[3331] | 1 | SUBROUTINE cloudth(ngrid,klev,ind2, & |
---|
| 2 | & ztv,po,zqta,fraca, & |
---|
| 3 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 4 | & ratqs,zqs,t) |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | IMPLICIT NONE |
---|
| 8 | |
---|
| 9 | |
---|
| 10 | !=========================================================================== |
---|
| 11 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 12 | ! Date : 25 Mai 2010 |
---|
| 13 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 14 | !=========================================================================== |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #include "YOMCST.h" |
---|
| 18 | #include "YOETHF.h" |
---|
| 19 | #include "FCTTRE.h" |
---|
| 20 | #include "thermcell.h" |
---|
| 21 | #include "nuage.h" |
---|
| 22 | |
---|
| 23 | INTEGER itap,ind1,ind2 |
---|
| 24 | INTEGER ngrid,klev,klon,l,ig |
---|
| 25 | |
---|
| 26 | REAL ztv(ngrid,klev) |
---|
| 27 | REAL po(ngrid) |
---|
| 28 | REAL zqenv(ngrid) |
---|
| 29 | REAL zqta(ngrid,klev) |
---|
| 30 | |
---|
| 31 | REAL fraca(ngrid,klev+1) |
---|
| 32 | REAL zpspsk(ngrid,klev) |
---|
| 33 | REAL paprs(ngrid,klev+1) |
---|
| 34 | REAL ztla(ngrid,klev) |
---|
| 35 | REAL zthl(ngrid,klev) |
---|
| 36 | |
---|
| 37 | REAL zqsatth(ngrid,klev) |
---|
| 38 | REAL zqsatenv(ngrid,klev) |
---|
| 39 | |
---|
| 40 | |
---|
| 41 | REAL sigma1(ngrid,klev) |
---|
| 42 | REAL sigma2(ngrid,klev) |
---|
| 43 | REAL qlth(ngrid,klev) |
---|
| 44 | REAL qlenv(ngrid,klev) |
---|
| 45 | REAL qltot(ngrid,klev) |
---|
| 46 | REAL cth(ngrid,klev) |
---|
| 47 | REAL cenv(ngrid,klev) |
---|
| 48 | REAL ctot(ngrid,klev) |
---|
| 49 | REAL rneb(ngrid,klev) |
---|
| 50 | REAL t(ngrid,klev) |
---|
| 51 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 52 | REAL rdd,cppd,Lv |
---|
| 53 | REAL alth,alenv,ath,aenv |
---|
| 54 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 55 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 56 | REAL qlbef |
---|
| 57 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 58 | |
---|
| 59 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 60 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 61 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 62 | REAL erf |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 68 | ! Gestion de deux versions de cloudth |
---|
| 69 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 70 | |
---|
| 71 | IF (iflag_cloudth_vert.GE.1) THEN |
---|
| 72 | CALL cloudth_vert(ngrid,klev,ind2, & |
---|
| 73 | & ztv,po,zqta,fraca, & |
---|
| 74 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 75 | & ratqs,zqs,t) |
---|
| 76 | RETURN |
---|
| 77 | ENDIF |
---|
| 78 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | !------------------------------------------------------------------------------- |
---|
| 82 | ! Initialisation des variables r?elles |
---|
| 83 | !------------------------------------------------------------------------------- |
---|
| 84 | sigma1(:,:)=0. |
---|
| 85 | sigma2(:,:)=0. |
---|
| 86 | qlth(:,:)=0. |
---|
| 87 | qlenv(:,:)=0. |
---|
| 88 | qltot(:,:)=0. |
---|
| 89 | rneb(:,:)=0. |
---|
| 90 | qcloud(:)=0. |
---|
| 91 | cth(:,:)=0. |
---|
| 92 | cenv(:,:)=0. |
---|
| 93 | ctot(:,:)=0. |
---|
| 94 | qsatmmussig1=0. |
---|
| 95 | qsatmmussig2=0. |
---|
| 96 | rdd=287.04 |
---|
| 97 | cppd=1005.7 |
---|
| 98 | pi=3.14159 |
