1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE ADVYP(LIMIT,DTY,PBARV,SM,S0,SSX,SY,SZ |
---|
5 | . ,SSXX,SSXY,SSXZ,SYY,SYZ,SZZ,ntra ) |
---|
6 | IMPLICIT NONE |
---|
7 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
8 | C C |
---|
9 | C second-order moments (SOM) advection of tracer in Y direction C |
---|
10 | C C |
---|
11 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
12 | C C |
---|
13 | C Source : Pascal Simon ( Meteo, CNRM ) C |
---|
14 | C Adaptation : A.A. (LGGE) C |
---|
15 | C Derniere Modif : 19/10/95 LAST |
---|
16 | C C |
---|
17 | C sont les arguments d'entree pour le s-pg C |
---|
18 | C C |
---|
19 | C argument de sortie du s-pg C |
---|
20 | C C |
---|
21 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
22 | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC |
---|
23 | C |
---|
24 | C Rem : Probleme aux poles il faut reecrire ce cas specifique |
---|
25 | C Attention au sens de l'indexation |
---|
26 | C |
---|
27 | C parametres principaux du modele |
---|
28 | C |
---|
29 | C |
---|
30 | include "dimensions.h" |
---|
31 | include "paramet.h" |
---|
32 | include "comgeom.h" |
---|
33 | |
---|
34 | C Arguments : |
---|
35 | C ---------- |
---|
36 | C dty : frequence fictive d'appel du transport |
---|
37 | C parbu,pbarv : flux de masse en x et y en Pa.m2.s-1 |
---|
38 | |
---|
39 | INTEGER lon,lat,niv |
---|
40 | INTEGER i,j,jv,k,kp,l |
---|
41 | INTEGER ntra |
---|
42 | C PARAMETER (ntra = 1) |
---|
43 | |
---|
44 | REAL dty |
---|
45 | REAL pbarv ( iip1,jjm, llm ) |
---|
46 | |
---|
47 | C moments: SM total mass in each grid box |
---|
48 | C S0 mass of tracer in each grid box |
---|
49 | C Si 1rst order moment in i direction |
---|
50 | C |
---|
51 | REAL SM(iip1,jjp1,llm) |
---|
52 | + ,S0(iip1,jjp1,llm,ntra) |
---|
53 | REAL SSX(iip1,jjp1,llm,ntra) |
---|
54 | + ,SY(iip1,jjp1,llm,ntra) |
---|
55 | + ,SZ(iip1,jjp1,llm,ntra) |
---|
56 | + ,SSXX(iip1,jjp1,llm,ntra) |
---|
57 | + ,SSXY(iip1,jjp1,llm,ntra) |
---|
58 | + ,SSXZ(iip1,jjp1,llm,ntra) |
---|
59 | + ,SYY(iip1,jjp1,llm,ntra) |
---|
60 | + ,SYZ(iip1,jjp1,llm,ntra) |
---|
61 | + ,SZZ(iip1,jjp1,llm,ntra) |
---|
62 | C |
---|
63 | C Local : |
---|
64 | C ------- |
---|
65 | |
---|
66 | C mass fluxes across the boundaries (UGRI,VGRI,WGRI) |
---|
67 | C mass fluxes in kg |
---|
68 | C declaration : |
---|
69 | |
---|
70 | REAL VGRI(iip1,0:jjp1,llm) |
---|
71 | |
---|
72 | C Rem : UGRI et WGRI ne sont pas utilises dans |
---|
73 | C cette subroutine ( advection en y uniquement ) |
---|
74 | C Rem 2 :le dimensionnement de VGRI depend de celui de pbarv |
---|
75 | C |
---|
76 | C the moments F are similarly defined and used as temporary |
---|
77 | C storage for portions of the grid boxes in transit |
---|
78 | C |
---|
79 | C the moments Fij are used as temporary storage for |
---|
80 | C portions of the grid boxes in transit at the current level |
---|
81 | C |
---|
82 | C work arrays |
---|
83 | C |
---|
84 | C |
---|
85 | REAL F0(iim,0:jjp1,ntra),FM(iim,0:jjp1) |
---|
86 | REAL FX(iim,jjm,ntra),FY(iim,jjm,ntra) |
