1212 | IF (calcfcl) THEN |
---|
| 1213 | DO k = 1, klev |
---|
| 1214 | DO i = 1, klon |
---|
| 1215 | zpres(i, k) = pplay(i, k) |
---|
| 1216 | ztemp(i, k) = t(i, k) |
---|
| 1217 | END DO |
---|
| 1218 | END DO |
---|
| 1219 | CALL kuofcl(ztemp, q, zgz, zpres, ldcum, kb) |
---|
| 1220 | DO i = 1, klon |
---|
| 1221 | IF (ldcum(i)) THEN |
---|
| 1222 | k = kb(i) |
---|
| 1223 | IF (new_deh) THEN |
---|
| 1224 | zdeh(i, k) = ztotal(i, k-1) - ztotal(i, k) |
---|
| 1225 | ELSE |
---|
| 1226 | zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/ & |
---|
| 1227 | paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
---|
| 1228 | rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 1229 | END IF |
---|
| 1230 | zdeh(i, k) = zdeh(i, k)*0.5 |
---|
| 1231 | END IF |
---|
| 1232 | END DO |
---|
| 1233 | DO k = 1, klev |
---|
| 1234 | DO i = 1, klon |
---|
| 1235 | IF (ldcum(i) .AND. k>=(kb(i)+1)) THEN |
---|
| 1236 | IF (new_deh) THEN |
---|
| 1237 | zdeh(i, k) = zdeh(i, k-1) + (ztotal(i,k-1)-ztotal(i,k)) |
---|
| 1238 | ELSE |
---|
| 1239 | zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
---|
| 1240 | rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)* & |
---|
| 1241 | (pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 1242 | END IF |
---|
| 1243 | END IF |
---|
| 1244 | END DO |
---|
| 1245 | END DO |
---|
| 1246 | ELSE |
---|
| 1247 | DO i = 1, klon |
---|
| 1248 | k = ldepar |
---|
| 1249 | kb(i) = ldepar |
---|
| 1250 | ldcum(i) = .TRUE. |
---|
| 1251 | IF (new_deh) THEN |
---|
| 1252 | zdeh(i, k) = ztotal(i, k-1) - ztotal(i, k) |
---|
| 1253 | ELSE |
---|
| 1254 | zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/paprs( & |
---|
| 1255 | i, k)*(pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 1256 | END IF |
---|
| 1257 | zdeh(i, k) = zdeh(i, k)*0.5 |
---|
| 1258 | END DO |
---|
| 1259 | DO k = ldepar + 1, klev |
---|
| 1260 | DO i = 1, klon |
---|
| 1261 | IF (new_deh) THEN |
---|
| 1262 | zdeh(i, k) = zdeh(i, k-1) + (ztotal(i,k-1)-ztotal(i,k)) |
---|
| 1263 | ELSE |
---|
| 1264 | zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
---|
| 1265 | rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
---|
| 1266 | rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 1267 | END IF |
---|
| 1268 | END DO |
---|
| 1269 | END DO |
---|
| 1270 | END IF |
---|
| 1271 | |
---|
| 1272 | ! -----Chercher le sommet du nuage |
---|
| 1273 | ! -----Calculer la convergence de l'humidite (en kg/m**2 a un facteur |
---|
| 1274 | ! -----psolpa/RG pres) du bas jusqu'au sommet du nuage. |
---|
| 1275 | ! -----Calculer la convergence virtuelle pour que toute la maille |
---|
| 1276 | ! -----deviennt nuageuse (du bas jusqu'au sommet du nuage) |
---|
| 1277 | |
---|
| 1278 | DO i = 1, klon |
---|
| 1279 | nuage(i) = .TRUE. |
---|
| 1280 | zconv(i) = 0.0 |
---|
| 1281 | zvirt(i) = 0.0 |
---|
| 1282 | kh(i) = -999 |
---|
| 1283 | END DO |
---|
| 1284 | DO k = 1, klev |
---|
| 1285 | DO i = 1, klon |
---|
| 1286 | IF (k>=kb(i) .AND. ldcum(i)) THEN |
---|
| 1287 | nuage(i) = nuage(i) .AND. zdeh(i, k) > 0.0 |
---|
| 1288 | IF (nuage(i)) THEN |
---|
| 1289 | kh(i) = k |
---|
| 1290 | zconv(i) = zconv(i) + conv_q(i, k)*dtime*(paprs(i,k)-paprs(i,k+1)) |
---|
| 1291 | zvirt(i) = zvirt(i) + (zdeh(i,k)/rlvtt+zqs(i,k)-q(i,k))*(paprs(i,k) & |
---|
| 1292 | -paprs(i,k+1)) |
---|
| 1293 | END IF |
---|
| 1294 | END IF |
---|
| 1295 | END DO |
---|
| 1296 | END DO |
---|
| 1297 | |
---|
| 1298 | DO i = 1, klon |
---|
| 1299 | todo(i) = ldcum(i) .AND. kh(i) > kb(i) .AND. zconv(i) > 0.0 |
---|
| 1300 | END DO |
---|
| 1301 | |
---|
| 1302 | kbmin = klev |
---|
| 1303 | kbmax = 0 |
---|
| 1304 | khmax = 0 |
---|
| 1305 | DO i = 1, klon |
---|
| 1306 | IF (todo(i)) THEN |
---|
| 1307 | kbmin = min(kbmin, kb(i)) |
---|
| 1308 | kbmax = max(kbmax, kb(i)) |
---|
| 1309 | khmax = max(khmax, kh(i)) |
---|
| 1310 | END IF |
---|
| 1311 | END DO |
---|
| 1312 | |
---|
| 1313 | ! -----Calculer la surface couverte par le nuage |
---|
| 1314 | |
---|
| 1315 | DO i = 1, klon |
---|
| 1316 | IF (todo(i)) THEN |
---|
| 1317 | zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
---|
| 1318 | END IF |
---|
| 1319 | END DO |
---|
| 1320 | |
---|
| 1321 | ! -----Calculs essentiels: |
---|
| 1322 | |
---|
| 1323 | DO i = 1, klon |
---|
| 1324 | IF (todo(i)) THEN |
---|
| 1325 | zcond(i) = 0.0 |
---|
| 1326 | END IF |
---|
| 1327 | END DO |
---|
| 1328 | DO k = kbmin, khmax |
---|
| 1329 | DO i = 1, klon |
---|
| 1330 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1331 | zvar = zdeh(i, k)/(1.+zdqs(i,k)) |
---|
| 1332 | d_t(i, k) = zvar*zfrac(i)/rcpd |
---|
| 1333 | d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
---|
| 1334 | conv_q(i, k)*dtime |
---|
| 1335 | zcond(i) = zcond(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1336 | rneb(i, k) = zfrac(i) |
---|
| 1337 | END IF |
---|
| 1338 | END DO |
---|
| 1339 | END DO |
---|
| 1340 | |
---|
| 1341 | DO i = 1, klon |
---|
| 1342 | IF (todo(i) .AND. zcond(i)<0.0) THEN |
---|
| 1343 | PRINT *, 'WARNING: cond. negative (Kuo) ', i, kb(i), kh(i), zcond(i) |
---|
| 1344 | zcond(i) = 0.0 |
---|
| 1345 | DO k = kb(i), kh(i) |
---|
| 1346 | d_t(i, k) = 0.0 |
---|
| 1347 | d_q(i, k) = 0.0 |
---|
