[1992] | 1 | |
---|
[1403] | 2 | ! $Id: wake.F90 3899 2021-05-14 17:12:13Z fairhead $ |
---|
[879] | 3 | |
---|
[2787] | 4 | SUBROUTINE wake(znatsurf, p, ph, pi, dtime, & |
---|
[2408] | 5 | te0, qe0, omgb, & |
---|
| 6 | dtdwn, dqdwn, amdwn, amup, dta, dqa, & |
---|
[2641] | 7 | sigd_con, & |
---|
| 8 | deltatw, deltaqw, sigmaw, wdens, & ! state variables |
---|
| 9 | dth, hw, wape, fip, gfl, & |
---|
| 10 | dtls, dqls, ktopw, omgbdth, dp_omgb, tu, qu, & |
---|
| 11 | dtke, dqke, omg, dp_deltomg, spread, cstar, & |
---|
| 12 | d_deltat_gw, & |
---|
[3899] | 13 | d_deltatw2, d_deltaqw2, d_sigmaw2, d_wdens2, itap) ! tendencies |
---|
[1146] | 14 | |
---|
[974] | 15 | |
---|
[1992] | 16 | ! ************************************************************** |
---|
| 17 | ! * |
---|
| 18 | ! WAKE * |
---|
| 19 | ! retour a un Pupper fixe * |
---|
| 20 | ! * |
---|
| 21 | ! written by : GRANDPEIX Jean-Yves 09/03/2000 * |
---|
| 22 | ! modified by : ROEHRIG Romain 01/29/2007 * |
---|
| 23 | ! ************************************************************** |
---|
[974] | 24 | |
---|
[2488] | 25 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
[1992] | 26 | USE dimphy |
---|
[2160] | 27 | use mod_phys_lmdz_para |
---|
[3899] | 28 | use cold_pool_death_m, only: cold_pool_death |
---|
[2408] | 29 | USE print_control_mod, ONLY: prt_level |
---|
[3899] | 30 | use write_field_phy, only: WriteField_phy |
---|
| 31 | use phys_local_var_mod, only: zxtsol, q_seri, sens_w |
---|
| 32 | use phys_output_var_mod, only: wake_lifetime, wake_final_radius, & |
---|
| 33 | wake_final_height |
---|
| 34 | |
---|
[1992] | 35 | IMPLICIT NONE |
---|
| 36 | ! ============================================================================ |
---|
[974] | 37 | |
---|
| 38 | |
---|
[1992] | 39 | ! But : Decrire le comportement des poches froides apparaissant dans les |
---|
| 40 | ! grands systemes convectifs, et fournir l'energie disponible pour |
---|
| 41 | ! le declenchement de nouvelles colonnes convectives. |
---|
[974] | 42 | |
---|
[2641] | 43 | ! State variables : |
---|
| 44 | ! deltatw : temperature difference between wake and off-wake regions |
---|
| 45 | ! deltaqw : specific humidity difference between wake and off-wake regions |
---|
| 46 | ! sigmaw : fractional area covered by wakes. |
---|
| 47 | ! wdens : number of wakes per unit area |
---|
[974] | 48 | |
---|
[1992] | 49 | ! Variable de sortie : |
---|
[974] | 50 | |
---|
[1992] | 51 | ! wape : WAke Potential Energy |
---|
| 52 | ! fip : Front Incident Power (W/m2) - ALP |
---|
| 53 | ! gfl : Gust Front Length per unit area (m-1) |
---|
| 54 | ! dtls : large scale temperature tendency due to wake |
---|
| 55 | ! dqls : large scale humidity tendency due to wake |
---|
| 56 | ! hw : hauteur de la poche |
---|
| 57 | ! dp_omgb : vertical gradient of large scale omega |
---|
| 58 | ! wdens : densite de poches |
---|
| 59 | ! omgbdth: flux of Delta_Theta transported by LS omega |
---|
| 60 | ! dtKE : differential heating (wake - unpertubed) |
---|
| 61 | ! dqKE : differential moistening (wake - unpertubed) |
---|
| 62 | ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) |
---|
| 63 | ! dp_deltomg : vertical gradient of omg (s-1) |
---|
[2641] | 64 | ! spread : spreading term in d_t_wake and d_q_wake |
---|
[1992] | 65 | ! deltatw : updated temperature difference (T_w-T_u). |
---|
| 66 | ! deltaqw : updated humidity difference (q_w-q_u). |
---|
| 67 | ! sigmaw : updated wake fractional area. |
---|
| 68 | ! d_deltat_gw : delta T tendency due to GW |
---|
[974] | 69 | |
---|
[1992] | 70 | ! Variables d'entree : |
---|
[974] | 71 | |
---|
[1992] | 72 | ! aire : aire de la maille |
---|
| 73 | ! te0 : temperature dans l'environnement (K) |
---|
| 74 | ! qe0 : humidite dans l'environnement (kg/kg) |
---|
| 75 | ! omgb : vitesse verticale moyenne sur la maille (Pa/s) |
---|
| 76 | ! dtdwn: source de chaleur due aux descentes (K/s) |
---|
| 77 | ! dqdwn: source d'humidite due aux descentes (kg/kg/s) |
---|
| 78 | ! dta : source de chaleur due courants satures et detrain (K/s) |
---|
| 79 | ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) |
---|
| 80 | ! amdwn: flux de masse total des descentes, par unite de |
---|
| 81 | ! surface de la maille (kg/m2/s) |
---|
| 82 | ! amup : flux de masse total des ascendances, par unite de |
---|
| 83 | ! surface de la maille (kg/m2/s) |
---|
| 84 | ! p : pressions aux milieux des couches (Pa) |
---|
| 85 | ! ph : pressions aux interfaces (Pa) |
---|
| 86 | ! pi : (p/p_0)**kapa (adim) |
---|
| 87 | ! dtime: increment temporel (s) |
---|
[974] | 88 | |
---|
[1992] | 89 | ! Variables internes : |
---|
[974] | 90 | |
---|