---|
87 | REAL FZ(iim,jjm,ntra) |
---|
88 | REAL FXX(iim,jjm,ntra),FXY(iim,jjm,ntra) |
---|
89 | REAL FXZ(iim,jjm,ntra),FYY(iim,jjm,ntra) |
---|
90 | REAL FYZ(iim,jjm,ntra),FZZ(iim,jjm,ntra) |
---|
91 | REAL S00(ntra) |
---|
92 | REAL SM0 ! Just temporal variable |
---|
93 | C |
---|
94 | C work arrays |
---|
95 | C |
---|
96 | REAL ALF(iim,0:jjp1),ALF1(iim,0:jjp1) |
---|
97 | REAL ALFQ(iim,0:jjp1),ALF1Q(iim,0:jjp1) |
---|
98 | REAL ALF2(iim,0:jjp1),ALF3(iim,0:jjp1) |
---|
99 | REAL ALF4(iim,0:jjp1) |
---|
100 | REAL TEMPTM ! Just temporal variable |
---|
101 | REAL SLPMAX,S1MAX,S1NEW,S2NEW |
---|
102 | c |
---|
103 | C Special pour poles |
---|
104 | c |
---|
105 | REAL sbms,sfms,sfzs,sbmn,sfmn,sfzn |
---|
106 | REAL sns0(ntra),snsz(ntra),snsm |
---|
107 | REAL qy1(iim,llm,ntra),qylat(iim,llm,ntra) |
---|
108 | REAL cx1(llm,ntra), cxLAT(llm,ntra) |
---|
109 | REAL cy1(llm,ntra), cyLAT(llm,ntra) |
---|
110 | REAL z1(iim), zcos(iim), zsin(iim) |
---|
111 | REAL SSUM |
---|
112 | EXTERNAL SSUM |
---|
113 | C |
---|
114 | REAL sqi,sqf |
---|
115 | LOGICAL LIMIT |
---|
116 | |
---|
117 | lon = iim ! rem : Il est possible qu'un pbl. arrive ici |
---|
118 | lat = jjp1 ! a cause des dim. differentes entre les |
---|
119 | niv = llm ! tab. S et VGRI |
---|
120 | |
---|
121 | c----------------------------------------------------------------- |
---|
122 | C initialisations |
---|
123 | |
---|
124 | sbms = 0. |
---|
125 | sfms = 0. |
---|
126 | sfzs = 0. |
---|
127 | sbmn = 0. |
---|
128 | sfmn = 0. |
---|
129 | sfzn = 0. |
---|
130 | |
---|
131 | c----------------------------------------------------------------- |
---|
132 | C *** Test : diag de la qtite totale de traceur dans |
---|
133 | C l'atmosphere avant l'advection en Y |
---|
134 | c |
---|
135 | sqi = 0. |
---|
136 | sqf = 0. |
---|
137 | |
---|
138 | DO l = 1,llm |
---|
139 | DO j = 1,jjp1 |
---|
140 | DO i = 1,iim |
---|
141 | sqi = sqi + S0(i,j,l,ntra) |
---|
142 | END DO |
---|
143 | END DO |
---|
144 | END DO |
---|
145 | PRINT*,'---------- DIAG DANS ADVY - ENTREE --------' |
---|
146 | PRINT*,'sqi=',sqi |
---|
147 | |
---|
148 | c----------------------------------------------------------------- |
---|
149 | C Interface : adaptation nouveau modele |
---|
150 | C ------------------------------------- |
---|
151 | C |
---|
152 | C Conversion des flux de masses en kg |
---|
153 | C-AA 20/10/94 le signe -1 est necessaire car indexation opposee |
---|
154 | |
---|
155 | DO 500 l = 1,llm |
---|
156 | DO 500 j = 1,jjm |
---|
157 | DO 500 i = 1,iip1 |
---|
158 | vgri (i,j,llm+1-l)=-1.*pbarv (i,j,l) |
---|
159 | 500 CONTINUE |
---|
160 | |
---|
161 | CAA Initialisation de flux fictifs aux bords sup. des boites pol. |
---|
162 | |
---|
163 | DO l = 1,llm |
---|
164 | DO i = 1,iip1 |
---|
165 | vgri(i,0,l) = 0. |
---|
166 | vgri(i,jjp1,l) = 0. |
---|
167 | ENDDO |
---|
168 | ENDDO |
---|
169 | c |
---|
170 | c----------------- START HERE ----------------------- |
---|
171 | C boucle sur les niveaux |
---|
172 | C |
---|
173 | DO 1 L=1,NIV |