| 1348 | END DO |
---|
| 1349 | todo(i) = .FALSE. ! effort totalement perdu |
---|
| 1350 | END IF |
---|
| 1351 | END DO |
---|
| 1352 | |
---|
| 1353 | ! ===== |
---|
| 1354 | ! Une fois que la condensation a lieu, on doit construire un |
---|
| 1355 | ! "modele nuageux" pour partager la condensation entre l'eau |
---|
| 1356 | ! liquide nuageuse et la precipitation (leur rapport toliq |
---|
| 1357 | ! est calcule selon l'epaisseur nuageuse). Je suppose que |
---|
| 1358 | ! toliq=tomax quand l'epaisseur nuageuse est inferieure a dpmin, |
---|
| 1359 | ! et que toliq=tomin quand l'epaisseur depasse dpmax (interpolation |
---|
| 1360 | ! lineaire entre dpmin et dpmax). |
---|
| 1361 | ! ===== |
---|
| 1362 | DO i = 1, klon |
---|
| 1363 | IF (todo(i)) THEN |
---|
| 1364 | toliq(i) = tomax - ((paprs(i,kb(i))-paprs(i,kh(i)+1))/paprs(i,1)-dpmin) & |
---|
| 1365 | *(tomax-tomin)/(dpmax-dpmin) |
---|
| 1366 | toliq(i) = max(tomin, min(tomax,toliq(i))) |
---|
| 1367 | IF (pplay(i,kh(i))/paprs(i,1)<=deep_sig) toliq(i) = deep_to |
---|
| 1368 | IF (old_tau) toliq(i) = 1.0 |
---|
| 1369 | END IF |
---|
| 1370 | END DO |
---|
| 1371 | ! ===== |
---|
| 1372 | ! On doit aussi determiner la distribution verticale de |
---|
| 1373 | ! l'eau nuageuse. Plusieurs options sont proposees: |
---|
| 1374 | |
---|
| 1375 | ! (0) La condensation precipite integralement (toliq ne sera |
---|
| 1376 | ! pas utilise). |
---|
| 1377 | ! (1) L'eau liquide est distribuee entre k1 et k2 et proportionnelle |
---|
| 1378 | ! a la vapeur d'eau locale. |
---|
| 1379 | ! (2) Elle est distribuee entre k1 et k2 avec une valeur constante. |
---|
| 1380 | ! (3) Elle est seulement distribuee aux couches ou la vapeur d'eau |
---|
| 1381 | ! est effectivement diminuee pendant le processus d'ajustement. |
---|
| 1382 | ! (4) Elle est en fonction (lineaire ou exponentielle) de la |
---|
| 1383 | ! distance (epaisseur en pression) avec le niveau k1 (la couche |
---|
| 1384 | ! k1 n'aura donc pas d'eau liquide). |
---|
| 1385 | ! ===== |
---|
| 1386 | |
---|
| 1387 | IF (opt_cld==0) THEN |
---|
| 1388 | |
---|
| 1389 | DO i = 1, klon |
---|
| 1390 | IF (todo(i)) zrfl(i) = zcond(i)/dtime |
---|
| 1391 | END DO |
---|
| 1392 | |
---|
| 1393 | ELSE IF (opt_cld==1) THEN |
---|
| 1394 | |
---|
| 1395 | DO i = 1, klon |
---|
| 1396 | IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de vapeur d'eau |
---|
| 1397 | END DO |
---|
| 1398 | DO k = kbmin, khmax |
---|
| 1399 | DO i = 1, klon |
---|
| 1400 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1401 | zvapo(i) = zvapo(i) + (q(i,k)+d_q(i,k))*(paprs(i,k)-paprs(i,k+1))/ & |
---|
| 1402 | rg |
---|
| 1403 | END IF |
---|
| 1404 | END DO |
---|
| 1405 | END DO |
---|
| 1406 | DO i = 1, klon |
---|
| 1407 | IF (todo(i)) THEN |
---|
| 1408 | zrapp(i) = toliq(i)*zcond(i)/zvapo(i) |
---|
| 1409 | zrapp(i) = max(0., min(1.,zrapp(i))) |
---|
| 1410 | END IF |
---|
| 1411 | END DO |
---|
| 1412 | DO k = kbmin, khmax |
---|
| 1413 | DO i = 1, klon |
---|
| 1414 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1415 | d_ql(i, k) = zrapp(i)*(q(i,k)+d_q(i,k)) |
---|
| 1416 | END IF |
---|
| 1417 | END DO |
---|
| 1418 | END DO |
---|
| 1419 | DO i = 1, klon |
---|
| 1420 | IF (todo(i)) THEN |
---|
| 1421 | zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 1422 | END IF |
---|
| 1423 | END DO |
---|
| 1424 | |
---|
| 1425 | ELSE IF (opt_cld==2) THEN |
---|
| 1426 | |
---|
| 1427 | DO i = 1, klon |
---|
| 1428 | IF (todo(i)) zvapo(i) = 0.0 ! quantite integrale de masse |
---|
| 1429 | END DO |
---|
| 1430 | DO k = kbmin, khmax |
---|
| 1431 | DO i = 1, klon |
---|
| 1432 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1433 | zvapo(i) = zvapo(i) + (paprs(i,k)-paprs(i,k+1))/rg |
---|
| 1434 | END IF |
---|
| 1435 | END DO |
---|
| 1436 | END DO |
---|
| 1437 | DO k = kbmin, khmax |
---|
| 1438 | DO i = 1, klon |
---|
| 1439 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1440 | d_ql(i, k) = toliq(i)*zcond(i)/zvapo(i) |
---|
| 1441 | END IF |
---|
| 1442 | END DO |
---|
| 1443 | END DO |
---|
| 1444 | DO i = 1, klon |
---|
| 1445 | IF (todo(i)) THEN |
---|
| 1446 | zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 1447 | END IF |
---|
| 1448 | END DO |
---|
| 1449 | |
---|
| 1450 | ELSE IF (opt_cld==3) THEN |
---|
| 1451 | |
---|
| 1452 | DO i = 1, klon |
---|
| 1453 | IF (todo(i)) THEN |
---|
| 1454 | zvapo(i) = 0.0 ! quantite de l'eau strictement condensee |
---|
| 1455 | END IF |
---|
| 1456 | END DO |
---|
| 1457 | DO k = kbmin, khmax |
---|
| 1458 | DO i = 1, klon |
---|
| 1459 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i)) THEN |
---|
| 1460 | zvapo(i) = zvapo(i) + max(0.0, -d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) & |
---|
| 1461 | /rg |
---|
| 1462 | END IF |
---|
| 1463 | END DO |
---|
| 1464 | END DO |
---|
| 1465 | DO k = kbmin, khmax |
---|
| 1466 | DO i = 1, klon |
---|
| 1467 | IF (todo(i) .AND. k>=kb(i) .AND. k<=kh(i) .AND. zvapo(i)>0.0) THEN |
---|
| 1468 | d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*max(0.0, -d_q( & |
---|
| 1469 | i,k)) |
---|
| 1470 | END IF |
---|
| 1471 | END DO |
---|
| 1472 | END DO |
---|
| 1473 | DO i = 1, klon |
---|
| 1474 | IF (todo(i)) THEN |
---|