[1992] | 91 | ! rhow : masse volumique de la poche froide |
---|
| 92 | ! rho : environment density at P levels |
---|
| 93 | ! rhoh : environment density at Ph levels |
---|
| 94 | ! te : environment temperature | may change within |
---|
| 95 | ! qe : environment humidity | sub-time-stepping |
---|
| 96 | ! the : environment potential temperature |
---|
| 97 | ! thu : potential temperature in undisturbed area |
---|
| 98 | ! tu : temperature in undisturbed area |
---|
| 99 | ! qu : humidity in undisturbed area |
---|
| 100 | ! dp_omgb: vertical gradient og LS omega |
---|
| 101 | ! omgbw : wake average vertical omega |
---|
| 102 | ! dp_omgbw: vertical gradient of omgbw |
---|
| 103 | ! omgbdq : flux of Delta_q transported by LS omega |
---|
| 104 | ! dth : potential temperature diff. wake-undist. |
---|
| 105 | ! th1 : first pot. temp. for vertical advection (=thu) |
---|
| 106 | ! th2 : second pot. temp. for vertical advection (=thw) |
---|
| 107 | ! q1 : first humidity for vertical advection |
---|
| 108 | ! q2 : second humidity for vertical advection |
---|
| 109 | ! d_deltatw : terme de redistribution pour deltatw |
---|
| 110 | ! d_deltaqw : terme de redistribution pour deltaqw |
---|
| 111 | ! deltatw0 : deltatw initial |
---|
| 112 | ! deltaqw0 : deltaqw initial |
---|
| 113 | ! hw0 : hw initial |
---|
| 114 | ! sigmaw0: sigmaw initial |
---|
| 115 | ! amflux : horizontal mass flux through wake boundary |
---|
| 116 | ! wdens_ref: initial number of wakes per unit area (3D) or per |
---|
| 117 | ! unit length (2D), at the beginning of each time step |
---|
| 118 | ! Tgw : 1 sur la période de onde de gravité |
---|
| 119 | ! Cgw : vitesse de propagation de onde de gravité |
---|
| 120 | ! LL : distance entre 2 poches |
---|
[974] | 121 | |
---|
[1992] | 122 | ! ------------------------------------------------------------------------- |
---|
| 123 | ! Déclaration de variables |
---|
| 124 | ! ------------------------------------------------------------------------- |
---|
[1146] | 125 | |
---|
[1992] | 126 | include "YOMCST.h" |
---|
| 127 | include "cvthermo.h" |
---|
[974] | 128 | |
---|
[1992] | 129 | ! Arguments en entree |
---|
| 130 | ! -------------------- |
---|
[974] | 131 | |
---|
[2787] | 132 | INTEGER, DIMENSION (klon), INTENT(IN) :: znatsurf |
---|
[2408] | 133 | REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi |
---|
[2720] | 134 | REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph |
---|
| 135 | REAL, DIMENSION (klon, klev), INTENT(IN) :: omgb |
---|
[2408] | 136 | REAL, INTENT(IN) :: dtime |
---|
| 137 | REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 |
---|
| 138 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn |
---|
| 139 | REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup |
---|
| 140 | REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa |
---|
| 141 | REAL, DIMENSION (klon), INTENT(IN) :: sigd_con |
---|
[974] | 142 | |
---|
[2408] | 143 | ! |
---|
| 144 | ! Input/Output |
---|
[2641] | 145 | ! State variables |
---|
[2408] | 146 | REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw |
---|
| 147 | REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw |
---|
[2641] | 148 | REAL, DIMENSION (klon), INTENT(INOUT) :: wdens |
---|
[2408] | 149 | |
---|
[1992] | 150 | ! Sorties |
---|
| 151 | ! -------- |
---|
[974] | 152 | |
---|
[2408] | 153 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth |
---|
| 154 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu |
---|
| 155 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls |
---|
| 156 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke |
---|
| 157 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread |
---|
[2720] | 158 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: omgbdth, omg |
---|
[2408] | 159 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg |
---|
| 160 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw |
---|
| 161 | REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar |
---|
| 162 | INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw |
---|
[2641] | 163 | ! Tendencies of state variables |
---|
| 164 | REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 |
---|
| 165 | REAL, DIMENSION (klon), INTENT(OUT) :: d_sigmaw2, d_wdens2 |
---|
[3899] | 166 | integer, intent(in):: itap ! index of call to physiq |
---|
[974] | 167 | |
---|
[1992] | 168 | ! Variables internes |
---|
| 169 | ! ------------------- |
---|
[974] | 170 | |
---|
[1992] | 171 | ! Variables à fixer |
---|
[2720] | 172 | INTEGER, SAVE :: igout |
---|
| 173 | !$OMP THREADPRIVATE(igout) |
---|
[2641] | 174 | REAL :: alon |
---|
| 175 | LOGICAL, SAVE :: first = .TRUE. |