---|
174 | C |
---|
175 | C place limits on appropriate moments before transport |
---|
176 | C (if flux-limiting is to be applied) |
---|
177 | C |
---|
178 | IF(.NOT.LIMIT) GO TO 11 |
---|
179 | C |
---|
180 | DO 10 JV=1,NTRA |
---|
181 | DO 10 K=1,LAT |
---|
182 | DO 100 I=1,LON |
---|
183 | IF(S0(I,K,L,JV).GT.0.) THEN |
---|
184 | SLPMAX=AMAX1(S0(I,K,L,JV),0.) |
---|
185 | S1MAX=1.5*SLPMAX |
---|
186 | S1NEW=AMIN1(S1MAX,AMAX1(-S1MAX,SY(I,K,L,JV))) |
---|
187 | S2NEW=AMIN1( 2.*SLPMAX-ABS(S1NEW)/3. , |
---|
188 | + AMAX1(ABS(S1NEW)-SLPMAX,SYY(I,K,L,JV)) ) |
---|
189 | SY (I,K,L,JV)=S1NEW |
---|
190 | SYY(I,K,L,JV)=S2NEW |
---|
191 | SSXY(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SSXY(I,K,L,JV))) |
---|
192 | SYZ(I,K,L,JV)=AMIN1(SLPMAX,AMAX1(-SLPMAX,SYZ(I,K,L,JV))) |
---|
193 | ELSE |
---|
194 | SY (I,K,L,JV)=0. |
---|
195 | SYY(I,K,L,JV)=0. |
---|
196 | SSXY(I,K,L,JV)=0. |
---|
197 | SYZ(I,K,L,JV)=0. |
---|
198 | ENDIF |
---|
199 | 100 CONTINUE |
---|
200 | 10 CONTINUE |
---|
201 | C |
---|
202 | 11 CONTINUE |
---|
203 | C |
---|
204 | C le flux a travers le pole Nord est traite separement |
---|
205 | C |
---|
206 | SM0=0. |
---|
207 | DO 20 JV=1,NTRA |
---|
208 | S00(JV)=0. |
---|
209 | 20 CONTINUE |
---|
210 | C |
---|
211 | DO 21 I=1,LON |
---|
212 | C |
---|
213 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
214 | FM(I,0)=-VGRI(I,0,L)*DTY |
---|
215 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
216 | SM(I,1,L)=SM(I,1,L)-FM(I,0) |
---|
217 | SM0=SM0+FM(I,0) |
---|
218 | ENDIF |
---|
219 | C |
---|
220 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
221 | ALF1(I,0)=1.-ALF(I,0) |
---|
222 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
223 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
224 | ALF3(I,0)=ALF(I,0)*ALFQ(I,0) |
---|
225 | ALF4(I,0)=ALF1(I,0)*ALF1Q(I,0) |
---|
226 | C |
---|
227 | 21 CONTINUE |
---|
228 | c print*,'ADVYP 21' |
---|
229 | C |
---|
230 | DO 22 JV=1,NTRA |
---|
231 | DO 220 I=1,LON |
---|
232 | C |
---|
233 | IF(VGRI(I,0,L).LE.0.) THEN |
---|
234 | C |
---|
235 | F0(I,0,JV)=ALF(I,0)* ( S0(I,1,L,JV)-ALF1(I,0)* |
---|
236 | + ( SY(I,1,L,JV)-ALF2(I,0)*SYY(I,1,L,JV) ) ) |
---|
237 | C |
---|
238 | S00(JV)=S00(JV)+F0(I,0,JV) |
---|
239 | S0 (I,1,L,JV)=S0(I,1,L,JV)-F0(I,0,JV) |
---|
240 | SY (I,1,L,JV)=ALF1Q(I,0)* |
---|
241 | + (SY(I,1,L,JV)+3.*ALF(I,0)*SYY(I,1,L,JV)) |
---|
242 | SYY(I,1,L,JV)=ALF4 (I,0)*SYY(I,1,L,JV) |
---|
243 | SSX (I,1,L,JV)=ALF1 (I,0)* |
---|
244 | + (SSX(I,1,L,JV)+ALF(I,0)*SSXY(I,1,L,JV) ) |
---|
245 | SZ (I,1,L,JV)=ALF1 (I,0)* |
---|
246 | + (SZ(I,1,L,JV)+ALF(I,0)*SSXZ(I,1,L,JV) ) |
---|
247 | SSXX(I,1,L,JV)=ALF1 (I,0)*SSXX(I,1,L,JV) |
---|
248 | SSXZ(I,1,L,JV)=ALF1 (I,0)*SSXZ(I,1,L,JV) |
---|
249 | SZZ(I,1,L,JV)=ALF1 (I,0)*SZZ(I,1,L,JV) |
---|
250 | SSXY(I,1,L,JV)=ALF1Q(I,0)*SSXY(I,1,L,JV) |
---|
251 | SYZ(I,1,L,JV)=ALF1Q(I,0)*SYZ(I,1,L,JV) |
---|
252 | C |
---|
253 | ENDIF |
---|
254 | C |
---|
255 | 220 CONTINUE |
---|
256 | 22 CONTINUE |
---|
257 | C |
---|
258 | DO 23 I=1,LON |
---|