| 1475 | zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 1476 | END IF |
---|
| 1477 | END DO |
---|
| 1478 | |
---|
| 1479 | ELSE IF (opt_cld==4) THEN |
---|
| 1480 | |
---|
| 1481 | nexpo = 3 |
---|
| 1482 | ! cc nexpo = 1 ! distribution lineaire |
---|
| 1483 | |
---|
| 1484 | DO i = 1, klon |
---|
| 1485 | IF (todo(i)) THEN |
---|
| 1486 | zvapo(i) = 0.0 ! quantite integrale de masse (avec ponderation) |
---|
| 1487 | END IF |
---|
| 1488 | END DO |
---|
| 1489 | DO k = kbmin, khmax |
---|
| 1490 | DO i = 1, klon |
---|
| 1491 | IF (todo(i) .AND. k>=(kb(i)+1) .AND. k<=kh(i)) THEN |
---|
| 1492 | zvapo(i) = zvapo(i) + (paprs(i,k)-paprs(i,k+1))/rg*(pplay(i,kb(i))- & |
---|
| 1493 | pplay(i,k))**nexpo |
---|
| 1494 | END IF |
---|
| 1495 | END DO |
---|
| 1496 | END DO |
---|
| 1497 | DO k = kbmin, khmax |
---|
| 1498 | DO i = 1, klon |
---|
| 1499 | IF (todo(i) .AND. k>=(kb(i)+1) .AND. k<=kh(i)) THEN |
---|
| 1500 | d_ql(i, k) = d_ql(i, k) + toliq(i)*zcond(i)/zvapo(i)*(pplay(i,kb(i) & |
---|
| 1501 | )-pplay(i,k))**nexpo |
---|
| 1502 | END IF |
---|
| 1503 | END DO |
---|
| 1504 | END DO |
---|
| 1505 | DO i = 1, klon |
---|
| 1506 | IF (todo(i)) THEN |
---|
| 1507 | zrfl(i) = (1.0-toliq(i))*zcond(i)/dtime |
---|
| 1508 | END IF |
---|
| 1509 | END DO |
---|
| 1510 | |
---|
| 1511 | ELSE ! valeur non-prevue pour opt_cld |
---|
| 1512 | |
---|
| 1513 | PRINT *, 'opt_cld est faux:', opt_cld |
---|
| 1514 | CALL abort |
---|
| 1515 | |
---|
| 1516 | END IF ! fin de opt_cld |
---|
| 1517 | |
---|
| 1518 | ! L'eau precipitante peut etre re-evaporee: |
---|
| 1519 | |
---|
| 1520 | IF (evap_prec .AND. kbmax>=2) THEN |
---|
| 1521 | DO k = kbmax, 1, -1 |
---|
| 1522 | DO i = 1, klon |
---|
| 1523 | IF (todo(i) .AND. k<=(kb(i)-1) .AND. zrfl(i)>0.0) THEN |
---|
| 1524 | zqev = max(0.0, (zqs(i,k)-q(i,k))*zfrac(i)) |
---|
| 1525 | zqevt = coef_eva*(1.0-q(i,k)/zqs(i,k))*sqrt(zrfl(i))* & |
---|
| 1526 | (paprs(i,k)-paprs(i,k+1))/pplay(i, k)*t(i, k)*rd/rg |
---|
| 1527 | zqevt = max(0.0, min(zqevt,zrfl(i)))*rg*dtime/ & |
---|
| 1528 | (paprs(i,k)-paprs(i,k+1)) |
---|
| 1529 | zqev = min(zqev, zqevt) |
---|
| 1530 | zrfln = zrfl(i) - zqev*(paprs(i,k)-paprs(i,k+1))/rg/dtime |
---|
| 1531 | d_q(i, k) = -(zrfln-zrfl(i))*(rg/(paprs(i,k)-paprs(i,k+1)))*dtime |
---|
| 1532 | d_t(i, k) = (zrfln-zrfl(i))*(rg/(paprs(i,k)-paprs(i, & |
---|
| 1533 | k+1)))*dtime*rlvtt/rcpd |
---|
| 1534 | zrfl(i) = zrfln |
---|
| 1535 | END IF |
---|
| 1536 | END DO |
---|
| 1537 | END DO |
---|
| 1538 | END IF |
---|
| 1539 | |
---|
| 1540 | ! La temperature de la premiere couche determine la pluie ou la neige: |
---|
| 1541 | |
---|
| 1542 | DO i = 1, klon |
---|
| 1543 | IF (todo(i)) THEN |
---|
| 1544 | IF (t(i,1)>rtt) THEN |
---|
| 1545 | rain(i) = rain(i) + zrfl(i) |
---|
| 1546 | ELSE |
---|
| 1547 | snow(i) = snow(i) + zrfl(i) |
---|
| 1548 | END IF |
---|
| 1549 | END IF |
---|
| 1550 | END DO |
---|
| 1551 | |
---|
| 1552 | RETURN |
---|
| 1553 | END SUBROUTINE conkuo |
---|
| 1554 | SUBROUTINE kuofcl(pt, pq, pg, pp, ldcum, kcbot) |
---|
| 1555 | USE dimphy |
---|
| 1556 | IMPLICIT NONE |
---|
| 1557 | ! ====================================================================== |
---|
| 1558 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19940927 |
---|
| 1559 | ! adaptation du code de Tiedtke du ECMWF |
---|
| 1560 | ! Objet: calculer le niveau de convection libre |
---|
| 1561 | ! (FCL: Free Convection Level) |
---|
| 1562 | ! ====================================================================== |
---|
| 1563 | ! Arguments: |
---|
| 1564 | ! pt---input-R- temperature (K) |
---|
| 1565 | ! pq---input-R- vapeur d'eau (kg/kg) |
---|
| 1566 | ! pg---input-R- geopotentiel (g*z ou z est en metre) |
---|
| 1567 | ! pp---input-R- pression (Pa) |
---|
| 1568 | |
---|
| 1569 | ! LDCUM---output-L- Y-t-il la convection |
---|
| 1570 | ! kcbot---output-I- Niveau du bas de la convection |
---|
| 1571 | ! ====================================================================== |
---|
| 1572 | include "YOMCST.h" |
---|
| 1573 | include "YOETHF.h" |
---|
| 1574 | |
---|
| 1575 | REAL pt(klon, klev), pq(klon, klev), pg(klon, klev), pp(klon, klev) |
---|
| 1576 | INTEGER kcbot(klon) |
---|
| 1577 | LOGICAL ldcum(klon) |
---|
| 1578 | |
---|
| 1579 | REAL ztu(klon, klev), zqu(klon, klev), zlu(klon, klev) |
---|
| 1580 | REAL zqold(klon), zbuo |
---|
| 1581 | INTEGER is, i, k |
---|
| 1582 | |
---|
| 1583 | ! klab=1: on est sous le nuage convectif |
---|
| 1584 | ! klab=2: le bas du nuage convectif |
---|
| 1585 | ! klab=0: autres couches |
---|
| 1586 | INTEGER klab(klon, klev) |
---|
| 1587 | |
---|
| 1588 | ! quand lflag=.true., on est sous le nuage, il faut donc appliquer |
---|
| 1589 | ! le processus d'elevation. |
---|
| 1590 | LOGICAL lflag(klon) |
---|
| 1591 | |
---|
| 1592 | DO k = 1, klev |
---|
| 1593 | DO i = 1, klon |
---|
| 1594 | ztu(i, k) = pt(i, k) |
---|
| 1595 | zqu(i, k) = pq(i, k) |
---|
| 1596 | zlu(i, k) = 0.0 |
---|
| 1597 | klab(i, k) = 0 |
---|
| 1598 | END DO |
---|
| 1599 | END DO |
---|
| 1600 | ! ---------------------------------------------------------------------- |
---|
| 1601 | DO i = 1, klon |
---|
| 1602 | klab(i, 1) = 1 |
---|
| 1603 | kcbot(i) = 2 |
---|