---|
| 99 | Lv=2.5e6 |
---|
| 100 | sqrt2pi=sqrt(2.*pi) |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | !------------------------------------------------------------------------------- |
---|
| 105 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 106 | !------------------------------------------------------------------------------- |
---|
| 107 | do ind1=1,ngrid |
---|
| 108 | |
---|
| 109 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 110 | |
---|
| 111 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | ! zqenv(ind1)=po(ind1) |
---|
| 115 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 116 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 117 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 118 | qsatbef=MIN(0.5,qsatbef) |
---|
| 119 | zcor=1./(1.-retv*qsatbef) |
---|
| 120 | qsatbef=qsatbef*zcor |
---|
| 121 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | |
---|
| 126 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 127 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 128 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 134 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 135 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 136 | qsatbef=MIN(0.5,qsatbef) |
---|
| 137 | zcor=1./(1.-retv*qsatbef) |
---|
| 138 | qsatbef=qsatbef*zcor |
---|
| 139 | zqsatth(ind1,ind2)=qsatbef |
---|
| 140 | |
---|
| 141 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 142 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 143 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | !------------------------------------------------------------------------------ |
---|
| 148 | ! Calcul des ?cart-types pour s |
---|
| 149 | !------------------------------------------------------------------------------ |
---|
| 150 | |
---|
| 151 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 152 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.002*zqta(ind1,ind2) |
---|
| 153 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 154 | ! ratqs(ind1,ind2)=0.002 |
---|
| 155 | ! else |
---|
| 156 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 157 | ! endif |
---|
| 158 | sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 159 | sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 160 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 161 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 162 | |
---|
| 163 | !------------------------------------------------------------------------------ |
---|
| 164 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 165 | !------------------------------------------------------------------------------ |
---|
| 166 | sqrt2pi=sqrt(2.*pi) |
---|
| 167 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 168 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 169 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 170 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 171 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 172 | |
---|
| 173 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 174 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 175 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 176 | |
---|
| 177 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 178 | if (ctot(ind1,ind2).lt.1.e-10) then |
---|
| 179 | ctot(ind1,ind2)=0. |
---|
| 180 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 181 | |
---|