259 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
260 | FM(I,0)=VGRI(I,0,L)*DTY |
---|
261 | ALF(I,0)=FM(I,0)/SM0 |
---|
262 | ENDIF |
---|
263 | 23 CONTINUE |
---|
264 | C |
---|
265 | DO 24 JV=1,NTRA |
---|
266 | DO 240 I=1,LON |
---|
267 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
268 | F0(I,0,JV)=ALF(I,0)*S00(JV) |
---|
269 | ENDIF |
---|
270 | 240 CONTINUE |
---|
271 | 24 CONTINUE |
---|
272 | C |
---|
273 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
274 | C |
---|
275 | c print*,'av ADVYP 25' |
---|
276 | DO 25 I=1,LON |
---|
277 | C |
---|
278 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
279 | SM(I,1,L)=SM(I,1,L)+FM(I,0) |
---|
280 | ALF(I,0)=FM(I,0)/SM(I,1,L) |
---|
281 | ENDIF |
---|
282 | C |
---|
283 | ALFQ(I,0)=ALF(I,0)*ALF(I,0) |
---|
284 | ALF1(I,0)=1.-ALF(I,0) |
---|
285 | ALF1Q(I,0)=ALF1(I,0)*ALF1(I,0) |
---|
286 | ALF2(I,0)=ALF1(I,0)-ALF(I,0) |
---|
287 | ALF3(I,0)=ALF1(I,0)*ALF(I,0) |
---|
288 | C |
---|
289 | 25 CONTINUE |
---|
290 | c print*,'av ADVYP 25' |
---|
291 | C |
---|
292 | DO 26 JV=1,NTRA |
---|
293 | DO 260 I=1,LON |
---|
294 | C |
---|
295 | IF(VGRI(I,0,L).GT.0.) THEN |
---|
296 | C |
---|
297 | TEMPTM=ALF(I,0)*S0(I,1,L,JV)-ALF1(I,0)*F0(I,0,JV) |
---|
298 | S0 (I,1,L,JV)=S0(I,1,L,JV)+F0(I,0,JV) |
---|
299 | SYY(I,1,L,JV)=ALF1Q(I,0)*SYY(I,1,L,JV) |
---|
300 | + +5.*( ALF3 (I,0)*SY (I,1,L,JV)-ALF2(I,0)*TEMPTM ) |
---|
301 | SY (I,1,L,JV)=ALF1 (I,0)*SY (I,1,L,JV)+3.*TEMPTM |
---|
302 | SSXY(I,1,L,JV)=ALF1 (I,0)*SSXY(I,1,L,JV)+3.*ALF(I,0)*SSX(I,1,L,JV) |
---|
303 | SYZ(I,1,L,JV)=ALF1 (I,0)*SYZ(I,1,L,JV)+3.*ALF(I,0)*SZ(I,1,L,JV) |
---|
304 | C |
---|
305 | ENDIF |
---|
306 | C |
---|
307 | 260 CONTINUE |
---|
308 | 26 CONTINUE |
---|
309 | C |
---|
310 | C calculate flux and moments between adjacent boxes |
---|
311 | C 1- create temporary moments/masses for partial boxes in transit |
---|
312 | C 2- reajusts moments remaining in the box |
---|
313 | C |
---|
314 | C flux from KP to K if V(K).lt.0 and from K to KP if V(K).gt.0 |
---|
315 | C |
---|
316 | c print*,'av ADVYP 30' |
---|
317 | DO 30 K=1,LAT-1 |
---|
318 | KP=K+1 |
---|
319 | DO 300 I=1,LON |
---|
320 | C |
---|
321 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
322 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
323 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
324 | SM(I,KP,L)=SM(I,KP,L)-FM(I,K) |
---|
325 | ELSE |
---|
326 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
327 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
328 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
329 | ENDIF |
---|
330 | C |
---|
331 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
332 | ALF1(I,K)=1.-ALF(I,K) |
---|
333 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
334 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
335 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
336 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
337 | C |
---|
338 | 300 CONTINUE |
---|
339 | 30 CONTINUE |
---|
340 | c print*,'ap ADVYP 30' |
---|
341 | C |
---|
342 | DO 31 JV=1,NTRA |