| 1604 | ldcum(i) = .FALSE. |
---|
| 1605 | END DO |
---|
| 1606 | |
---|
| 1607 | DO k = 2, klev - 1 |
---|
| 1608 | |
---|
| 1609 | is = 0 |
---|
| 1610 | DO i = 1, klon |
---|
| 1611 | IF (klab(i,k-1)==1) is = is + 1 |
---|
| 1612 | lflag(i) = .FALSE. |
---|
| 1613 | IF (klab(i,k-1)==1) lflag(i) = .TRUE. |
---|
| 1614 | END DO |
---|
| 1615 | IF (is==0) GO TO 290 |
---|
| 1616 | |
---|
| 1617 | ! on eleve le parcel d'air selon l'adiabatique sec |
---|
| 1618 | |
---|
| 1619 | DO i = 1, klon |
---|
| 1620 | IF (lflag(i)) THEN |
---|
| 1621 | zqu(i, k) = zqu(i, k-1) |
---|
| 1622 | ztu(i, k) = ztu(i, k-1) + (pg(i,k-1)-pg(i,k))/rcpd |
---|
| 1623 | zbuo = ztu(i, k)*(1.+retv*zqu(i,k)) - pt(i, k)*(1.+retv*pq(i,k)) + & |
---|
| 1624 | 0.5 |
---|
| 1625 | IF (zbuo>0.) klab(i, k) = 1 |
---|
| 1626 | zqold(i) = zqu(i, k) |
---|
| 1627 | END IF |
---|
| 1628 | END DO |
---|
| 1629 | |
---|
| 1630 | ! on calcule la condensation eventuelle |
---|
| 1631 | |
---|
| 1632 | CALL adjtq(pp(1,k), ztu(1,k), zqu(1,k), lflag, 1) |
---|
| 1633 | |
---|
| 1634 | ! s'il y a la condensation et la "buoyancy" force est positive |
---|
| 1635 | ! c'est bien le bas de la tour de convection |
---|
| 1636 | |
---|
| 1637 | DO i = 1, klon |
---|
| 1638 | IF (lflag(i) .AND. zqu(i,k)/=zqold(i)) THEN |
---|
| 1639 | klab(i, k) = 2 |
---|
| 1640 | zlu(i, k) = zlu(i, k) + zqold(i) - zqu(i, k) |
---|
| 1641 | zbuo = ztu(i, k)*(1.+retv*zqu(i,k)) - pt(i, k)*(1.+retv*pq(i,k)) + & |
---|
| 1642 | 0.5 |
---|
| 1643 | IF (zbuo>0.) THEN |
---|
| 1644 | kcbot(i) = k |
---|
| 1645 | ldcum(i) = .TRUE. |
---|
| 1646 | END IF |
---|
| 1647 | END IF |
---|
| 1648 | END DO |
---|
| 1649 | |
---|
| 1650 | 290 END DO |
---|
| 1651 | |
---|
| 1652 | RETURN |
---|
| 1653 | END SUBROUTINE kuofcl |
---|
| 1654 | SUBROUTINE adjtq(pp, pt, pq, ldflag, kcall) |
---|
| 1655 | USE dimphy |
---|
| 1656 | IMPLICIT NONE |
---|
| 1657 | ! ====================================================================== |
---|
| 1658 | ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19940927 |
---|
| 1659 | ! adaptation du code de Tiedtke du ECMWF |
---|
| 1660 | ! Objet: ajustement entre T et Q |
---|
| 1661 | ! ====================================================================== |
---|
| 1662 | ! Arguments: |
---|
| 1663 | ! pp---input-R- pression (Pa) |
---|
| 1664 | ! pt---input/output-R- temperature (K) |
---|
| 1665 | ! pq---input/output-R- vapeur d'eau (kg/kg) |
---|
| 1666 | ! ====================================================================== |
---|
| 1667 | ! TO PRODUCE T,Q AND L VALUES FOR CLOUD ASCENT |
---|
| 1668 | |
---|
| 1669 | ! NOTE: INPUT PARAMETER KCALL DEFINES CALCULATION AS |
---|
| 1670 | ! KCALL=0 ENV. T AND QS IN*CUINI* |
---|
| 1671 | ! KCALL=1 CONDENSATION IN UPDRAFTS (E.G. CUBASE, CUASC) |
---|
| 1672 | ! KCALL=2 EVAPORATION IN DOWNDRAFTS (E.G. CUDLFS,CUDDRAF) |
---|
| 1673 | |
---|
| 1674 | include "YOMCST.h" |
---|
| 1675 | |
---|
| 1676 | REAL pt(klon), pq(klon), pp(klon) |
---|
| 1677 | LOGICAL ldflag(klon) |
---|
| 1678 | INTEGER kcall |
---|
| 1679 | |
---|
| 1680 | REAL t_coup |
---|
| 1681 | PARAMETER (t_coup=234.0) |
---|
| 1682 | |
---|
| 1683 | REAL zcond(klon), zcond1 |
---|
| 1684 | REAL zdelta, zcvm5, zldcp, zqsat, zcor, zdqsat |
---|
| 1685 | INTEGER is, i |
---|
| 1686 | include "YOETHF.h" |
---|
| 1687 | include "FCTTRE.h" |
---|
| 1688 | |
---|
| 1689 | DO i = 1, klon |
---|
| 1690 | zcond(i) = 0.0 |
---|
| 1691 | END DO |
---|
| 1692 | |
---|
| 1693 | DO i = 1, klon |
---|
| 1694 | IF (ldflag(i)) THEN |
---|
| 1695 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1696 | zldcp = rlvtt*(1.-zdelta) + zdelta*rlstt |
---|
| 1697 | zldcp = zldcp/rcpd/(1.0+rvtmp2*pq(i)) |
---|
| 1698 | IF (thermcep) THEN |
---|
| 1699 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 1700 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*pq(i)) |
---|
| 1701 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1702 | zqsat = min(0.5, zqsat) |
---|
| 1703 | zcor = 1./(1.-retv*zqsat) |
---|
| 1704 | zqsat = zqsat*zcor |
---|
| 1705 | zdqsat = foede(pt(i), zdelta, zcvm5, zqsat, zcor) |
---|
| 1706 | ELSE |
---|
| 1707 | IF (pt(i)<t_coup) THEN |
---|
| 1708 | zqsat = qsats(pt(i))/pp(i) |
---|
| 1709 | zdqsat = dqsats(pt(i), zqsat) |
---|
| 1710 | ELSE |
---|
| 1711 | zqsat = qsatl(pt(i))/pp(i) |
---|
| 1712 | zdqsat = dqsatl(pt(i), zqsat) |
---|
| 1713 | END IF |
---|
| 1714 | END IF |
---|
| 1715 | zcond(i) = (pq(i)-zqsat)/(1.+zdqsat) |
---|
| 1716 | IF (kcall==1) zcond(i) = max(zcond(i), 0.) |
---|
| 1717 | IF (kcall==2) zcond(i) = min(zcond(i), 0.) |
---|
| 1718 | pt(i) = pt(i) + zldcp*zcond(i) |
---|
| 1719 | pq(i) = pq(i) - zcond(i) |
---|
| 1720 | END IF |
---|
| 1721 | END DO |
---|
| 1722 | |
---|
| 1723 | is = 0 |
---|
| 1724 | DO i = 1, klon |
---|
| 1725 | IF (zcond(i)/=0.) is = is + 1 |
---|
| 1726 | END DO |
---|
| 1727 | IF (is==0) GO TO 230 |
---|
| 1728 | |
---|
| 1729 | DO i = 1, klon |
---|
| 1730 | IF (ldflag(i) .AND. zcond(i)/=0.) THEN |
---|
| 1731 | zdelta = max(0., sign(1.,rtt-pt(i))) |
---|
| 1732 | zldcp = rlvtt*(1.-zdelta) + zdelta*rlstt |
---|
| 1733 | zldcp = zldcp/rcpd/(1.0+rvtmp2*pq(i)) |
---|
| 1734 | IF (thermcep) THEN |
---|