| 182 | else |
---|
| 183 | |
---|
| 184 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 185 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 186 | |
---|
| 187 | endif |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | else ! gaussienne environnement seule |
---|
| 194 | |
---|
| 195 | zqenv(ind1)=po(ind1) |
---|
| 196 | Tbef=t(ind1,ind2) |
---|
| 197 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 198 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 199 | qsatbef=MIN(0.5,qsatbef) |
---|
| 200 | zcor=1./(1.-retv*qsatbef) |
---|
| 201 | qsatbef=qsatbef*zcor |
---|
| 202 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 206 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 207 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 208 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 209 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 213 | |
---|
| 214 | sqrt2pi=sqrt(2.*pi) |
---|
| 215 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 216 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 217 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 218 | |
---|
| 219 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 220 | ctot(ind1,ind2)=0. |
---|
| 221 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 222 | |
---|
| 223 | else |
---|
| 224 | |
---|
| 225 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 226 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 227 | |
---|
| 228 | endif |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | endif |
---|
| 236 | enddo |
---|
| 237 | |
---|
| 238 | return |
---|
| 239 | end |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | !=========================================================================== |
---|
| 244 | SUBROUTINE cloudth_vert(ngrid,klev,ind2, & |
---|
| 245 | & ztv,po,zqta,fraca, & |
---|
| 246 | & qcloud,ctot,zpspsk,paprs,ztla,zthl, & |
---|
| 247 | & ratqs,zqs,t) |
---|
| 248 | |
---|
| 249 | !=========================================================================== |
---|
| 250 | ! Auteur : Arnaud Octavio Jam (LMD/CNRS) |
---|
| 251 | ! Date : 25 Mai 2010 |
---|
| 252 | ! Objet : calcule les valeurs de qc et rneb dans les thermiques |
---|
| 253 | !=========================================================================== |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 257 | |
---|
| 258 | IMPLICIT NONE |
---|
| 259 | |
---|
| 260 | #include "YOMCST.h" |
---|
| 261 | #include "YOETHF.h" |
---|
| 262 | #include "FCTTRE.h" |
---|
| 263 | #include "thermcell.h" |
---|
| 264 | #include "nuage.h" |
---|
| 265 | |
---|
| 266 | INTEGER itap,ind1,ind2 |
---|
| 267 | INTEGER ngrid,klev,klon,l,ig |
---|
| 268 | |
---|
| 269 | REAL ztv(ngrid,klev) |
---|
| 270 | REAL po(ngrid) |
---|
| 271 | REAL zqenv(ngrid) |
---|
| 272 | REAL zqta(ngrid,klev) |
---|
| 273 | |
---|
| 274 | REAL fraca(ngrid,klev+1) |
---|
| 275 | REAL zpspsk(ngrid,klev) |
---|
| 276 | REAL paprs(ngrid,klev+1) |
---|
| 277 | REAL ztla(ngrid,klev) |
---|
| 278 | REAL zthl(ngrid,klev) |
---|
| 279 | |
---|
| 280 | REAL zqsatth(ngrid,klev) |
---|
| 281 | REAL zqsatenv(ngrid,klev) |
---|
| 282 | |
---|
| 283 | |
---|
| 284 | REAL sigma1(ngrid,klev) |
---|
| 285 | REAL sigma2(ngrid,klev) |
---|
| 286 | REAL qlth(ngrid,klev) |
---|
| 287 | REAL qlenv(ngrid,klev) |
---|
| 288 | REAL qltot(ngrid,klev) |
---|
| 289 | REAL cth(ngrid,klev) |
---|