---|
[2160] | 176 | !$OMP THREADPRIVATE(first) |
---|
[2787] | 177 | !jyg< |
---|
| 178 | !! REAL, SAVE :: stark, wdens_ref, coefgw, alpk |
---|
| 179 | REAL, SAVE, DIMENSION(2) :: wdens_ref |
---|
| 180 | REAL, SAVE :: stark, coefgw, alpk |
---|
| 181 | !>jyg |
---|
[2641] | 182 | REAL, SAVE :: crep_upper, crep_sol |
---|
[2160] | 183 | !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) |
---|
[2488] | 184 | |
---|
[2787] | 185 | LOGICAL, SAVE :: flag_wk_check_trgl |
---|
| 186 | !$OMP THREADPRIVATE(flag_wk_check_trgl) |
---|
| 187 | |
---|
[2641] | 188 | REAL :: delta_t_min |
---|
| 189 | INTEGER :: nsub |
---|
| 190 | REAL :: dtimesub |
---|
| 191 | REAL :: sigmad, hwmin, wapecut |
---|
| 192 | REAL :: sigmaw_max |
---|
| 193 | REAL :: dens_rate |
---|
| 194 | REAL :: wdens0 |
---|
[1992] | 195 | ! IM 080208 |
---|
[2641] | 196 | LOGICAL, DIMENSION (klon) :: gwake |
---|
[974] | 197 | |
---|
[1992] | 198 | ! Variables de sauvegarde |
---|
[2641] | 199 | REAL, DIMENSION (klon, klev) :: deltatw0 |
---|
| 200 | REAL, DIMENSION (klon, klev) :: deltaqw0 |
---|
| 201 | REAL, DIMENSION (klon, klev) :: te, qe |
---|
[2720] | 202 | REAL, DIMENSION (klon) :: sigmaw0 |
---|
| 203 | !! REAL, DIMENSION (klon) :: sigmaw1 |
---|
[974] | 204 | |
---|
[1992] | 205 | ! Variables pour les GW |
---|
[2641] | 206 | REAL, DIMENSION (klon) :: ll |
---|
| 207 | REAL, DIMENSION (klon, klev) :: n2 |
---|
| 208 | REAL, DIMENSION (klon, klev) :: cgw |
---|
| 209 | REAL, DIMENSION (klon, klev) :: tgw |
---|
[1403] | 210 | |
---|
[1992] | 211 | ! Variables liées au calcul de hw |
---|
[2641] | 212 | REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new |
---|
| 213 | REAL, DIMENSION (klon) :: sum_dth |
---|
| 214 | REAL, DIMENSION (klon) :: dthmin |
---|
| 215 | REAL, DIMENSION (klon) :: z, dz, hw0 |
---|
| 216 | INTEGER, DIMENSION (klon) :: ktop, kupper |
---|
[1403] | 217 | |
---|
[2787] | 218 | ! Variables liées au test de la forme triangulaire du profil de Delta_theta |
---|
| 219 | REAL, DIMENSION (klon) :: sum_half_dth |
---|
| 220 | REAL, DIMENSION (klon) :: dz_half |
---|
| 221 | |
---|
[1992] | 222 | ! Sub-timestep tendencies and related variables |
---|
[2641] | 223 | REAL, DIMENSION (klon, klev) :: d_deltatw, d_deltaqw |
---|
| 224 | REAL, DIMENSION (klon, klev) :: d_te, d_qe |
---|
| 225 | REAL, DIMENSION (klon) :: d_sigmaw, alpha |
---|
| 226 | REAL, DIMENSION (klon) :: q0_min, q1_min |
---|
| 227 | LOGICAL, DIMENSION (klon) :: wk_adv, ok_qx_qw |
---|
| 228 | REAL, SAVE :: epsilon |
---|
| 229 | !$OMP THREADPRIVATE(epsilon) |
---|
[1992] | 230 | DATA epsilon/1.E-15/ |
---|
[974] | 231 | |
---|
[1992] | 232 | ! Autres variables internes |
---|
[2641] | 233 | INTEGER ::isubstep, k, i |
---|
[974] | 234 | |
---|
[2641] | 235 | REAL :: sigmaw_targ |
---|
[974] | 236 | |
---|
[2641] | 237 | REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu |
---|
| 238 | REAL, DIMENSION (klon) :: sum_dq, sum_rho |
---|
| 239 | REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn |
---|
| 240 | REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu |
---|
| 241 | REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho |
---|
| 242 | REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn |
---|
[974] | 243 | |
---|
[2641] | 244 | REAL, DIMENSION (klon, klev) :: rho, rhow |
---|
| 245 | REAL, DIMENSION (klon, klev+1) :: rhoh |
---|
| 246 | REAL, DIMENSION (klon, klev) :: rhow_moyen |
---|
| 247 | REAL, DIMENSION (klon, klev) :: zh |
---|
| 248 | REAL, DIMENSION (klon, klev+1) :: zhh |
---|
| 249 | REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 |
---|
[974] | 250 | |
---|
[2641] | 251 | REAL, DIMENSION (klon, klev) :: the, thu |
---|
[974] | 252 | |
---|
[2720] | 253 | REAL, DIMENSION (klon, klev) :: omgbw |
---|
[2641] | 254 | REAL, DIMENSION (klon) :: pupper |
---|
| 255 | REAL, DIMENSION (klon) :: omgtop |
---|
| 256 | REAL, DIMENSION (klon, klev) :: dp_omgbw |
---|
| 257 | REAL, DIMENSION (klon) :: ztop, dztop |
---|
| 258 | REAL, DIMENSION (klon, klev) :: alpha_up |
---|
[974] | 259 | |
---|
[2641] | 260 | REAL, DIMENSION (klon) :: rre1, rre2 |
---|
| 261 | REAL :: rrd1, rrd2 |
---|
| 262 | REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 |
---|
| 263 | REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth |
---|
| 264 | REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq |
---|
| 265 | REAL, DIMENSION (klon, klev) :: omgbdq |
---|
[974] | 266 | |
---|
[2641] | 267 | REAL, DIMENSION (klon) :: ff, gg |
---|
| 268 | REAL, DIMENSION (klon) :: wape2, cstar2, heff |
---|
| 269 | |
---|
| 270 | REAL, DIMENSION (klon, klev) :: crep |
---|
| 271 | |
---|
| 272 | REAL, DIMENSION (klon, klev) :: ppi |
