1 | module spherical |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | |
---|
8 | subroutine rectsph(rect,col,azm,r,r2) |
---|
9 | |
---|
10 | ! Converts rectangular coordinates to spherical coordinates. |
---|
11 | ! (Ox) is taken as the polar axis. |
---|
12 | ! Azimuth is the angle in the (Oyz) plane, measured from vector y. |
---|
13 | ! If neither "r" nor "r2" is present then they are assumed to be |
---|
14 | ! equal to 1. |
---|
15 | |
---|
16 | real, intent(in):: rect(3) |
---|
17 | ! (Rectangular coordinates x,y,z. Should be different from (0,0 |
---|
18 | ! ,0)) |
---|
19 | |
---|
20 | real, intent(out):: col ! Colatitude (in radians) |
---|
21 | real, intent(out):: azm ! Azimuth (in radians). -pi < azm <= pi |
---|
22 | real, intent(out), optional:: r ! Radius |
---|
23 | real, intent(out), optional:: r2 ! Square of radius |
---|
24 | |
---|
25 | ! Local variables: |
---|
26 | logical p, p2 |
---|
27 | real d ! Radius |
---|
28 | real d2 ! Square of radius |
---|
29 | |
---|
30 | !---------------------------------------------------------------- |
---|
31 | |
---|
32 | p = present(r) |
---|
33 | p2 = present(r2) |
---|
34 | |
---|
35 | if (.not. p .and. .not. p2) then |
---|
36 | ! Distance to the origin is assumed to be 1 |
---|
37 | col = acos(rect(1)) |
---|
38 | else |
---|
39 | ! Compute the distance to the origin: |
---|
40 | d2 = dot_product(rect,rect) |
---|
41 | d = sqrt(d2) |
---|
42 | col = acos(rect(1)/d) |
---|
43 | if (p) r = d |
---|
44 | if (p2) r2 = d2 |
---|
45 | end if |
---|
46 | |
---|
47 | if (rect(2) == 0. .and. rect(3) == 0.) then |
---|
48 | azm = 0. |
---|
49 | ! (arbitrary value, azimuth is not well defined since vector |
---|
50 | ! position is parallel |
---|
51 | ! to polar axis) |
---|
52 | else |
---|
53 | azm = atan2(rect(3),rect(2)) |
---|
54 | end if |
---|
55 | |
---|
56 | end subroutine rectsph |
---|
57 | |
---|
58 | !******************************************************************* |
---|
59 | |
---|
60 | real function sphbase(col,azm) |
---|
61 | |
---|
62 | ! This function returns the matrix of the spherical base: (radial |
---|
63 | ! vector, colatitude vector, azimuthal vector) in the cartesian |
---|
64 | ! vector base: (x, y, z). Vector x is assumed to be the polar |
---|
65 | ! vector. Colatitude "col" and azimuth "azm" are the angular |
---|
66 | ! spherical coordinates of the radial vector (azimuth is measured |
---|
67 | ! from vector "y"). Note that if col = 0 (radial vector parallel |
---|
68 | ! to x) then the choice of either the colatitude vector or the |
---|
69 | ! azimuthal vector is arbitrary. The choice made depends on the |
---|
70 | ! input value of azm. If azm is 0 then sphbase will return vector |
---|
71 | ! y as the colatitude vector ("sphbase" is then the identity |
---|
72 | ! matrix). Uses "sphrect", which converts spherical coordinates to |
---|
73 | ! rectangular coordinates. |
---|
74 | |
---|
75 | dimension sphbase(3,3) ! Transformation matrix (no dimension) |
---|
76 | |
---|
77 | real, intent(in):: col ! Colatitude (in radians) |
---|
78 | real, intent(in):: azm ! Azimuth (in radians) |
---|
79 | |
---|
80 | ! Local variable: |
---|
81 | real pi |
---|
82 | |
---|
83 | !----------------------------------------------------------------- |
---|
84 | |
---|
85 | pi = acos(-1.) |
---|
86 | |
---|
87 | ! Radial vector: |
---|
88 | sphbase(:,1) = sphrect(col, azm) |
---|
89 | |
---|
90 | ! Colatitude vector: |
---|
91 | sphbase(:,2) = sphrect(col + pi/2, azm) |
---|
92 | |
---|
93 | ! Azimuthal vector: |
---|
94 | sphbase(:,3) = (/0., - sin(azm), cos(azm)/) |
---|
95 | |
---|
96 | end function sphbase |
---|
97 | |
---|
98 | !***************************************************************** |
---|
99 | |
---|
100 | real function sphrect(col,azm,r) |
---|
101 | |
---|
102 | ! Converts spherical coordinates to rectangular coordinates. (Ox) |
---|
103 | ! is taken as the polar axis. Azimuth "azm" is the angle in the |
---|
104 | ! (Oyz) plane, measured from vector y. |
---|
105 | ! If r is not present then we assume r = 1. |
---|
106 | |
---|
107 | dimension sphrect(3) ! Rectangular coordinates = (x,y,z) |
---|
108 | |
---|
109 | real, intent(in):: col ! Colatitude (in radians) |
---|
110 | real, intent(in):: azm ! Azimuth (in radians) |
---|
111 | real, intent(in), optional:: r ! Radius |
---|
112 | |
---|
113 | !--------------------------------------------------------------- |
---|
114 | |
---|
115 | sphrect = (/cos(col), sin(col) * cos(azm), sin(col) * sin(azm)/) |
---|
116 | if (present(r)) sphrect = sphrect * r |
---|
117 | |
---|
118 | end function sphrect |
---|
119 | |
---|
120 | end module spherical |
---|