| 290 | REAL cenv(ngrid,klev) |
---|
| 291 | REAL ctot(ngrid,klev) |
---|
| 292 | REAL rneb(ngrid,klev) |
---|
| 293 | REAL t(ngrid,klev) |
---|
| 294 | REAL qsatmmussig1,qsatmmussig2,sqrt2pi,pi |
---|
| 295 | REAL rdd,cppd,Lv,sqrt2,sqrtpi |
---|
| 296 | REAL alth,alenv,ath,aenv |
---|
| 297 | REAL sth,senv,sigma1s,sigma2s,xth,xenv |
---|
| 298 | REAL xth1,xth2,xenv1,xenv2,deltasth, deltasenv |
---|
| 299 | REAL IntJ,IntI1,IntI2,IntI3,coeffqlenv,coeffqlth |
---|
| 300 | REAL Tbef,zdelta,qsatbef,zcor |
---|
| 301 | REAL qlbef |
---|
| 302 | REAL ratqs(ngrid,klev) ! determine la largeur de distribution de vapeur |
---|
| 303 | ! Change the width of the PDF used for vertical subgrid scale heterogeneity |
---|
| 304 | ! (J Jouhaud, JL Dufresne, JB Madeleine) |
---|
| 305 | REAL,SAVE :: vert_alpha |
---|
| 306 | LOGICAL, SAVE :: firstcall = .TRUE. |
---|
| 307 | |
---|
| 308 | REAL zpdf_sig(ngrid),zpdf_k(ngrid),zpdf_delta(ngrid) |
---|
| 309 | REAL zpdf_a(ngrid),zpdf_b(ngrid),zpdf_e1(ngrid),zpdf_e2(ngrid) |
---|
| 310 | REAL zqs(ngrid), qcloud(ngrid) |
---|
| 311 | REAL erf |
---|
| 312 | |
---|
| 313 | !------------------------------------------------------------------------------ |
---|
| 314 | ! Initialisation des variables r?elles |
---|
| 315 | !------------------------------------------------------------------------------ |
---|
| 316 | sigma1(:,:)=0. |
---|
| 317 | sigma2(:,:)=0. |
---|
| 318 | qlth(:,:)=0. |
---|
| 319 | qlenv(:,:)=0. |
---|
| 320 | qltot(:,:)=0. |
---|
| 321 | rneb(:,:)=0. |
---|
| 322 | qcloud(:)=0. |
---|
| 323 | cth(:,:)=0. |
---|
| 324 | cenv(:,:)=0. |
---|
| 325 | ctot(:,:)=0. |
---|
| 326 | qsatmmussig1=0. |
---|
| 327 | qsatmmussig2=0. |
---|
| 328 | rdd=287.04 |
---|
| 329 | cppd=1005.7 |
---|
| 330 | pi=3.14159 |
---|
| 331 | Lv=2.5e6 |
---|
| 332 | sqrt2pi=sqrt(2.*pi) |
---|
| 333 | sqrt2=sqrt(2.) |
---|
| 334 | sqrtpi=sqrt(pi) |
---|
| 335 | |
---|
| 336 | IF (firstcall) THEN |
---|
| 337 | vert_alpha=0.5 |
---|
| 338 | CALL getin_p('cloudth_vert_alpha',vert_alpha) |
---|
| 339 | WRITE(*,*) 'cloudth_vert_alpha = ', vert_alpha |
---|
| 340 | firstcall=.FALSE. |
---|
| 341 | ENDIF |
---|
| 342 | |
---|
| 343 | !------------------------------------------------------------------------------- |
---|
| 344 | ! Calcul de la fraction du thermique et des ?cart-types des distributions |
---|
| 345 | !------------------------------------------------------------------------------- |
---|
| 346 | do ind1=1,ngrid |
---|
| 347 | |
---|
| 348 | if ((ztv(ind1,1).gt.ztv(ind1,2)).and.(fraca(ind1,ind2).gt.1.e-10)) then |
---|
| 349 | |
---|
| 350 | zqenv(ind1)=(po(ind1)-fraca(ind1,ind2)*zqta(ind1,ind2))/(1.-fraca(ind1,ind2)) |
---|
| 351 | |
---|
| 352 | |
---|
| 353 | ! zqenv(ind1)=po(ind1) |
---|
| 354 | Tbef=zthl(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 355 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 356 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 357 | qsatbef=MIN(0.5,qsatbef) |
---|
| 358 | zcor=1./(1.-retv*qsatbef) |
---|
| 359 | qsatbef=qsatbef*zcor |
---|
| 360 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 366 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 367 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | Tbef=ztla(ind1,ind2)*zpspsk(ind1,ind2) |
---|
| 373 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 374 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 375 | qsatbef=MIN(0.5,qsatbef) |