---|
[974] | 273 | |
---|
[2641] | 274 | ! cc nrlmd |
---|
[2720] | 275 | REAL, DIMENSION (klon) :: death_rate |
---|
| 276 | !! REAL, DIMENSION (klon) :: nat_rate |
---|
[2641] | 277 | REAL, DIMENSION (klon, klev) :: entr |
---|
| 278 | REAL, DIMENSION (klon, klev) :: detr |
---|
[974] | 279 | |
---|
[2641] | 280 | REAL, DIMENSION(klon) :: sigmaw_in ! pour les prints |
---|
[974] | 281 | |
---|
[3899] | 282 | real:: z_cp0 = 1000. ! initial height of cold pool, in m |
---|
| 283 | !$omp THREADPRIVATE(z_cp0) |
---|
| 284 | |
---|
| 285 | real:: r0 = 2000. ! initial radius of cold pool, in m |
---|
| 286 | !$omp THREADPRIVATE(r0) |
---|
| 287 | |
---|
| 288 | real:: h0 = 1000. ! initial height of environmental boundary layer, in m |
---|
| 289 | !$omp THREADPRIVATE(h0) |
---|
| 290 | |
---|
| 291 | real:: eps_cp = 0.06 ! entrainment coefficient at the border of the cold pool |
---|
| 292 | !$omp THREADPRIVATE(eps_cp) |
---|
| 293 | |
---|
| 294 | real:: beta = 0.2 ! entrainment at the top of the mixed layer |
---|
| 295 | !$omp THREADPRIVATE(beta) |
---|
| 296 | |
---|
| 297 | logical:: av_thvu_constant = .true. |
---|
| 298 | !$omp THREADPRIVATE(av_thvu_constant) |
---|
| 299 | |
---|
| 300 | real:: k_star = 0.68 |
---|
| 301 | !$omp THREADPRIVATE(k_star) |
---|
| 302 | |
---|
| 303 | real rate_uns(klon) ! mass rate in one unsaturated downdraft, in kg s-1 |
---|
| 304 | real theta_vs(klon) ! virtual potential temperature at the surface, in K |
---|
| 305 | |
---|
| 306 | real theta_v_uns(klon) |
---|
| 307 | ! virtual potential temperature of the unsaturated downdraft, in K |
---|
| 308 | |
---|
| 309 | integer return_code(klon) |
---|
| 310 | |
---|
[1992] | 311 | ! ------------------------------------------------------------------------- |
---|
| 312 | ! Initialisations |
---|
| 313 | ! ------------------------------------------------------------------------- |
---|
[974] | 314 | |
---|
[1992] | 315 | ! print*, 'wake initialisations' |
---|
[974] | 316 | |
---|
[1992] | 317 | ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. |
---|
| 318 | ! ------------------------------------------------------------------------- |
---|
[974] | 319 | |
---|
[1992] | 320 | DATA wapecut, sigmad, hwmin/5., .02, 10./ |
---|
| 321 | ! cc nrlmd |
---|
| 322 | DATA sigmaw_max/0.4/ |
---|
| 323 | DATA dens_rate/0.1/ |
---|
| 324 | ! cc |
---|
| 325 | ! Longueur de maille (en m) |
---|
| 326 | ! ------------------------------------------------------------------------- |
---|
[974] | 327 | |
---|
[1992] | 328 | ! ALON = 3.e5 |
---|
| 329 | alon = 1.E6 |
---|
[974] | 330 | |
---|
| 331 | |
---|
[1992] | 332 | ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) |
---|
[974] | 333 | |
---|
[1992] | 334 | ! coefgw : Coefficient pour les ondes de gravité |
---|
| 335 | ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) |
---|
| 336 | ! wdens : Densité de poche froide par maille |
---|
| 337 | ! ------------------------------------------------------------------------- |
---|
[974] | 338 | |
---|
[1992] | 339 | ! cc nrlmd coefgw=10 |
---|
| 340 | ! coefgw=1 |
---|
| 341 | ! wdens0 = 1.0/(alon**2) |
---|
| 342 | ! cc nrlmd wdens = 1.0/(alon**2) |
---|
| 343 | ! cc nrlmd stark = 0.50 |
---|
| 344 | ! CRtest |
---|
| 345 | ! cc nrlmd alpk=0.1 |
---|
| 346 | ! alpk = 1.0 |
---|
| 347 | ! alpk = 0.5 |
---|
| 348 | ! alpk = 0.05 |
---|
[1146] | 349 | |
---|
[2160] | 350 | if (first) then |
---|
[2720] | 351 | |
---|
| 352 | igout = klon/2+1/klon |
---|
| 353 | |
---|
[1992] | 354 | crep_upper = 0.9 |
---|
| 355 | crep_sol = 1.0 |
---|
[974] | 356 | |
---|
[1992] | 357 | ! cc nrlmd Lecture du fichier wake_param.data |
---|
[2488] | 358 | stark=0.33 |
---|
| 359 | CALL getin_p('stark',stark) |
---|
| 360 | alpk=0.25 |
---|
| 361 | CALL getin_p('alpk',alpk) |
---|
[2787] | 362 | !jyg< |
---|
| 363 | !! wdens_ref=8.E-12 |
---|
| 364 | !! CALL getin_p('wdens_ref',wdens_ref) |
---|
| 365 | wdens_ref(1)=8.E-12 |
---|
| 366 | wdens_ref(2)=8.E-12 |
---|
| 367 | CALL getin_p('wdens_ref_o',wdens_ref(1)) !wake number per unit area ; ocean |
---|
| 368 | CALL getin_p('wdens_ref_l',wdens_ref(2)) !wake number per unit area ; land |
---|
| 369 | !>jyg |
---|
[2488] | 370 | coefgw=4. |
---|
| 371 | CALL getin_p('coefgw',coefgw) |
---|
[974] | 372 | |
---|
[2488] | 373 | WRITE(*,*) 'stark=', stark |
---|
| 374 | WRITE(*,*) 'alpk=', alpk |
---|
[2787] | 375 | !jyg< |
---|
| 376 | !! WRITE(*,*) 'wdens_ref=', wdens_ref |
---|
| 377 | WRITE(*,*) 'wdens_ref_o=', wdens_ref(1) |
---|
| 378 | WRITE(*,*) 'wdens_ref_l=', wdens_ref(2) |
---|
| 379 | !>jyg |
---|
[2488] | 380 | WRITE(*,*) 'coefgw=', coefgw |
---|
| 381 | |
---|