| 1735 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 1736 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*pq(i)) |
---|
| 1737 | zqsat = r2es*foeew(pt(i), zdelta)/pp(i) |
---|
| 1738 | zqsat = min(0.5, zqsat) |
---|
| 1739 | zcor = 1./(1.-retv*zqsat) |
---|
| 1740 | zqsat = zqsat*zcor |
---|
| 1741 | zdqsat = foede(pt(i), zdelta, zcvm5, zqsat, zcor) |
---|
| 1742 | ELSE |
---|
| 1743 | IF (pt(i)<t_coup) THEN |
---|
| 1744 | zqsat = qsats(pt(i))/pp(i) |
---|
| 1745 | zdqsat = dqsats(pt(i), zqsat) |
---|
| 1746 | ELSE |
---|
| 1747 | zqsat = qsatl(pt(i))/pp(i) |
---|
| 1748 | zdqsat = dqsatl(pt(i), zqsat) |
---|
| 1749 | END IF |
---|
| 1750 | END IF |
---|
| 1751 | zcond1 = (pq(i)-zqsat)/(1.+zdqsat) |
---|
| 1752 | pt(i) = pt(i) + zldcp*zcond1 |
---|
| 1753 | pq(i) = pq(i) - zcond1 |
---|
| 1754 | END IF |
---|
| 1755 | END DO |
---|
| 1756 | |
---|
| 1757 | 230 CONTINUE |
---|
| 1758 | RETURN |
---|
| 1759 | END SUBROUTINE adjtq |
---|
| 1760 | SUBROUTINE fiajh(dtime, paprs, pplay, t, q, d_t, d_q, d_ql, rneb, rain, snow, & |
---|
| 1761 | ibas, itop) |
---|
| 1762 | USE dimphy |
---|
| 1763 | IMPLICIT NONE |
---|
| 1764 | |
---|
| 1765 | ! Ajustement humide (Schema de convection de Manabe) |
---|
| 1766 | ! . |
---|
| 1767 | include "YOMCST.h" |
---|
| 1768 | |
---|
| 1769 | ! Arguments: |
---|
| 1770 | |
---|
| 1771 | REAL dtime ! intervalle du temps (s) |
---|
| 1772 | REAL t(klon, klev) ! temperature (K) |
---|
| 1773 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 1774 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 1775 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 1776 | |
---|
| 1777 | REAL d_t(klon, klev) ! incrementation pour la temperature |
---|
| 1778 | REAL d_q(klon, klev) ! incrementation pour vapeur d'eau |
---|
| 1779 | REAL d_ql(klon, klev) ! incrementation pour l'eau liquide |
---|
| 1780 | REAL rneb(klon, klev) ! fraction nuageuse |
---|
| 1781 | |
---|
| 1782 | REAL rain(klon) ! variable non utilisee |
---|
| 1783 | REAL snow(klon) ! variable non utilisee |
---|
| 1784 | INTEGER ibas(klon) ! variable non utilisee |
---|
| 1785 | INTEGER itop(klon) ! variable non utilisee |
---|
| 1786 | |
---|
| 1787 | REAL t_coup |
---|
| 1788 | PARAMETER (t_coup=234.0) |
---|
| 1789 | REAL seuil_vap |
---|
| 1790 | PARAMETER (seuil_vap=1.0E-10) |
---|
| 1791 | |
---|
| 1792 | ! Variables locales: |
---|
| 1793 | |
---|
| 1794 | INTEGER i, k |
---|
| 1795 | INTEGER k1, k1p, k2, k2p |
---|
| 1796 | LOGICAL itest(klon) |
---|
| 1797 | REAL delta_q(klon, klev) |
---|
| 1798 | REAL cp_new_t(klev) |
---|
| 1799 | REAL cp_delta_t(klev) |
---|
| 1800 | REAL new_qb(klev) |
---|
| 1801 | REAL v_cptj(klev), v_cptjk1, v_ssig |
---|
| 1802 | REAL v_cptt(klon, klev), v_p, v_t |
---|
| 1803 | REAL v_qs(klon, klev), v_qsd(klon, klev) |
---|
| 1804 | REAL zq1(klon), zq2(klon) |
---|
| 1805 | REAL gamcpdz(klon, 2:klev) |
---|
| 1806 | REAL zdp, zdpm |
---|
| 1807 | |
---|
| 1808 | REAL zsat ! sur-saturation |
---|
| 1809 | REAL zflo ! flotabilite |
---|
| 1810 | |
---|
| 1811 | REAL local_q(klon, klev), local_t(klon, klev) |
---|
| 1812 | |
---|
| 1813 | REAL zdelta, zcor, zcvm5 |
---|
| 1814 | |
---|
| 1815 | include "YOETHF.h" |
---|
| 1816 | include "FCTTRE.h" |
---|
| 1817 | |
---|
| 1818 | DO k = 1, klev |
---|
| 1819 | DO i = 1, klon |
---|
| 1820 | local_q(i, k) = q(i, k) |
---|
| 1821 | local_t(i, k) = t(i, k) |
---|
| 1822 | rneb(i, k) = 0.0 |
---|
| 1823 | d_ql(i, k) = 0.0 |
---|
| 1824 | d_t(i, k) = 0.0 |
---|
| 1825 | d_q(i, k) = 0.0 |
---|
| 1826 | END DO |
---|
| 1827 | END DO |
---|
| 1828 | DO i = 1, klon |
---|
| 1829 | rain(i) = 0.0 |
---|
| 1830 | snow(i) = 0.0 |
---|
| 1831 | ibas(i) = 0 |
---|
| 1832 | itop(i) = 0 |
---|
| 1833 | END DO |
---|
| 1834 | |
---|
| 1835 | ! Calculer v_qs et v_qsd: |
---|
| 1836 | |
---|
| 1837 | DO k = 1, klev |
---|
| 1838 | DO i = 1, klon |
---|
| 1839 | v_cptt(i, k) = rcpd*local_t(i, k) |
---|
| 1840 | v_t = local_t(i, k) |
---|
| 1841 | v_p = pplay(i, k) |
---|
| 1842 | |
---|
| 1843 | IF (thermcep) THEN |
---|
| 1844 | zdelta = max(0., sign(1.,rtt-v_t)) |
---|
| 1845 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 1846 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*local_q(i,k)) |
---|
| 1847 | v_qs(i, k) = r2es*foeew(v_t, zdelta)/v_p |
---|
| 1848 | v_qs(i, k) = min(0.5, v_qs(i,k)) |
---|
| 1849 | zcor = 1./(1.-retv*v_qs(i,k)) |
---|
| 1850 | v_qs(i, k) = v_qs(i, k)*zcor |
---|
| 1851 | v_qsd(i, k) = foede(v_t, zdelta, zcvm5, v_qs(i,k), zcor) |
---|
| 1852 | ELSE |
---|
| 1853 | IF (v_t<t_coup) THEN |
---|
| 1854 | v_qs(i, k) = qsats(v_t)/v_p |
---|
| 1855 | v_qsd(i, k) = dqsats(v_t, v_qs(i,k)) |
---|
| 1856 | ELSE |
---|
| 1857 | v_qs(i, k) = qsatl(v_t)/v_p |
---|
| 1858 | v_qsd(i, k) = dqsatl(v_t, v_qs(i,k)) |
---|
| 1859 | END IF |
---|
| 1860 | END IF |
---|
| 1861 | END DO |
---|
| 1862 | END DO |
---|
| 1863 | |
---|
| 1864 | ! Calculer Gamma * Cp * dz: (gamm est le gradient critique) |
---|
| 1865 | |
---|
| 1866 | DO k = 2, klev |
---|
| 1867 | DO i = 1, klon |
---|
| 1868 | zdp = paprs(i, k) - paprs(i, k+1) |
---|
| 1869 | zdpm = paprs(i, k-1) - paprs(i, k) |
---|
| 1870 | gamcpdz(i, k) = ((rd/rcpd/(zdpm+zdp)*(v_cptt(i,k-1)*zdpm+ & |
---|