---|
| 376 | zcor=1./(1.-retv*qsatbef) |
---|
| 377 | qsatbef=qsatbef*zcor |
---|
| 378 | zqsatth(ind1,ind2)=qsatbef |
---|
| 379 | |
---|
| 380 | alth=(0.622*Lv*zqsatth(ind1,ind2))/(rdd*ztla(ind1,ind2)**2) |
---|
| 381 | ath=1./(1.+(alth*Lv/cppd)) |
---|
| 382 | sth=ath*(zqta(ind1,ind2)-zqsatth(ind1,ind2)) |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | |
---|
| 386 | !------------------------------------------------------------------------------ |
---|
| 387 | ! Calcul des ?cart-types pour s |
---|
| 388 | !------------------------------------------------------------------------------ |
---|
| 389 | |
---|
| 390 | sigma1s=(0.92**0.5)*(fraca(ind1,ind2)**0.5)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+ratqs(ind1,ind2)*po(ind1) |
---|
| 391 | sigma2s=0.09*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.5+0.002*zqta(ind1,ind2) |
---|
| 392 | ! if (paprs(ind1,ind2).gt.90000) then |
---|
| 393 | ! ratqs(ind1,ind2)=0.002 |
---|
| 394 | ! else |
---|
| 395 | ! ratqs(ind1,ind2)=0.002+0.0*(90000-paprs(ind1,ind2))/20000 |
---|
| 396 | ! endif |
---|
| 397 | ! sigma1s=(1.1**0.5)*(fraca(ind1,ind2)**0.6)/(1-fraca(ind1,ind2))*((sth-senv)**2)**0.5+0.002*po(ind1) |
---|
| 398 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.01)**0.4+0.002*zqta(ind1,ind2) |
---|
| 399 | ! sigma1s=ratqs(ind1,ind2)*po(ind1) |
---|
| 400 | ! sigma2s=0.11*((sth-senv)**2)**0.5/(fraca(ind1,ind2)+0.02)**0.4+0.00003 |
---|
| 401 | |
---|
| 402 | !------------------------------------------------------------------------------ |
---|
| 403 | ! Calcul de l'eau condens?e et de la couverture nuageuse |
---|
| 404 | !------------------------------------------------------------------------------ |
---|
| 405 | sqrt2pi=sqrt(2.*pi) |
---|
| 406 | xth=sth/(sqrt(2.)*sigma2s) |
---|
| 407 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 408 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth)) |
---|
| 409 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 410 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 411 | |
---|
| 412 | qlth(ind1,ind2)=sigma2s*((exp(-1.*xth**2)/sqrt2pi)+xth*sqrt(2.)*cth(ind1,ind2)) |
---|
| 413 | qlenv(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 414 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 415 | |
---|
| 416 | IF (iflag_cloudth_vert == 1) THEN |
---|
| 417 | !------------------------------------------------------------------------------- |
---|
| 418 | ! Version 2: Modification selon J.-Louis. On condense ?? partir de qsat-ratqs |
---|
| 419 | !------------------------------------------------------------------------------- |
---|
| 420 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 421 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 422 | deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 423 | deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 424 | ! deltasenv=aenv*0.01*po(ind1) |
---|
| 425 | ! deltasth=ath*0.01*zqta(ind1,ind2) |
---|
| 426 | xenv1=(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 427 | xenv2=(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 428 | xth1=(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 429 | xth2=(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 430 | coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 431 | coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 432 | |
---|