[2787] | 382 | flag_wk_check_trgl=.false. |
---|
| 383 | CALL getin_p('flag_wk_check_trgl ', flag_wk_check_trgl) |
---|
| 384 | WRITE(*,*) 'flag_wk_check_trgl=', flag_wk_check_trgl |
---|
| 385 | |
---|
[3899] | 386 | CALL getin_p('z_cp0', z_cp0) |
---|
| 387 | CALL getin_p('r0', r0) |
---|
| 388 | CALL getin_p('h0', h0) |
---|
| 389 | CALL getin_p('eps_cp', eps_cp) |
---|
| 390 | CALL getin_p('beta', beta) |
---|
| 391 | CALL getin_p('av_thvu_constant', av_thvu_constant) |
---|
| 392 | CALL getin_p('k_star', k_star) |
---|
[2160] | 393 | first=.false. |
---|
| 394 | endif |
---|
| 395 | |
---|
[1992] | 396 | ! Initialisation de toutes des densites a wdens_ref. |
---|
| 397 | ! Les densites peuvent evoluer si les poches debordent |
---|
| 398 | ! (voir au tout debut de la boucle sur les substeps) |
---|
[2787] | 399 | !jyg< |
---|
| 400 | !! wdens(:) = wdens_ref |
---|
| 401 | DO i = 1,klon |
---|
| 402 | wdens(i) = wdens_ref(znatsurf(i)+1) |
---|
| 403 | ENDDO |
---|
| 404 | !>jyg |
---|
[974] | 405 | |
---|
[1992] | 406 | ! print*,'stark',stark |
---|
| 407 | ! print*,'alpk',alpk |
---|
| 408 | ! print*,'wdens',wdens |
---|
| 409 | ! print*,'coefgw',coefgw |
---|
| 410 | ! cc |
---|
| 411 | ! Minimum value for |T_wake - T_undist|. Used for wake top definition |
---|
| 412 | ! ------------------------------------------------------------------------- |
---|
[974] | 413 | |
---|
[1992] | 414 | delta_t_min = 0.2 |
---|
[974] | 415 | |
---|
[2720] | 416 | ! 1. - Save initial values, initialize tendencies, initialize output fields |
---|
| 417 | ! ------------------------------------------------------------------------ |
---|
[974] | 418 | |
---|
[2720] | 419 | !jyg< |
---|
| 420 | !! DO k = 1, klev |
---|
| 421 | !! DO i = 1, klon |
---|
| 422 | !! ppi(i, k) = pi(i, k) |
---|
| 423 | !! deltatw0(i, k) = deltatw(i, k) |
---|
| 424 | !! deltaqw0(i, k) = deltaqw(i, k) |
---|
| 425 | !! te(i, k) = te0(i, k) |
---|
| 426 | !! qe(i, k) = qe0(i, k) |
---|
| 427 | !! dtls(i, k) = 0. |
---|
| 428 | !! dqls(i, k) = 0. |
---|
| 429 | !! d_deltat_gw(i, k) = 0. |
---|
| 430 | !! d_te(i, k) = 0. |
---|
| 431 | !! d_qe(i, k) = 0. |
---|
| 432 | !! d_deltatw(i, k) = 0. |
---|
| 433 | !! d_deltaqw(i, k) = 0. |
---|
| 434 | !! ! IM 060508 beg |
---|
| 435 | !! d_deltatw2(i, k) = 0. |
---|
| 436 | !! d_deltaqw2(i, k) = 0. |
---|
| 437 | !! ! IM 060508 end |
---|
| 438 | !! END DO |
---|
| 439 | !! END DO |
---|
| 440 | ppi(:,:) = pi(:,:) |
---|
| 441 | deltatw0(:,:) = deltatw(:,:) |
---|
| 442 | deltaqw0(:,:) = deltaqw(:,:) |
---|
| 443 | te(:,:) = te0(:,:) |
---|
| 444 | qe(:,:) = qe0(:,:) |
---|
| 445 | dtls(:,:) = 0. |
---|
| 446 | dqls(:,:) = 0. |
---|
| 447 | d_deltat_gw(:,:) = 0. |
---|
| 448 | d_te(:,:) = 0. |
---|
| 449 | d_qe(:,:) = 0. |
---|
| 450 | d_deltatw(:,:) = 0. |
---|
| 451 | d_deltaqw(:,:) = 0. |
---|
| 452 | d_deltatw2(:,:) = 0. |
---|
| 453 | d_deltaqw2(:,:) = 0. |
---|
| 454 | !! DO i = 1, klon |
---|
| 455 | !! sigmaw_in(i) = sigmaw(i) |
---|
| 456 | !! END DO |
---|
| 457 | sigmaw_in(:) = sigmaw(:) |
---|
| 458 | !>jyg |
---|
| 459 | |
---|
[1992] | 460 | ! sigmaw1=sigmaw |
---|
| 461 | ! IF (sigd_con.GT.sigmaw1) THEN |
---|
| 462 | ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con |
---|
| 463 | ! ENDIF |
---|
| 464 | DO i = 1, klon |
---|
| 465 | ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) |
---|
[2641] | 466 | !jyg< |
---|
| 467 | !! sigmaw(i) = amax1(sigmaw(i), sigmad) |
---|
| 468 | !! sigmaw(i) = amin1(sigmaw(i), 0.99) |
---|
| 469 | sigmaw_targ = min(max(sigmaw(i), sigmad),0.99) |
---|
| 470 | d_sigmaw2(i) = sigmaw_targ - sigmaw(i) |
---|
| 471 | sigmaw(i) = sigmaw_targ |
---|
| 472 | !>jyg |
---|
[1992] | 473 | sigmaw0(i) = sigmaw(i) |
---|
| 474 | wape(i) = 0. |
---|
| 475 | wape2(i) = 0. |
---|
| 476 | d_sigmaw(i) = 0. |
---|
[2641] | 477 | d_wdens2(i) = 0. |
---|
[1992] | 478 | ktopw(i) = 0 |
---|
| 479 | END DO |
---|
[2720] | 480 | ! |
---|
| 481 | !<jyg |
---|
| 482 | dth(:,:) = 0. |
---|
| 483 | tu(:,:) = 0. |
---|
| 484 | qu(:,:) = 0. |
---|
| 485 | dtke(:,:) = 0. |
---|
| 486 | dqke(:,:) = 0. |
---|
| 487 | spread(:,:) = 0. |
---|
| 488 | omgbdth(:,:) = 0. |
---|
| 489 | omg(:,:) = 0. |
---|
| 490 | dp_omgb(:,:) = 0. |
---|
| 491 | dp_deltomg(:,:) = 0. |
---|
| 492 | hw(:) = 0. |
---|
| 493 | wape(:) = 0. |
---|
| 494 | fip(:) = 0. |
---|
| 495 | gfl(:) = 0. |
---|
| 496 | cstar(:) = 0. |
---|
| 497 | ktopw(:) = 0 |
---|
| 498 | ! |
---|
| 499 | ! Vertical advection local variables |
---|
| 500 | omgbw(:,:) = 0. |
---|
| 501 | omgtop(:) = 0 |
---|
| 502 | dp_omgbw(:,:) = 0. |
---|
| 503 | omgbdq(:,:) = 0. |
---|
| 504 | !>jyg |
---|
| 505 | ! |
---|
| 506 | IF (prt_level>=10) THEN |