| 1871 | v_cptt(i,k)*zdp)+rlvtt/(zdpm+zdp)*(v_qs(i,k-1)*zdpm+ & |
---|
| 1872 | v_qs(i,k)*zdp))*(pplay(i,k-1)-pplay(i,k))/paprs(i,k))/(1.0+(v_qsd(i, & |
---|
| 1873 | k-1)*zdpm+v_qsd(i,k)*zdp)/(zdpm+zdp)) |
---|
| 1874 | END DO |
---|
| 1875 | END DO |
---|
| 1876 | |
---|
| 1877 | ! ------------------------------------ modification des profils instables |
---|
| 1878 | DO i = 1, klon |
---|
| 1879 | itest(i) = .FALSE. |
---|
| 1880 | |
---|
| 1881 | k1 = 0 |
---|
| 1882 | k2 = 1 |
---|
| 1883 | |
---|
| 1884 | 810 CONTINUE ! chercher k1, le bas de la colonne |
---|
| 1885 | k2 = k2 + 1 |
---|
| 1886 | IF (k2>klev) GO TO 9999 |
---|
| 1887 | zflo = v_cptt(i, k2-1) - v_cptt(i, k2) - gamcpdz(i, k2) |
---|
| 1888 | zsat = (local_q(i,k2-1)-v_qs(i,k2-1))*(paprs(i,k2-1)-paprs(i,k2)) + & |
---|
| 1889 | (local_q(i,k2)-v_qs(i,k2))*(paprs(i,k2)-paprs(i,k2+1)) |
---|
| 1890 | IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 810 |
---|
| 1891 | k1 = k2 - 1 |
---|
| 1892 | itest(i) = .TRUE. |
---|
| 1893 | |
---|
| 1894 | 820 CONTINUE ! chercher k2, le haut de la colonne |
---|
| 1895 | IF (k2==klev) GO TO 821 |
---|
| 1896 | k2p = k2 + 1 |
---|
| 1897 | zsat = zsat + (paprs(i,k2p)-paprs(i,k2p+1))*(local_q(i,k2p)-v_qs(i,k2p)) |
---|
| 1898 | zflo = v_cptt(i, k2p-1) - v_cptt(i, k2p) - gamcpdz(i, k2p) |
---|
| 1899 | IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 821 |
---|
| 1900 | k2 = k2p |
---|
| 1901 | GO TO 820 |
---|
| 1902 | 821 CONTINUE |
---|
| 1903 | |
---|
| 1904 | ! ------------------------------------------------------ ajustement local |
---|
| 1905 | 830 CONTINUE ! ajustement proprement dit |
---|
| 1906 | v_cptj(k1) = 0.0 |
---|
| 1907 | zdp = paprs(i, k1) - paprs(i, k1+1) |
---|
| 1908 | v_cptjk1 = ((1.0+v_qsd(i,k1))*(v_cptt(i,k1)+v_cptj(k1))+rlvtt*(local_q(i, & |
---|
| 1909 | k1)-v_qs(i,k1)))*zdp |
---|
| 1910 | v_ssig = zdp*(1.0+v_qsd(i,k1)) |
---|
| 1911 | |
---|
| 1912 | k1p = k1 + 1 |
---|
| 1913 | DO k = k1p, k2 |
---|
| 1914 | zdp = paprs(i, k) - paprs(i, k+1) |
---|
| 1915 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i, k) |
---|
| 1916 | v_cptjk1 = v_cptjk1 + zdp*((1.0+v_qsd(i,k))*(v_cptt(i, & |
---|
| 1917 | k)+v_cptj(k))+rlvtt*(local_q(i,k)-v_qs(i,k))) |
---|
| 1918 | v_ssig = v_ssig + zdp*(1.0+v_qsd(i,k)) |
---|
| 1919 | END DO |
---|
| 1920 | |
---|
| 1921 | DO k = k1, k2 |
---|
| 1922 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
---|
| 1923 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i, k) |
---|
| 1924 | new_qb(k) = v_qs(i, k) + v_qsd(i, k)*cp_delta_t(k)/rlvtt |
---|
| 1925 | local_q(i, k) = new_qb(k) |
---|
| 1926 | local_t(i, k) = cp_new_t(k)/rcpd |
---|
| 1927 | END DO |
---|
| 1928 | |
---|
| 1929 | ! --------------------------------------------------- sondage vers le bas |
---|
| 1930 | ! -- on redefinit les variables prognostiques dans |
---|
| 1931 | ! -- la colonne qui vient d'etre ajustee |
---|
| 1932 | |
---|
| 1933 | DO k = k1, k2 |
---|
| 1934 | v_cptt(i, k) = rcpd*local_t(i, k) |
---|
| 1935 | v_t = local_t(i, k) |
---|
| 1936 | v_p = pplay(i, k) |
---|
| 1937 | |
---|
| 1938 | IF (thermcep) THEN |
---|
| 1939 | zdelta = max(0., sign(1.,rtt-v_t)) |
---|
| 1940 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 1941 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*local_q(i,k)) |
---|
| 1942 | v_qs(i, k) = r2es*foeew(v_t, zdelta)/v_p |
---|
| 1943 | v_qs(i, k) = min(0.5, v_qs(i,k)) |
---|
| 1944 | zcor = 1./(1.-retv*v_qs(i,k)) |
---|
| 1945 | v_qs(i, k) = v_qs(i, k)*zcor |
---|
| 1946 | v_qsd(i, k) = foede(v_t, zdelta, zcvm5, v_qs(i,k), zcor) |
---|
| 1947 | ELSE |
---|
| 1948 | IF (v_t<t_coup) THEN |
---|
| 1949 | v_qs(i, k) = qsats(v_t)/v_p |
---|
| 1950 | v_qsd(i, k) = dqsats(v_t, v_qs(i,k)) |
---|
| 1951 | ELSE |
---|
| 1952 | v_qs(i, k) = qsatl(v_t)/v_p |
---|
| 1953 | v_qsd(i, k) = dqsatl(v_t, v_qs(i,k)) |
---|
| 1954 | END IF |
---|
| 1955 | END IF |
---|
| 1956 | END DO |
---|
| 1957 | DO k = 2, klev |
---|
| 1958 | zdpm = paprs(i, k-1) - paprs(i, k) |
---|
| 1959 | zdp = paprs(i, k) - paprs(i, k+1) |
---|
| 1960 | gamcpdz(i, k) = ((rd/rcpd/(zdpm+zdp)*(v_cptt(i,k-1)*zdpm+ & |
---|
| 1961 | v_cptt(i,k)*zdp)+rlvtt/(zdpm+zdp)*(v_qs(i,k-1)*zdpm+ & |
---|
| 1962 | v_qs(i,k)*zdp))*(pplay(i,k-1)-pplay(i,k))/paprs(i,k))/(1.0+(v_qsd(i, & |
---|
| 1963 | k-1)*zdpm+v_qsd(i,k)*zdp)/(zdpm+zdp)) |
---|
| 1964 | END DO |
---|
| 1965 | |
---|
| 1966 | ! Verifier si l'on peut etendre la colonne vers le bas |
---|
| 1967 | |
---|
| 1968 | IF (k1==1) GO TO 841 ! extension echouee |
---|
| 1969 | zflo = v_cptt(i, k1-1) - v_cptt(i, k1) - gamcpdz(i, k1) |
---|
| 1970 | zsat = (local_q(i,k1-1)-v_qs(i,k1-1))*(paprs(i,k1-1)-paprs(i,k1)) + & |
---|
| 1971 | (local_q(i,k1)-v_qs(i,k1))*(paprs(i,k1)-paprs(i,k1+1)) |
---|
| 1972 | IF (zflo<=0.0 .OR. zsat<=0.0) GO TO 841 ! extension echouee |
---|
| 1973 | |
---|
| 1974 | 840 CONTINUE |
---|
| 1975 | k1 = k1 - 1 |
---|
| 1976 | IF (k1==1) GO TO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 1977 | zsat = zsat + (local_q(i,k1-1)-v_qs(i,k1-1))*(paprs(i,k1-1)-paprs(i,k1)) |
---|
| 1978 | zflo = v_cptt(i, k1-1) - v_cptt(i, k1) - gamcpdz(i, k1) |
---|
| 1979 | IF (zflo>0.0 .AND. zsat>0.0) THEN |
---|
| 1980 | GO TO 840 |
---|
| 1981 | ELSE |
---|
