1 | module slopes_m |
---|
2 | |
---|
3 | ! Author: Lionel GUEZ |
---|
4 | |
---|
5 | implicit none |
---|
6 | |
---|
7 | interface slopes |
---|
8 | ! This generic function computes second order slopes with Van |
---|
9 | ! Leer slope-limiting, given cell averages. Reference: Dukowicz, |
---|
10 | ! 1987, SIAM Journal on Scientific and Statistical Computing, 8, |
---|
11 | ! 305. |
---|
12 | |
---|
13 | ! The only difference between the specific functions is the rank |
---|
14 | ! of the first argument and the equal rank of the result. |
---|
15 | |
---|
16 | ! real, intent(in), rank >= 1:: f ! (n, ...) cell averages, n must be >= 1 |
---|
17 | ! real, intent(in):: x(:) ! (n + 1) cell edges |
---|
18 | ! real slopes, same shape as f ! (n, ...) |
---|
19 | |
---|
20 | module procedure slopes1, slopes2, slopes3, slopes4 |
---|
21 | end interface |
---|
22 | |
---|
23 | private |
---|
24 | public slopes |
---|
25 | |
---|
26 | contains |
---|
27 | |
---|
28 | pure function slopes1(f, x) |
---|
29 | |
---|
30 | real, intent(in):: f(:) |
---|
31 | real, intent(in):: x(:) |
---|
32 | real slopes1(size(f)) |
---|
33 | |
---|
34 | ! Local: |
---|
35 | integer n, i |
---|
36 | real xc(size(f)) ! (n) cell centers |
---|
37 | real h |
---|
38 | |
---|
39 | !------------------------------------------------------ |
---|
40 | |
---|
41 | n = size(f) |
---|
42 | forall (i = 1:n) xc(i) = (x(i) + x(i + 1)) / 2. |
---|
43 | slopes1(1) = 0. |
---|
44 | slopes1(n) = 0. |
---|
45 | |
---|
46 | do i = 2, n - 1 |
---|
47 | if (f(i) >= max(f(i - 1), f(i + 1)) .or. f(i) & |
---|
48 | <= min(f(i - 1), f(i + 1))) then |
---|
49 | ! Local extremum |
---|
50 | slopes1(i) = 0. |
---|
51 | else |
---|
52 | ! (f(i - 1), f(i), f(i + 1)) strictly monotonous |
---|
53 | |
---|
54 | ! Second order slope: |
---|
55 | slopes1(i) = (f(i + 1) - f(i - 1)) / (xc(i + 1) - xc(i - 1)) |
---|
56 | |
---|
57 | ! Slope limitation: |
---|
58 | h = abs(x(i + 1) - xc(i)) |
---|
59 | slopes1(i) = sign(min(abs(slopes1(i)), abs(f(i + 1) - f(i)) / h, & |
---|
60 | abs(f(i) - f(i - 1)) / h), slopes1(i)) |
---|
61 | end if |
---|
62 | end do |
---|
63 | |
---|
64 | end function slopes1 |
---|
65 | |
---|
66 | !************************************************************* |
---|
67 | |
---|
68 | pure function slopes2(f, x) |
---|
69 | |
---|
70 | real, intent(in):: f(:, :) |
---|
71 | real, intent(in):: x(:) |
---|
72 | real slopes2(size(f, 1), size(f, 2)) |
---|
73 | |
---|
74 | ! Local: |
---|
75 | integer n, i, j |
---|
76 | real xc(size(f, 1)) ! (n) cell centers |
---|
77 | real h(2:size(f, 1) - 1), delta_xc(2:size(f, 1) - 1) ! (2:n - 1) |
---|
78 | |
---|
79 | !------------------------------------------------------ |
---|
80 | |
---|
81 | n = size(f, 1) |
---|
82 | forall (i = 1:n) xc(i) = (x(i) + x(i + 1)) / 2. |
---|
83 | |
---|
84 | forall (i = 2:n - 1) |
---|
85 | h(i) = abs(x(i + 1) - xc(i)) |
---|
86 | delta_xc(i) = xc(i + 1) - xc(i - 1) |
---|
87 | end forall |
---|
88 | |
---|
89 | do j = 1, size(f, 2) |
---|
90 | slopes2(1, j) = 0. |
---|
91 | |
---|
92 | do i = 2, n - 1 |
---|
93 | if (f(i, j) >= max(f(i - 1, j), f(i + 1, j)) .or. & |
---|
94 | f(i, j) <= min(f(i - 1, j), f(i + 1, j))) then |
---|
95 | ! Local extremum |
---|
96 | slopes2(i, j) = 0. |
---|
97 | else |
---|
98 | ! (f(i - 1, j), f(i, j), f(i + 1, j)) |
---|
99 | ! strictly monotonous |
---|
100 | |
---|
101 | ! Second order slope: |
---|
102 | slopes2(i, j) = (f(i + 1, j) - f(i - 1, j)) / delta_xc(i) |
---|
103 | |
---|
104 | ! Slope limitation: |
---|
105 | slopes2(i, j) = sign(min(abs(slopes2(i, j)), & |
---|
106 | abs(f(i + 1, j) - f(i, j)) / h(i), & |
---|
107 | abs(f(i, j) - f(i - 1, j)) / h(i)), slopes2(i, j)) |
---|
108 | end if |
---|
109 | end do |
---|
110 | |
---|
111 | slopes2(n, j) = 0. |
---|
112 | end do |
---|
113 | |
---|
114 | end function slopes2 |
---|
115 | |
---|
116 | !************************************************************* |