---|
| 507 | PRINT *, 'wake-1, sigmaw(igout) ', sigmaw(igout) |
---|
| 508 | PRINT *, 'wake-1, deltatw(igout,k) ', (k,deltatw(igout,k), k=1,klev) |
---|
| 509 | PRINT *, 'wake-1, deltaqw(igout,k) ', (k,deltaqw(igout,k), k=1,klev) |
---|
| 510 | PRINT *, 'wake-1, dowwdraughts, amdwn(igout,k) ', (k,amdwn(igout,k), k=1,klev) |
---|
| 511 | PRINT *, 'wake-1, dowwdraughts, dtdwn(igout,k) ', (k,dtdwn(igout,k), k=1,klev) |
---|
| 512 | PRINT *, 'wake-1, dowwdraughts, dqdwn(igout,k) ', (k,dqdwn(igout,k), k=1,klev) |
---|
| 513 | PRINT *, 'wake-1, updraughts, amup(igout,k) ', (k,amup(igout,k), k=1,klev) |
---|
| 514 | PRINT *, 'wake-1, updraughts, dta(igout,k) ', (k,dta(igout,k), k=1,klev) |
---|
| 515 | PRINT *, 'wake-1, updraughts, dqa(igout,k) ', (k,dqa(igout,k), k=1,klev) |
---|
| 516 | ENDIF |
---|
[974] | 517 | |
---|
[1992] | 518 | ! 2. - Prognostic part |
---|
| 519 | ! -------------------- |
---|
[974] | 520 | |
---|
| 521 | |
---|
[1992] | 522 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 523 | ! --------------------------------------------------------- |
---|
[974] | 524 | |
---|
[1992] | 525 | DO i = 1, klon |
---|
| 526 | z(i) = 0. |
---|
| 527 | ktop(i) = 0 |
---|
| 528 | kupper(i) = 0 |
---|
| 529 | sum_thu(i) = 0. |
---|
| 530 | sum_tu(i) = 0. |
---|
| 531 | sum_qu(i) = 0. |
---|
| 532 | sum_thvu(i) = 0. |
---|
| 533 | sum_dth(i) = 0. |
---|
| 534 | sum_dq(i) = 0. |
---|
| 535 | sum_rho(i) = 0. |
---|
| 536 | sum_dtdwn(i) = 0. |
---|
| 537 | sum_dqdwn(i) = 0. |
---|
[974] | 538 | |
---|
[1992] | 539 | av_thu(i) = 0. |
---|
| 540 | av_tu(i) = 0. |
---|
| 541 | av_qu(i) = 0. |
---|
| 542 | av_thvu(i) = 0. |
---|
| 543 | av_dth(i) = 0. |
---|
| 544 | av_dq(i) = 0. |
---|
| 545 | av_rho(i) = 0. |
---|
| 546 | av_dtdwn(i) = 0. |
---|
| 547 | av_dqdwn(i) = 0. |
---|
| 548 | END DO |
---|
[974] | 549 | |
---|
[1992] | 550 | ! Distance between wakes |
---|
| 551 | DO i = 1, klon |
---|
| 552 | ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) |
---|
| 553 | END DO |
---|
| 554 | ! Potential temperatures and humidity |
---|
| 555 | ! ---------------------------------------------------------- |
---|
| 556 | DO k = 1, klev |
---|
| 557 | DO i = 1, klon |
---|
| 558 | ! write(*,*)'wake 1',i,k,rd,te(i,k) |
---|
| 559 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 560 | ! write(*,*)'wake 2',rho(i,k) |
---|
| 561 | IF (k==1) THEN |
---|
| 562 | ! write(*,*)'wake 3',i,k,rd,te(i,k) |
---|
| 563 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 564 | ! write(*,*)'wake 4',i,k,rd,te(i,k) |
---|
| 565 | zhh(i, k) = 0 |
---|
| 566 | ELSE |
---|
| 567 | ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) |
---|
| 568 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 569 | ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) |
---|
| 570 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 571 | END IF |
---|
| 572 | ! write(*,*)'wake 7',ppi(i,k) |
---|
| 573 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 574 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 575 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 576 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 577 | ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) |
---|
| 578 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 579 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 580 | END DO |
---|
| 581 | END DO |
---|
[1403] | 582 | |
---|
[1992] | 583 | DO k = 1, klev - 1 |
---|
| 584 | DO i = 1, klon |
---|
| 585 | IF (k==1) THEN |
---|
| 586 | n2(i, k) = 0 |
---|
| 587 | ELSE |
---|
[2641] | 588 | n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i,k-1))/ & |
---|
| 589 | (p(i,k+1)-p(i,k-1))) |
---|
[1992] | 590 | END IF |
---|
| 591 | zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 |
---|
[1403] | 592 | |
---|
[1992] | 593 | cgw(i, k) = sqrt(n2(i,k))*zh(i, k) |
---|
| 594 | tgw(i, k) = coefgw*cgw(i, k)/ll(i) |
---|
| 595 | END DO |
---|
| 596 | END DO |
---|
[974] | 597 | |
---|
[1992] | 598 | DO i = 1, klon |
---|
| 599 | n2(i, klev) = 0 |
---|
| 600 | zh(i, klev) = 0 |
---|
| 601 | cgw(i, klev) = 0 |
---|
| 602 | tgw(i, klev) = 0 |
---|
| 603 | END DO |
---|
[974] | 604 | |
---|
[1992] | 605 | ! Calcul de la masse volumique moyenne de la colonne (bdlmd) |
---|
| 606 | ! ----------------------------------------------------------------- |
---|
[974] | 607 | |
---|
[1992] | 608 | DO k = 1, klev |
---|
| 609 | DO i = 1, klon |
---|
| 610 | epaisseur1(i, k) = 0. |
---|
| 611 | epaisseur2(i, k) = 0. |
---|
| 612 | END DO |
---|
| 613 | END DO |
---|
[974] | 614 | |
---|
[1992] | 615 | DO i = 1, klon |
---|