---|
343 | DO 31 K=1,LAT-1 |
---|
344 | KP=K+1 |
---|
345 | DO 310 I=1,LON |
---|
346 | C |
---|
347 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
348 | C |
---|
349 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,KP,L,JV)-ALF1(I,K)* |
---|
350 | + ( SY(I,KP,L,JV)-ALF2(I,K)*SYY(I,KP,L,JV) ) ) |
---|
351 | FY (I,K,JV)=ALFQ(I,K)* |
---|
352 | + (SY(I,KP,L,JV)-3.*ALF1(I,K)*SYY(I,KP,L,JV)) |
---|
353 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,KP,L,JV) |
---|
354 | FX (I,K,JV)=ALF (I,K)* |
---|
355 | + (SSX(I,KP,L,JV)-ALF1(I,K)*SSXY(I,KP,L,JV)) |
---|
356 | FZ (I,K,JV)=ALF (I,K)* |
---|
357 | + (SZ(I,KP,L,JV)-ALF1(I,K)*SYZ(I,KP,L,JV)) |
---|
358 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,KP,L,JV) |
---|
359 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,KP,L,JV) |
---|
360 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,KP,L,JV) |
---|
361 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,KP,L,JV) |
---|
362 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,KP,L,JV) |
---|
363 | C |
---|
364 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)-F0(I,K,JV) |
---|
365 | SY (I,KP,L,JV)=ALF1Q(I,K)* |
---|
366 | + (SY(I,KP,L,JV)+3.*ALF(I,K)*SYY(I,KP,L,JV)) |
---|
367 | SYY(I,KP,L,JV)=ALF4(I,K)*SYY(I,KP,L,JV) |
---|
368 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)-FX (I,K,JV) |
---|
369 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)-FZ (I,K,JV) |
---|
370 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)-FXX(I,K,JV) |
---|
371 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)-FXZ(I,K,JV) |
---|
372 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)-FZZ(I,K,JV) |
---|
373 | SSXY(I,KP,L,JV)=ALF1Q(I,K)*SSXY(I,KP,L,JV) |
---|
374 | SYZ(I,KP,L,JV)=ALF1Q(I,K)*SYZ(I,KP,L,JV) |
---|
375 | C |
---|
376 | ELSE |
---|
377 | C |
---|
378 | F0 (I,K,JV)=ALF (I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
---|
379 | + ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
380 | FY (I,K,JV)=ALFQ(I,K)* |
---|
381 | + (SY(I,K,L,JV)+3.*ALF1(I,K)*SYY(I,K,L,JV)) |
---|
382 | FYY(I,K,JV)=ALF3(I,K)*SYY(I,K,L,JV) |
---|
383 | FX (I,K,JV)=ALF (I,K)*(SSX(I,K,L,JV)+ALF1(I,K)*SSXY(I,K,L,JV)) |
---|
384 | FZ (I,K,JV)=ALF (I,K)*(SZ(I,K,L,JV)+ALF1(I,K)*SYZ(I,K,L,JV)) |
---|
385 | FXY(I,K,JV)=ALFQ(I,K)*SSXY(I,K,L,JV) |
---|
386 | FYZ(I,K,JV)=ALFQ(I,K)*SYZ(I,K,L,JV) |
---|
387 | FXX(I,K,JV)=ALF (I,K)*SSXX(I,K,L,JV) |
---|
388 | FXZ(I,K,JV)=ALF (I,K)*SSXZ(I,K,L,JV) |
---|
389 | FZZ(I,K,JV)=ALF (I,K)*SZZ(I,K,L,JV) |
---|
390 | C |
---|
391 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
392 | SY (I,K,L,JV)=ALF1Q(I,K)* |
---|
393 | + (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
394 | SYY(I,K,L,JV)=ALF4(I,K)*SYY(I,K,L,JV) |
---|
395 | SSX (I,K,L,JV)=SSX (I,K,L,JV)-FX (I,K,JV) |
---|
396 | SZ (I,K,L,JV)=SZ (I,K,L,JV)-FZ (I,K,JV) |
---|
397 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)-FXX(I,K,JV) |
---|
398 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)-FXZ(I,K,JV) |
---|
399 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)-FZZ(I,K,JV) |