---|
117 | |
---|
118 | pure function slopes3(f, x) |
---|
119 | |
---|
120 | real, intent(in):: f(:, :, :) |
---|
121 | real, intent(in):: x(:) |
---|
122 | real slopes3(size(f, 1), size(f, 2), size(f, 3)) |
---|
123 | |
---|
124 | ! Local: |
---|
125 | integer n, i, j, k |
---|
126 | real xc(size(f, 1)) ! (n) cell centers |
---|
127 | real h(2:size(f, 1) - 1), delta_xc(2:size(f, 1) - 1) ! (2:n - 1) |
---|
128 | |
---|
129 | !------------------------------------------------------ |
---|
130 | |
---|
131 | n = size(f, 1) |
---|
132 | forall (i = 1:n) xc(i) = (x(i) + x(i + 1)) / 2. |
---|
133 | |
---|
134 | forall (i = 2:n - 1) |
---|
135 | h(i) = abs(x(i + 1) - xc(i)) |
---|
136 | delta_xc(i) = xc(i + 1) - xc(i - 1) |
---|
137 | end forall |
---|
138 | |
---|
139 | do k = 1, size(f, 3) |
---|
140 | do j = 1, size(f, 2) |
---|
141 | slopes3(1, j, k) = 0. |
---|
142 | |
---|
143 | do i = 2, n - 1 |
---|
144 | if (f(i, j, k) >= max(f(i - 1, j, k), f(i + 1, j, k)) .or. & |
---|
145 | f(i, j, k) <= min(f(i - 1, j, k), f(i + 1, j, k))) then |
---|
146 | ! Local extremum |
---|
147 | slopes3(i, j, k) = 0. |
---|
148 | else |
---|
149 | ! (f(i - 1, j, k), f(i, j, k), f(i + 1, j, k)) |
---|
150 | ! strictly monotonous |
---|
151 | |
---|
152 | ! Second order slope: |
---|
153 | slopes3(i, j, k) = (f(i + 1, j, k) - f(i - 1, j, k)) & |
---|
154 | / delta_xc(i) |
---|
155 | |
---|
156 | ! Slope limitation: |
---|
157 | slopes3(i, j, k) = sign(min(abs(slopes3(i, j, k)), & |
---|
158 | abs(f(i + 1, j, k) - f(i, j, k)) / h(i), & |
---|
159 | abs(f(i, j, k) - f(i - 1, j, k)) / h(i)), slopes3(i, j, k)) |
---|
160 | end if |
---|
161 | end do |
---|
162 | |
---|
163 | slopes3(n, j, k) = 0. |
---|
164 | end do |
---|
165 | end do |
---|
166 | |
---|
167 | end function slopes3 |
---|
168 | |
---|
169 | !************************************************************* |
---|
170 | |
---|
171 | pure function slopes4(f, x) |
---|
172 | |
---|
173 | real, intent(in):: f(:, :, :, :) |
---|
174 | real, intent(in):: x(:) |
---|
175 | real slopes4(size(f, 1), size(f, 2), size(f, 3), size(f, 4)) |
---|
176 | |
---|
177 | ! Local: |
---|
178 | integer n, i, j, k, l |
---|
179 | real xc(size(f, 1)) ! (n) cell centers |
---|
180 | real h(2:size(f, 1) - 1), delta_xc(2:size(f, 1) - 1) ! (2:n - 1) |
---|
181 | |
---|
182 | !------------------------------------------------------ |
---|
183 | |
---|
184 | n = size(f, 1) |
---|
185 | forall (i = 1:n) xc(i) = (x(i) + x(i + 1)) / 2. |
---|
186 | |
---|
187 | forall (i = 2:n - 1) |
---|
188 | h(i) = abs(x(i + 1) - xc(i)) |
---|
189 | delta_xc(i) = xc(i + 1) - xc(i - 1) |
---|
190 | end forall |
---|
191 | |
---|
192 | do l = 1, size(f, 4) |
---|
193 | do k = 1, size(f, 3) |
---|
194 | do j = 1, size(f, 2) |
---|
195 | slopes4(1, j, k, l) = 0. |
---|
196 | |
---|
197 | do i = 2, n - 1 |
---|
198 | if (f(i, j, k, l) >= max(f(i - 1, j, k, l), f(i + 1, j, k, l)) & |
---|
199 | .or. f(i, j, k, l) & |
---|
200 | <= min(f(i - 1, j, k, l), f(i + 1, j, k, l))) then |
---|
201 | ! Local extremum |
---|
202 | slopes4(i, j, k, l) = 0. |
---|
203 | else |
---|
204 | ! (f(i - 1, j, k, l), f(i, j, k, l), f(i + 1, j, k, l)) |
---|
205 | ! strictly monotonous |
---|
206 | |
---|
207 | ! Second order slope: |
---|
208 | slopes4(i, j, k, l) = (f(i + 1, j, k, l) & |
---|
209 | - f(i - 1, j, k, l)) / delta_xc(i) |
---|
210 | |
---|
211 | ! Slope limitation: |
---|
212 | slopes4(i, j, k, l) = sign(min(abs(slopes4(i, j, k, l)), & |
---|
213 | abs(f(i + 1, j, k, l) - f(i, j, k, l)) / h(i), & |
---|
214 | abs(f(i, j, k, l) - f(i - 1, j, k, l)) / h(i)), & |
---|
215 | slopes4(i, j, k, l)) |
---|
216 | end if |
---|
217 | end do |
---|
218 | |
---|
219 | slopes4(n, j, k, l) = 0. |
---|
220 | end do |
---|
221 | end do |
---|
222 | end do |
---|
223 | |
---|
224 | end function slopes4 |
---|
225 | |
---|
226 | end module slopes_m |
---|