| 616 | epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 617 | epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. |
---|
| 618 | rhow_moyen(i, 1) = rhow(i, 1) |
---|
| 619 | END DO |
---|
[974] | 620 | |
---|
[1992] | 621 | DO k = 2, klev |
---|
| 622 | DO i = 1, klon |
---|
| 623 | epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. |
---|
| 624 | epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) |
---|
| 625 | rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & |
---|
| 626 | epaisseur1(i,k))/epaisseur2(i, k) |
---|
| 627 | END DO |
---|
| 628 | END DO |
---|
[974] | 629 | |
---|
| 630 | |
---|
[1992] | 631 | ! Choose an integration bound well above wake top |
---|
| 632 | ! ----------------------------------------------------------------- |
---|
[974] | 633 | |
---|
[1992] | 634 | ! Pupper = 50000. ! melting level |
---|
| 635 | ! Pupper = 60000. |
---|
| 636 | ! Pupper = 80000. ! essais pour case_e |
---|
| 637 | DO i = 1, klon |
---|
| 638 | pupper(i) = 0.6*ph(i, 1) |
---|
| 639 | pupper(i) = max(pupper(i), 45000.) |
---|
| 640 | ! cc Pupper(i) = 60000. |
---|
| 641 | END DO |
---|
[1146] | 642 | |
---|
[1403] | 643 | |
---|
[1992] | 644 | ! Determine Wake top pressure (Ptop) from buoyancy integral |
---|
| 645 | ! -------------------------------------------------------- |
---|
[1403] | 646 | |
---|
[1992] | 647 | ! -1/ Pressure of the level where dth becomes less than delta_t_min. |
---|
| 648 | |
---|
| 649 | DO i = 1, klon |
---|
| 650 | ptop_provis(i) = ph(i, 1) |
---|
| 651 | END DO |
---|
| 652 | DO k = 2, klev |
---|
| 653 | DO i = 1, klon |
---|
| 654 | |
---|
| 655 | ! IM v3JYG; ptop_provis(i).LT. ph(i,1) |
---|
| 656 | |
---|
| 657 | IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & |
---|
| 658 | ptop_provis(i)==ph(i,1)) THEN |
---|
[2641] | 659 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)- & |
---|
| 660 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 661 | END IF |
---|
| 662 | END DO |
---|
| 663 | END DO |
---|
| 664 | |
---|
| 665 | ! -2/ dth integral |
---|
| 666 | |
---|
| 667 | DO i = 1, klon |
---|
| 668 | sum_dth(i) = 0. |
---|
| 669 | dthmin(i) = -delta_t_min |
---|
| 670 | z(i) = 0. |
---|
| 671 | END DO |
---|
| 672 | |
---|
| 673 | DO k = 1, klev |
---|
| 674 | DO i = 1, klon |
---|
| 675 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 676 | IF (dz(i)>0) THEN |
---|
| 677 | z(i) = z(i) + dz(i) |
---|
| 678 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 679 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 680 | END IF |
---|
| 681 | END DO |
---|
| 682 | END DO |
---|
| 683 | |
---|
| 684 | ! -3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 685 | |
---|
| 686 | DO i = 1, klon |
---|
| 687 | hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 688 | hw0(i) = amax1(hwmin, hw0(i)) |
---|
| 689 | END DO |
---|
| 690 | |
---|
| 691 | ! -4/ now, get Ptop |
---|
| 692 | |
---|
| 693 | DO i = 1, klon |
---|
| 694 | z(i) = 0. |
---|
| 695 | ptop(i) = ph(i, 1) |
---|
| 696 | END DO |
---|
| 697 | |
---|
| 698 | DO k = 1, klev |
---|
| 699 | DO i = 1, klon |
---|
| 700 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) |
---|
| 701 | IF (dz(i)>0) THEN |
---|
| 702 | z(i) = z(i) + dz(i) |
---|
| 703 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 704 | END IF |
---|
| 705 | END DO |
---|
| 706 | END DO |
---|
| 707 | |
---|
[2720] | 708 | IF (prt_level>=10) THEN |
---|
| 709 | PRINT *, 'wake-2, ptop_provis(igout), ptop(igout) ', ptop_provis(igout), ptop(igout) |
---|
| 710 | ENDIF |
---|
[1992] | 711 | |
---|
[2720] | 712 | |
---|
[1992] | 713 | ! -5/ Determination de ktop et kupper |
---|
| 714 | |
---|
| 715 | DO k = klev, 1, -1 |
---|
| 716 | DO i = 1, klon |
---|
| 717 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 718 | IF (ph(i,k+1)<pupper(i)) kupper(i) = k |
---|
| 719 | END DO |
---|
| 720 | END DO |
---|
| 721 | |
---|
| 722 | ! On evite kupper = 1 et kupper = klev |
---|
| 723 | DO i = 1, klon |
---|
| 724 | kupper(i) = max(kupper(i), 2) |
---|
| 725 | kupper(i) = min(kupper(i), klev-1) |
---|
| 726 | END DO |
---|
| 727 | |
---|
| 728 | |
---|
| 729 | ! -6/ Correct ktop and ptop |
---|
| 730 | |
---|
| 731 | DO i = 1, klon |
---|
| 732 | ptop_new(i) = ptop(i) |
---|
| 733 | END DO |
---|
| 734 | DO k = klev, 2, -1 |
---|
| 735 | DO i = 1, klon |
---|
| 736 | IF (k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 737 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
| 738 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & |
---|
| 739 | k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
| 740 | END IF |
---|
| 741 | END DO |
---|
| 742 | END DO |
---|
| 743 | |
---|
| 744 | DO i = 1, klon |
---|
| 745 | ptop(i) = ptop_new(i) |