| 1982 | GO TO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 1983 | END IF |
---|
| 1984 | 841 CONTINUE |
---|
| 1985 | |
---|
| 1986 | GO TO 810 ! chercher d'autres blocks en haut |
---|
| 1987 | |
---|
| 1988 | 9999 END DO ! boucle sur tous les points |
---|
| 1989 | ! ----------------------------------------------------------------------- |
---|
| 1990 | |
---|
| 1991 | ! Determiner la fraction nuageuse (hypothese: la nebulosite a lieu |
---|
| 1992 | ! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement): |
---|
| 1993 | |
---|
| 1994 | DO k = 1, klev |
---|
| 1995 | DO i = 1, klon |
---|
| 1996 | IF (itest(i)) THEN |
---|
| 1997 | delta_q(i, k) = local_q(i, k) - q(i, k) |
---|
| 1998 | IF (delta_q(i,k)<0.) rneb(i, k) = 1.0 |
---|
| 1999 | END IF |
---|
| 2000 | END DO |
---|
| 2001 | END DO |
---|
| 2002 | |
---|
| 2003 | ! Distribuer l'eau condensee en eau liquide nuageuse (hypothese: |
---|
| 2004 | ! l'eau liquide est distribuee aux endroits ou la vapeur d'eau |
---|
| 2005 | ! diminue et d'une maniere proportionnelle a cet diminution): |
---|
| 2006 | |
---|
| 2007 | DO i = 1, klon |
---|
| 2008 | IF (itest(i)) THEN |
---|
| 2009 | zq1(i) = 0.0 |
---|
| 2010 | zq2(i) = 0.0 |
---|
| 2011 | END IF |
---|
| 2012 | END DO |
---|
| 2013 | DO k = 1, klev |
---|
| 2014 | DO i = 1, klon |
---|
| 2015 | IF (itest(i)) THEN |
---|
| 2016 | zdp = paprs(i, k) - paprs(i, k+1) |
---|
| 2017 | zq1(i) = zq1(i) - delta_q(i, k)*zdp |
---|
| 2018 | zq2(i) = zq2(i) - min(0.0, delta_q(i,k))*zdp |
---|
| 2019 | END IF |
---|
| 2020 | END DO |
---|
| 2021 | END DO |
---|
| 2022 | DO k = 1, klev |
---|
| 2023 | DO i = 1, klon |
---|
| 2024 | IF (itest(i)) THEN |
---|
| 2025 | IF (zq2(i)/=0.0) d_ql(i, k) = -min(0.0, delta_q(i,k))*zq1(i)/zq2(i) |
---|
| 2026 | END IF |
---|
| 2027 | END DO |
---|
| 2028 | END DO |
---|
| 2029 | |
---|
| 2030 | DO k = 1, klev |
---|
| 2031 | DO i = 1, klon |
---|
| 2032 | local_q(i, k) = max(local_q(i,k), seuil_vap) |
---|
| 2033 | END DO |
---|
| 2034 | END DO |
---|
| 2035 | |
---|
| 2036 | DO k = 1, klev |
---|
| 2037 | DO i = 1, klon |
---|
| 2038 | d_t(i, k) = local_t(i, k) - t(i, k) |
---|
| 2039 | d_q(i, k) = local_q(i, k) - q(i, k) |
---|
| 2040 | END DO |
---|
| 2041 | END DO |
---|
| 2042 | |
---|
| 2043 | RETURN |
---|
| 2044 | END SUBROUTINE fiajh |
---|
| 2045 | SUBROUTINE fiajc(dtime, paprs, pplay, t, q, conv_q, d_t, d_q, d_ql, rneb, & |
---|
| 2046 | rain, snow, ibas, itop) |
---|
| 2047 | USE dimphy |
---|
| 2048 | IMPLICIT NONE |
---|
| 2049 | |
---|
| 2050 | include "YOMCST.h" |
---|
| 2051 | |
---|
| 2052 | ! Options: |
---|
| 2053 | |
---|
| 2054 | INTEGER plb ! niveau de depart pour la convection |
---|
| 2055 | PARAMETER (plb=4) |
---|
| 2056 | |
---|
| 2057 | ! Mystere: cette option n'est pas innocente pour les resultats ! |
---|
| 2058 | ! Qui peut resoudre ce mystere ? (Z.X.Li mars 1995) |
---|
| 2059 | LOGICAL vector ! calcul vectorise |
---|
| 2060 | PARAMETER (vector=.FALSE.) |
---|
| 2061 | |
---|
| 2062 | REAL t_coup |
---|
| 2063 | PARAMETER (t_coup=234.0) |
---|
| 2064 | |
---|
| 2065 | ! Arguments: |
---|
| 2066 | |
---|
| 2067 | REAL q(klon, klev) ! humidite specifique (kg/kg) |
---|
| 2068 | REAL t(klon, klev) ! temperature (K) |
---|
| 2069 | REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) |
---|
| 2070 | REAL pplay(klon, klev) ! pression au milieu de couche (Pa) |
---|
| 2071 | REAL dtime ! intervalle du temps (s) |
---|
| 2072 | REAL conv_q(klon, klev) ! taux de convergence de l'humidite |
---|
| 2073 | REAL rneb(klon, klev) ! fraction nuageuse |
---|
| 2074 | REAL d_q(klon, klev) ! incrementaion pour la vapeur d'eau |
---|
| 2075 | REAL d_ql(klon, klev) ! incrementation pour l'eau liquide |
---|
| 2076 | REAL d_t(klon, klev) ! incrementation pour la temperature |
---|
| 2077 | REAL rain(klon) ! variable non-utilisee |
---|
| 2078 | REAL snow(klon) ! variable non-utilisee |
---|
| 2079 | INTEGER itop(klon) ! variable non-utilisee |
---|
| 2080 | INTEGER ibas(klon) ! variable non-utilisee |
---|
| 2081 | |
---|
| 2082 | INTEGER kh(klon), i, k |
---|
| 2083 | LOGICAL nuage(klon), test(klon, klev) |
---|
| 2084 | REAL zconv(klon), zdeh(klon, klev), zvirt(klon) |
---|
| 2085 | REAL zdqs(klon, klev), zqs(klon, klev) |
---|
| 2086 | REAL ztt, zvar, zfrac(klon) |
---|
| 2087 | REAL zq1(klon), zq2(klon) |
---|
| 2088 | REAL zdelta, zcor, zcvm5 |
---|
| 2089 | |
---|
| 2090 | include "YOETHF.h" |
---|
| 2091 | include "FCTTRE.h" |
---|
| 2092 | |
---|
| 2093 | ! Initialiser les sorties: |
---|
| 2094 | |
---|
| 2095 | DO k = 1, klev |
---|
| 2096 | DO i = 1, klon |
---|
| 2097 | rneb(i, k) = 0.0 |
---|
| 2098 | d_ql(i, k) = 0.0 |
---|
| 2099 | d_t(i, k) = 0.0 |
---|
| 2100 | d_q(i, k) = 0.0 |
---|
| 2101 | END DO |
---|
| 2102 | END DO |
---|
| 2103 | DO i = 1, klon |
---|
| 2104 | itop(i) = 0 |
---|
| 2105 | ibas(i) = 0 |
---|
| 2106 | rain(i) = 0.0 |
---|
| 2107 | snow(i) = 0.0 |
---|
| 2108 | END DO |
---|
| 2109 | |
---|
| 2110 | ! Calculer Qs et L/Cp * dQs/dT: |
---|
| 2111 | |
---|
| 2112 | DO k = 1, klev |
---|
| 2113 | DO i = 1, klon |
---|
| 2114 | ztt = t(i, k) |
---|
| 2115 | IF (thermcep) THEN |
---|
| 2116 | zdelta = max(0., sign(1.,rtt-ztt)) |
---|
| 2117 | zcvm5 = r5les*rlvtt*(1.-zdelta) + zdelta*r5ies*rlstt |