---|
400 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
401 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
402 | C |
---|
403 | ENDIF |
---|
404 | C |
---|
405 | 310 CONTINUE |
---|
406 | 31 CONTINUE |
---|
407 | c print*,'ap ADVYP 31' |
---|
408 | C |
---|
409 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
410 | C |
---|
411 | DO 32 K=1,LAT-1 |
---|
412 | KP=K+1 |
---|
413 | DO 320 I=1,LON |
---|
414 | C |
---|
415 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
416 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
417 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
418 | ELSE |
---|
419 | SM(I,KP,L)=SM(I,KP,L)+FM(I,K) |
---|
420 | ALF(I,K)=FM(I,K)/SM(I,KP,L) |
---|
421 | ENDIF |
---|
422 | C |
---|
423 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
424 | ALF1(I,K)=1.-ALF(I,K) |
---|
425 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
426 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
427 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
428 | C |
---|
429 | 320 CONTINUE |
---|
430 | 32 CONTINUE |
---|
431 | c print*,'ap ADVYP 32' |
---|
432 | C |
---|
433 | DO 33 JV=1,NTRA |
---|
434 | DO 33 K=1,LAT-1 |
---|
435 | KP=K+1 |
---|
436 | DO 330 I=1,LON |
---|
437 | C |
---|
438 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
439 | C |
---|
440 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
441 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
442 | SYY(I,K,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,K,L,JV) |
---|
443 | + +5.*( ALF3(I,K)*(FY(I,K,JV)-SY(I,K,L,JV))+ALF2(I,K)*TEMPTM ) |
---|
444 | SY (I,K,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,K,L,JV) |
---|
445 | + +3.*TEMPTM |
---|
446 | SSXY(I,K,L,JV)=ALF (I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,K,L,JV) |
---|
447 | + +3.*(ALF1(I,K)*FX (I,K,JV)-ALF (I,K)*SSX (I,K,L,JV)) |
---|
448 | SYZ(I,K,L,JV)=ALF (I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,K,L,JV) |
---|
449 | + +3.*(ALF1(I,K)*FZ (I,K,JV)-ALF (I,K)*SZ (I,K,L,JV)) |
---|
450 | SSX (I,K,L,JV)=SSX (I,K,L,JV)+FX (I,K,JV) |
---|
451 | SZ (I,K,L,JV)=SZ (I,K,L,JV)+FZ (I,K,JV) |
---|
452 | SSXX(I,K,L,JV)=SSXX(I,K,L,JV)+FXX(I,K,JV) |
---|
453 | SSXZ(I,K,L,JV)=SSXZ(I,K,L,JV)+FXZ(I,K,JV) |
---|
454 | SZZ(I,K,L,JV)=SZZ(I,K,L,JV)+FZZ(I,K,JV) |
---|
455 | C |
---|
456 | ELSE |
---|
457 | C |
---|
458 | TEMPTM=ALF(I,K)*S0(I,KP,L,JV)-ALF1(I,K)*F0(I,K,JV) |
---|
459 | S0 (I,KP,L,JV)=S0(I,KP,L,JV)+F0(I,K,JV) |
---|
460 | SYY(I,KP,L,JV)=ALFQ(I,K)*FYY(I,K,JV)+ALF1Q(I,K)*SYY(I,KP,L,JV) |
---|
461 | + +5.*( ALF3(I,K)*(SY(I,KP,L,JV)-FY(I,K,JV))-ALF2(I,K)*TEMPTM ) |
---|
462 | SY (I,KP,L,JV)=ALF(I,K)*FY(I,K,JV)+ALF1(I,K)*SY(I,KP,L,JV) |
---|
463 | + +3.*TEMPTM |
---|
464 | SSXY(I,KP,L,JV)=ALF(I,K)*FXY(I,K,JV)+ALF1(I,K)*SSXY(I,KP,L,JV) |
---|
465 | + +3.*(ALF(I,K)*SSX(I,KP,L,JV)-ALF1(I,K)*FX(I,K,JV)) |
---|
466 | SYZ(I,KP,L,JV)=ALF(I,K)*FYZ(I,K,JV)+ALF1(I,K)*SYZ(I,KP,L,JV) |
---|
467 | + +3.*(ALF(I,K)*SZ(I,KP,L,JV)-ALF1(I,K)*FZ(I,K,JV)) |
---|