| 433 | cth(ind1,ind2)=0.5*(1.+1.*erf(xth2)) |
---|
| 434 | cenv(ind1,ind2)=0.5*(1.+1.*erf(xenv2)) |
---|
| 435 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 436 | |
---|
| 437 | IntJ=sigma1s*(exp(-1.*xenv1**2)/sqrt2pi)+0.5*senv*(1+erf(xenv1)) |
---|
| 438 | IntI1=coeffqlenv*0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 439 | IntI2=coeffqlenv*xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 440 | IntI3=coeffqlenv*0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 441 | |
---|
| 442 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 443 | ! qlenv(ind1,ind2)=IntJ |
---|
| 444 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | IntJ=sigma2s*(exp(-1.*xth1**2)/sqrt2pi)+0.5*sth*(1+erf(xth1)) |
---|
| 448 | ! IntI1=coeffqlth*((0.5*xth1-xth2)*exp(-1.*xth1**2)+0.5*xth2*exp(-1.*xth2**2)) |
---|
| 449 | ! IntI2=coeffqlth*0.5*sqrtpi*(0.5+xth2**2)*(erf(xth2)-erf(xth1)) |
---|
| 450 | IntI1=coeffqlth*0.5*(0.5*sqrtpi*(erf(xth2)-erf(xth1))+xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 451 | IntI2=coeffqlth*xth2*(exp(-1.*xth2**2)-exp(-1.*xth1**2)) |
---|
| 452 | IntI3=coeffqlth*0.5*sqrtpi*xth2**2*(erf(xth2)-erf(xth1)) |
---|
| 453 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 454 | ! qlth(ind1,ind2)=IntJ |
---|
| 455 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 456 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 457 | |
---|
| 458 | ELSE IF (iflag_cloudth_vert == 2) THEN |
---|
| 459 | |
---|
| 460 | !------------------------------------------------------------------------------- |
---|
| 461 | ! Version 3: Modification Jean Jouhaud. On condense a partir de -delta s |
---|
| 462 | !------------------------------------------------------------------------------- |
---|
| 463 | ! deltasenv=aenv*ratqs(ind1,ind2)*po(ind1) |
---|
| 464 | ! deltasth=ath*ratqs(ind1,ind2)*zqta(ind1,ind2) |
---|
| 465 | ! deltasenv=aenv*ratqs(ind1,ind2)*zqsatenv(ind1,ind2) |
---|
| 466 | ! deltasth=ath*ratqs(ind1,ind2)*zqsatth(ind1,ind2) |
---|
| 467 | deltasenv=aenv*vert_alpha*sigma1s |
---|
| 468 | deltasth=ath*vert_alpha*sigma2s |
---|
| 469 | |
---|
| 470 | xenv1=-(senv+deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 471 | xenv2=-(senv-deltasenv)/(sqrt(2.)*sigma1s) |
---|
| 472 | xth1=-(sth+deltasth)/(sqrt(2.)*sigma2s) |
---|
| 473 | xth2=-(sth-deltasth)/(sqrt(2.)*sigma2s) |
---|
| 474 | ! coeffqlenv=(sigma1s)**2/(2*sqrtpi*deltasenv) |
---|
| 475 | ! coeffqlth=(sigma2s)**2/(2*sqrtpi*deltasth) |
---|
| 476 | |
---|
| 477 | cth(ind1,ind2)=0.5*(1.-1.*erf(xth1)) |
---|
| 478 | cenv(ind1,ind2)=0.5*(1.-1.*erf(xenv1)) |
---|
| 479 | ctot(ind1,ind2)=fraca(ind1,ind2)*cth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*cenv(ind1,ind2) |
---|
| 480 | |
---|
| 481 | IntJ=0.5*senv*(1-erf(xenv2))+(sigma1s/sqrt2pi)*exp(-1.*xenv2**2) |
---|
| 482 | IntI1=(((senv+deltasenv)**2+(sigma1s)**2)/(8*deltasenv))*(erf(xenv2)-erf(xenv1)) |
---|
| 483 | IntI2=(sigma1s**2/(4*deltasenv*sqrtpi))*(xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 484 | IntI3=((sqrt2*sigma1s*(senv+deltasenv))/(4*sqrtpi*deltasenv))*(exp(-1.*xenv1**2)-exp(-1.*xenv2**2)) |
---|
| 485 | |
---|
| 486 | ! IntI1=0.5*(0.5*sqrtpi*(erf(xenv2)-erf(xenv1))+xenv1*exp(-1.*xenv1**2)-xenv2*exp(-1.*xenv2**2)) |
---|
| 487 | ! IntI2=xenv2*(exp(-1.*xenv2**2)-exp(-1.*xenv1**2)) |
---|
| 488 | ! IntI3=0.5*sqrtpi*xenv2**2*(erf(xenv2)-erf(xenv1)) |
---|
| 489 | |
---|