---|
| 2118 | zcvm5 = zcvm5/rcpd/(1.0+rvtmp2*q(i,k)) |
---|
| 2119 | zqs(i, k) = r2es*foeew(ztt, zdelta)/pplay(i, k) |
---|
| 2120 | zqs(i, k) = min(0.5, zqs(i,k)) |
---|
| 2121 | zcor = 1./(1.-retv*zqs(i,k)) |
---|
| 2122 | zqs(i, k) = zqs(i, k)*zcor |
---|
| 2123 | zdqs(i, k) = foede(ztt, zdelta, zcvm5, zqs(i,k), zcor) |
---|
| 2124 | ELSE |
---|
| 2125 | IF (ztt<t_coup) THEN |
---|
| 2126 | zqs(i, k) = qsats(ztt)/pplay(i, k) |
---|
| 2127 | zdqs(i, k) = dqsats(ztt, zqs(i,k)) |
---|
| 2128 | ELSE |
---|
| 2129 | zqs(i, k) = qsatl(ztt)/pplay(i, k) |
---|
| 2130 | zdqs(i, k) = dqsatl(ztt, zqs(i,k)) |
---|
| 2131 | END IF |
---|
| 2132 | END IF |
---|
| 2133 | END DO |
---|
| 2134 | END DO |
---|
| 2135 | |
---|
| 2136 | ! Determiner la difference de l'energie totale saturee: |
---|
| 2137 | |
---|
| 2138 | DO i = 1, klon |
---|
| 2139 | k = plb |
---|
| 2140 | zdeh(i, k) = rcpd*(t(i,k-1)-t(i,k)) - rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k & |
---|
| 2141 | )*(pplay(i,k-1)-pplay(i,k)) + rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 2142 | zdeh(i, k) = zdeh(i, k)*0.5 ! on prend la moitie |
---|
| 2143 | END DO |
---|
| 2144 | DO k = plb + 1, klev |
---|
| 2145 | DO i = 1, klon |
---|
| 2146 | zdeh(i, k) = zdeh(i, k-1) + rcpd*(t(i,k-1)-t(i,k)) - & |
---|
| 2147 | rd*0.5*(t(i,k-1)+t(i,k))/paprs(i, k)*(pplay(i,k-1)-pplay(i,k)) + & |
---|
| 2148 | rlvtt*(zqs(i,k-1)-zqs(i,k)) |
---|
| 2149 | END DO |
---|
| 2150 | END DO |
---|
| 2151 | |
---|
| 2152 | ! Determiner le sommet du nuage selon l'instabilite |
---|
| 2153 | ! Calculer les convergences d'humidite (reelle et virtuelle) |
---|
| 2154 | |
---|
| 2155 | DO i = 1, klon |
---|
| 2156 | nuage(i) = .TRUE. |
---|
| 2157 | zconv(i) = 0.0 |
---|
| 2158 | zvirt(i) = 0.0 |
---|
| 2159 | kh(i) = -999 |
---|
| 2160 | END DO |
---|
| 2161 | DO k = plb, klev |
---|
| 2162 | DO i = 1, klon |
---|
| 2163 | nuage(i) = nuage(i) .AND. zdeh(i, k) > 0.0 |
---|
| 2164 | IF (nuage(i)) THEN |
---|
| 2165 | kh(i) = k |
---|
| 2166 | zconv(i) = zconv(i) + conv_q(i, k)*dtime*(paprs(i,k)-paprs(i,k+1)) |
---|
| 2167 | zvirt(i) = zvirt(i) + (zdeh(i,k)/rlvtt+zqs(i,k)-q(i,k))*(paprs(i,k)- & |
---|
| 2168 | paprs(i,k+1)) |
---|
| 2169 | END IF |
---|
| 2170 | END DO |
---|
| 2171 | END DO |
---|
| 2172 | |
---|
| 2173 | IF (vector) THEN |
---|
| 2174 | |
---|
| 2175 | |
---|
| 2176 | DO k = plb, klev |
---|
| 2177 | DO i = 1, klon |
---|
| 2178 | IF (k<=kh(i) .AND. kh(i)>plb .AND. zconv(i)>0.0) THEN |
---|
| 2179 | test(i, k) = .TRUE. |
---|
| 2180 | zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
---|
| 2181 | ELSE |
---|
| 2182 | test(i, k) = .FALSE. |
---|
| 2183 | END IF |
---|
| 2184 | END DO |
---|
| 2185 | END DO |
---|
| 2186 | |
---|
| 2187 | DO k = plb, klev |
---|
| 2188 | DO i = 1, klon |
---|
| 2189 | IF (test(i,k)) THEN |
---|
| 2190 | zvar = zdeh(i, k)/(1.0+zdqs(i,k)) |
---|
| 2191 | d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
---|
| 2192 | conv_q(i, k)*dtime |
---|
| 2193 | d_t(i, k) = zvar*zfrac(i)/rcpd |
---|
| 2194 | END IF |
---|
| 2195 | END DO |
---|
| 2196 | END DO |
---|
| 2197 | |
---|
| 2198 | DO i = 1, klon |
---|
| 2199 | zq1(i) = 0.0 |
---|
| 2200 | zq2(i) = 0.0 |
---|
| 2201 | END DO |
---|
| 2202 | DO k = plb, klev |
---|
| 2203 | DO i = 1, klon |
---|
| 2204 | IF (test(i,k)) THEN |
---|
| 2205 | IF (d_q(i,k)<0.0) rneb(i, k) = zfrac(i) |
---|
| 2206 | zq1(i) = zq1(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1)) |
---|
| 2207 | zq2(i) = zq2(i) - min(0.0, d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) |
---|
| 2208 | END IF |
---|
| 2209 | END DO |
---|
| 2210 | END DO |
---|
| 2211 | |
---|
| 2212 | DO k = plb, klev |
---|
| 2213 | DO i = 1, klon |
---|
| 2214 | IF (test(i,k)) THEN |
---|
| 2215 | IF (zq2(i)/=0.) d_ql(i, k) = -min(0.0, d_q(i,k))*zq1(i)/zq2(i) |
---|
| 2216 | END IF |
---|
| 2217 | END DO |
---|
| 2218 | END DO |
---|
| 2219 | |
---|
| 2220 | ELSE ! (.NOT. vector) |
---|
| 2221 | |
---|
| 2222 | DO i = 1, klon |
---|
| 2223 | IF (kh(i)>plb .AND. zconv(i)>0.0) THEN |
---|
| 2224 | ! cc IF (kh(i).LE.plb) GOTO 999 ! il n'y a pas d'instabilite |
---|
| 2225 | ! cc IF (zconv(i).LE.0.0) GOTO 999 ! convergence insuffisante |
---|
| 2226 | zfrac(i) = max(0.0, min(zconv(i)/zvirt(i),1.0)) |
---|
| 2227 | DO k = plb, kh(i) |
---|
| 2228 | zvar = zdeh(i, k)/(1.0+zdqs(i,k)) |
---|
| 2229 | d_q(i, k) = (zvar*zdqs(i,k)/rlvtt+zqs(i,k)-q(i,k))*zfrac(i) - & |
---|
| 2230 | conv_q(i, k)*dtime |
---|
| 2231 | d_t(i, k) = zvar*zfrac(i)/rcpd |
---|
| 2232 | END DO |
---|
| 2233 | |
---|
| 2234 | zq1(i) = 0.0 |
---|
| 2235 | zq2(i) = 0.0 |
---|
| 2236 | DO k = plb, kh(i) |
---|
| 2237 | IF (d_q(i,k)<0.0) rneb(i, k) = zfrac(i) |
---|
| 2238 | zq1(i) = zq1(i) - d_q(i, k)*(paprs(i,k)-paprs(i,k+1)) |
---|
| 2239 | zq2(i) = zq2(i) - min(0.0, d_q(i,k))*(paprs(i,k)-paprs(i,k+1)) |
---|
| 2240 | END DO |
---|
| 2241 | DO k = plb, kh(i) |
---|
| 2242 | IF (zq2(i)/=0.) d_ql(i, k) = -min(0.0, d_q(i,k))*zq1(i)/zq2(i) |
---|
| 2243 | END DO |
---|
| 2244 | END IF |
---|
| 2245 | END DO |
---|
| 2246 | |
---|
| 2247 | END IF ! fin de teste sur vector |
---|
| 2248 | |
---|
| 2249 | RETURN |
---|
| 2250 | END SUBROUTINE fiajc |
---|