468 | SSX (I,KP,L,JV)=SSX (I,KP,L,JV)+FX (I,K,JV) |
---|
469 | SZ (I,KP,L,JV)=SZ (I,KP,L,JV)+FZ (I,K,JV) |
---|
470 | SSXX(I,KP,L,JV)=SSXX(I,KP,L,JV)+FXX(I,K,JV) |
---|
471 | SSXZ(I,KP,L,JV)=SSXZ(I,KP,L,JV)+FXZ(I,K,JV) |
---|
472 | SZZ(I,KP,L,JV)=SZZ(I,KP,L,JV)+FZZ(I,K,JV) |
---|
473 | C |
---|
474 | ENDIF |
---|
475 | C |
---|
476 | 330 CONTINUE |
---|
477 | 33 CONTINUE |
---|
478 | c print*,'ap ADVYP 33' |
---|
479 | C |
---|
480 | C traitement special pour le pole Sud (idem pole Nord) |
---|
481 | C |
---|
482 | K=LAT |
---|
483 | C |
---|
484 | SM0=0. |
---|
485 | DO 40 JV=1,NTRA |
---|
486 | S00(JV)=0. |
---|
487 | 40 CONTINUE |
---|
488 | C |
---|
489 | DO 41 I=1,LON |
---|
490 | C |
---|
491 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
492 | FM(I,K)=VGRI(I,K,L)*DTY |
---|
493 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
494 | SM(I,K,L)=SM(I,K,L)-FM(I,K) |
---|
495 | SM0=SM0+FM(I,K) |
---|
496 | ENDIF |
---|
497 | C |
---|
498 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
499 | ALF1(I,K)=1.-ALF(I,K) |
---|
500 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
501 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
502 | ALF3(I,K)=ALF(I,K)*ALFQ(I,K) |
---|
503 | ALF4(I,K)=ALF1(I,K)*ALF1Q(I,K) |
---|
504 | C |
---|
505 | 41 CONTINUE |
---|
506 | c print*,'ap ADVYP 41' |
---|
507 | C |
---|
508 | DO 42 JV=1,NTRA |
---|
509 | DO 420 I=1,LON |
---|
510 | C |
---|
511 | IF(VGRI(I,K,L).GE.0.) THEN |
---|
512 | F0 (I,K,JV)=ALF(I,K)* ( S0(I,K,L,JV)+ALF1(I,K)* |
---|
513 | + ( SY(I,K,L,JV)+ALF2(I,K)*SYY(I,K,L,JV) ) ) |
---|
514 | S00(JV)=S00(JV)+F0(I,K,JV) |
---|
515 | C |
---|
516 | S0 (I,K,L,JV)=S0 (I,K,L,JV)-F0 (I,K,JV) |
---|
517 | SY (I,K,L,JV)=ALF1Q(I,K)* |
---|
518 | + (SY(I,K,L,JV)-3.*ALF(I,K)*SYY(I,K,L,JV)) |
---|
519 | SYY(I,K,L,JV)=ALF4 (I,K)*SYY(I,K,L,JV) |
---|
520 | SSX (I,K,L,JV)=ALF1(I,K)*(SSX(I,K,L,JV)-ALF(I,K)*SSXY(I,K,L,JV)) |
---|
521 | SZ (I,K,L,JV)=ALF1(I,K)*(SZ(I,K,L,JV)-ALF(I,K)*SYZ(I,K,L,JV)) |
---|
522 | SSXX(I,K,L,JV)=ALF1 (I,K)*SSXX(I,K,L,JV) |
---|
523 | SSXZ(I,K,L,JV)=ALF1 (I,K)*SSXZ(I,K,L,JV) |
---|
524 | SZZ(I,K,L,JV)=ALF1 (I,K)*SZZ(I,K,L,JV) |
---|
525 | SSXY(I,K,L,JV)=ALF1Q(I,K)*SSXY(I,K,L,JV) |
---|
526 | SYZ(I,K,L,JV)=ALF1Q(I,K)*SYZ(I,K,L,JV) |
---|
527 | ENDIF |
---|
528 | C |
---|
529 | 420 CONTINUE |
---|
530 | 42 CONTINUE |
---|
531 | c print*,'ap ADVYP 42' |
---|
532 | C |
---|
533 | DO 43 I=1,LON |
---|
534 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
535 | FM(I,K)=-VGRI(I,K,L)*DTY |
---|
536 | ALF(I,K)=FM(I,K)/SM0 |
---|
537 | ENDIF |
---|
538 | 43 CONTINUE |
---|
539 | c print*,'ap ADVYP 43' |
---|
540 | C |
---|
541 | DO 44 JV=1,NTRA |
---|
542 | DO 440 I=1,LON |
---|
543 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
544 | F0(I,K,JV)=ALF(I,K)*S00(JV) |
---|
545 | ENDIF |
---|
546 | 440 CONTINUE |
---|
547 | 44 CONTINUE |
---|
548 | C |
---|
549 | C puts the temporary moments Fi into appropriate neighboring boxes |
---|
550 | C |
---|
551 | DO 45 I=1,LON |
---|
552 | C |
---|
553 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