| 490 | qlenv(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 491 | ! qlenv(ind1,ind2)=IntJ |
---|
| 492 | ! print*, qlenv(ind1,ind2),'VERIF EAU' |
---|
| 493 | |
---|
| 494 | IntJ=0.5*sth*(1-erf(xth2))+(sigma2s/sqrt2pi)*exp(-1.*xth2**2) |
---|
| 495 | IntI1=(((sth+deltasth)**2+(sigma2s)**2)/(8*deltasth))*(erf(xth2)-erf(xth1)) |
---|
| 496 | IntI2=(sigma2s**2/(4*deltasth*sqrtpi))*(xth1*exp(-1.*xth1**2)-xth2*exp(-1.*xth2**2)) |
---|
| 497 | IntI3=((sqrt2*sigma2s*(sth+deltasth))/(4*sqrtpi*deltasth))*(exp(-1.*xth1**2)-exp(-1.*xth2**2)) |
---|
| 498 | |
---|
| 499 | qlth(ind1,ind2)=IntJ+IntI1+IntI2+IntI3 |
---|
| 500 | ! qlth(ind1,ind2)=IntJ |
---|
| 501 | ! print*, IntJ,IntI1,IntI2,IntI3,qlth(ind1,ind2),'VERIF EAU2' |
---|
| 502 | qltot(ind1,ind2)=fraca(ind1,ind2)*qlth(ind1,ind2)+(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2) |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | ENDIF ! of if (iflag_cloudth_vert==1 or 2) |
---|
| 508 | |
---|
| 509 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 510 | |
---|
| 511 | if (cenv(ind1,ind2).lt.1.e-10.or.cth(ind1,ind2).lt.1.e-10) then |
---|
| 512 | ctot(ind1,ind2)=0. |
---|
| 513 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 514 | |
---|
| 515 | else |
---|
| 516 | |
---|
| 517 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 518 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqs(ind1) |
---|
| 519 | ! qcloud(ind1)=fraca(ind1,ind2)*qlth(ind1,ind2)/cth(ind1,ind2) & |
---|
| 520 | ! & +(1.-1.*fraca(ind1,ind2))*qlenv(ind1,ind2)/cenv(ind1,ind2)+zqs(ind1) |
---|
| 521 | |
---|
| 522 | endif |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | |
---|
| 526 | ! print*,sth,sigma2s,qlth(ind1,ind2),ctot(ind1,ind2),qltot(ind1,ind2),'verif' |
---|
| 527 | |
---|
| 528 | |
---|
| 529 | else ! gaussienne environnement seule |
---|
| 530 | |
---|
| 531 | zqenv(ind1)=po(ind1) |
---|
| 532 | Tbef=t(ind1,ind2) |
---|
| 533 | zdelta=MAX(0.,SIGN(1.,RTT-Tbef)) |
---|
| 534 | qsatbef= R2ES * FOEEW(Tbef,zdelta)/paprs(ind1,ind2) |
---|
| 535 | qsatbef=MIN(0.5,qsatbef) |
---|
| 536 | zcor=1./(1.-retv*qsatbef) |
---|
| 537 | qsatbef=qsatbef*zcor |
---|
| 538 | zqsatenv(ind1,ind2)=qsatbef |
---|
| 539 | |
---|
| 540 | |
---|
| 541 | ! qlbef=Max(po(ind1)-zqsatenv(ind1,ind2),0.) |
---|
| 542 | zthl(ind1,ind2)=t(ind1,ind2)*(101325/paprs(ind1,ind2))**(rdd/cppd) |
---|
| 543 | alenv=(0.622*Lv*zqsatenv(ind1,ind2))/(rdd*zthl(ind1,ind2)**2) |
---|
| 544 | aenv=1./(1.+(alenv*Lv/cppd)) |
---|
| 545 | senv=aenv*(po(ind1)-zqsatenv(ind1,ind2)) |
---|
| 546 | |
---|
| 547 | |
---|
| 548 | sigma1s=ratqs(ind1,ind2)*zqenv(ind1) |
---|
| 549 | |
---|
| 550 | sqrt2pi=sqrt(2.*pi) |
---|
| 551 | xenv=senv/(sqrt(2.)*sigma1s) |
---|
| 552 | ctot(ind1,ind2)=0.5*(1.+1.*erf(xenv)) |
---|
| 553 | qltot(ind1,ind2)=sigma1s*((exp(-1.*xenv**2)/sqrt2pi)+xenv*sqrt(2.)*cenv(ind1,ind2)) |
---|
| 554 | |
---|
| 555 | if (ctot(ind1,ind2).lt.1.e-3) then |
---|
| 556 | ctot(ind1,ind2)=0. |
---|
| 557 | qcloud(ind1)=zqsatenv(ind1,ind2) |
---|
| 558 | |
---|
| 559 | else |
---|
| 560 | |
---|
| 561 | ctot(ind1,ind2)=ctot(ind1,ind2) |
---|
| 562 | qcloud(ind1)=qltot(ind1,ind2)/ctot(ind1,ind2)+zqsatenv(ind1,ind2) |
---|
| 563 | |
---|
| 564 | endif |
---|
| 565 | |
---|
| 566 | |
---|
| 567 | |
---|
| 568 | |
---|
| 569 | |
---|
| 570 | |
---|
| 571 | endif |
---|
| 572 | enddo |
---|
| 573 | |
---|
| 574 | return |
---|
| 575 | end |
---|