554 | SM(I,K,L)=SM(I,K,L)+FM(I,K) |
---|
555 | ALF(I,K)=FM(I,K)/SM(I,K,L) |
---|
556 | ENDIF |
---|
557 | C |
---|
558 | ALFQ(I,K)=ALF(I,K)*ALF(I,K) |
---|
559 | ALF1(I,K)=1.-ALF(I,K) |
---|
560 | ALF1Q(I,K)=ALF1(I,K)*ALF1(I,K) |
---|
561 | ALF2(I,K)=ALF1(I,K)-ALF(I,K) |
---|
562 | ALF3(I,K)=ALF1(I,K)*ALF(I,K) |
---|
563 | C |
---|
564 | 45 CONTINUE |
---|
565 | c print*,'ap ADVYP 45' |
---|
566 | C |
---|
567 | DO 46 JV=1,NTRA |
---|
568 | DO 460 I=1,LON |
---|
569 | C |
---|
570 | IF(VGRI(I,K,L).LT.0.) THEN |
---|
571 | C |
---|
572 | TEMPTM=-ALF(I,K)*S0(I,K,L,JV)+ALF1(I,K)*F0(I,K,JV) |
---|
573 | S0 (I,K,L,JV)=S0(I,K,L,JV)+F0(I,K,JV) |
---|
574 | SYY(I,K,L,JV)=ALF1Q(I,K)*SYY(I,K,L,JV) |
---|
575 | + +5.*(-ALF3 (I,K)*SY (I,K,L,JV)+ALF2(I,K)*TEMPTM ) |
---|
576 | SY (I,K,L,JV)=ALF1(I,K)*SY (I,K,L,JV)+3.*TEMPTM |
---|
577 | SSXY(I,K,L,JV)=ALF1(I,K)*SSXY(I,K,L,JV)-3.*ALF(I,K)*SSX(I,K,L,JV) |
---|
578 | SYZ(I,K,L,JV)=ALF1(I,K)*SYZ(I,K,L,JV)-3.*ALF(I,K)*SZ(I,K,L,JV) |
---|
579 | C |
---|
580 | ENDIF |
---|
581 | C |
---|
582 | 460 CONTINUE |
---|
583 | 46 CONTINUE |
---|
584 | c print*,'ap ADVYP 46' |
---|
585 | C |
---|
586 | 1 CONTINUE |
---|
587 | |
---|
588 | c-------------------------------------------------- |
---|
589 | C bouclage cyclique horizontal . |
---|
590 | |
---|
591 | DO l = 1,llm |
---|
592 | DO jv = 1,ntra |
---|
593 | DO j = 1,jjp1 |
---|
594 | SM(iip1,j,l) = SM(1,j,l) |
---|
595 | S0(iip1,j,l,jv) = S0(1,j,l,jv) |
---|
596 | SSX(iip1,j,l,jv) = SSX(1,j,l,jv) |
---|
597 | SY(iip1,j,l,jv) = SY(1,j,l,jv) |
---|
598 | SZ(iip1,j,l,jv) = SZ(1,j,l,jv) |
---|
599 | END DO |
---|
600 | END DO |
---|
601 | END DO |
---|
602 | |
---|
603 | c ------------------------------------------------------------------- |
---|
604 | C *** Test negativite: |
---|
605 | |
---|
606 | c DO jv = 1,ntra |
---|
607 | c DO l = 1,llm |
---|
608 | c DO j = 1,jjp1 |
---|
609 | c DO i = 1,iip1 |
---|
610 | c IF (s0( i,j,l,jv ).lt.0.) THEN |
---|
611 | c PRINT*, '------ S0 < 0 en FIN ADVYP ---' |
---|
612 | c PRINT*, 'S0(',i,j,l,jv,')=', S0(i,j,l,jv) |
---|
613 | cc STOP |
---|
614 | c ENDIF |
---|
615 | c ENDDO |
---|
616 | c ENDDO |
---|
617 | c ENDDO |
---|
618 | c ENDDO |
---|
619 | |
---|
620 | |
---|
621 | c ------------------------------------------------------------------- |
---|
622 | C *** Test : diag de la qtite totale de traceur dans |
---|
623 | C l'atmosphere avant l'advection en Y |
---|
624 | |
---|
625 | DO l = 1,llm |
---|
626 | DO j = 1,jjp1 |
---|
627 | DO i = 1,iim |
---|
628 | sqf = sqf + S0(i,j,l,ntra) |
---|
629 | END DO |
---|
630 | END DO |
---|
631 | END DO |
---|
632 | PRINT*,'---------- DIAG DANS ADVY - SORTIE --------' |
---|
633 | PRINT*,'sqf=',sqf |
---|
634 | c print*,'ap ADVYP fin' |
---|
635 | |
---|
636 | c----------------------------------------------------------------- |
---|
637 | C |
---|
638 | RETURN |
---|
639 | END |
---|
640 | |
---|
641 | |
---|
642 | |
---|
643 | |
---|
644 | |
---|
645 | |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | |
---|
650 | |
---|
651 | |
---|