---|
| 746 | END DO |
---|
| 747 | |
---|
| 748 | DO k = klev, 1, -1 |
---|
| 749 | DO i = 1, klon |
---|
| 750 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 751 | END DO |
---|
| 752 | END DO |
---|
| 753 | |
---|
[2720] | 754 | IF (prt_level>=10) THEN |
---|
| 755 | PRINT *, 'wake-3, ktop(igout), kupper(igout) ', ktop(igout), kupper(igout) |
---|
| 756 | ENDIF |
---|
| 757 | |
---|
[1992] | 758 | ! -5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 759 | |
---|
| 760 | DO k = 1, klev |
---|
| 761 | DO i = 1, klon |
---|
| 762 | IF (k>=kupper(i)) THEN |
---|
| 763 | deltatw(i, k) = 0. |
---|
| 764 | deltaqw(i, k) = 0. |
---|
[2641] | 765 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 766 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 767 | END IF |
---|
| 768 | END DO |
---|
| 769 | END DO |
---|
| 770 | |
---|
| 771 | |
---|
| 772 | ! Vertical gradient of LS omega |
---|
| 773 | |
---|
| 774 | DO k = 1, klev |
---|
| 775 | DO i = 1, klon |
---|
| 776 | IF (k<=kupper(i)) THEN |
---|
| 777 | dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 778 | END IF |
---|
| 779 | END DO |
---|
| 780 | END DO |
---|
| 781 | |
---|
| 782 | ! Integrals (and wake top level number) |
---|
| 783 | ! -------------------------------------- |
---|
| 784 | |
---|
| 785 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 786 | |
---|
| 787 | DO i = 1, klon |
---|
| 788 | z(i) = 1. |
---|
| 789 | dz(i) = 1. |
---|
[2542] | 790 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[1992] | 791 | sum_dth(i) = 0. |
---|
| 792 | END DO |
---|
| 793 | |
---|
| 794 | DO k = 1, klev |
---|
| 795 | DO i = 1, klon |
---|
| 796 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 797 | IF (dz(i)>0) THEN |
---|
| 798 | z(i) = z(i) + dz(i) |
---|
| 799 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 800 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 801 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2542] | 802 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 803 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 804 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 805 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 806 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 807 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 808 | END IF |
---|
| 809 | END DO |
---|
| 810 | END DO |
---|
| 811 | |
---|
| 812 | DO i = 1, klon |
---|
| 813 | hw0(i) = z(i) |
---|
| 814 | END DO |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | ! 2.1 - WAPE and mean forcing computation |
---|
| 818 | ! --------------------------------------- |
---|
| 819 | |
---|
| 820 | ! --------------------------------------- |
---|
| 821 | |
---|
| 822 | ! Means |
---|
| 823 | |
---|
| 824 | DO i = 1, klon |
---|
| 825 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 826 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 827 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 828 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 829 | ! av_thve = sum_thve/hw0 |
---|
| 830 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 831 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 832 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 833 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 834 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 835 | |
---|
[2641] | 836 | wape(i) = -rg*hw0(i)*(av_dth(i)+ & |
---|
| 837 | epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
| 838 | |
---|
[1992] | 839 | END DO |
---|
| 840 | |
---|
| 841 | ! 2.2 Prognostic variable update |
---|
| 842 | ! ------------------------------ |
---|
| 843 | |
---|
| 844 | ! Filter out bad wakes |
---|
| 845 | |
---|
| 846 | DO k = 1, klev |
---|
| 847 | DO i = 1, klon |
---|
| 848 | IF (wape(i)<0.) THEN |
---|
| 849 | deltatw(i, k) = 0. |
---|
| 850 | deltaqw(i, k) = 0. |
---|
| 851 | dth(i, k) = 0. |
---|
[2641] | 852 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 853 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 854 | END IF |
---|
| 855 | END DO |
---|
| 856 | END DO |
---|
| 857 | |
---|
| 858 | DO i = 1, klon |
---|
| 859 | IF (wape(i)<0.) THEN |
---|
| 860 | wape(i) = 0. |
---|
| 861 | cstar(i) = 0. |
---|
| 862 | hw(i) = hwmin |
---|
[2641] | 863 | !jyg< |
---|
| 864 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 865 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 866 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 867 | sigmaw(i) = sigmaw_targ |
---|
| 868 | !>jyg |
---|
[1992] | 869 | fip(i) = 0. |
---|
| 870 | gwake(i) = .FALSE. |
---|
| 871 | ELSE |
---|
| 872 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 873 | gwake(i) = .TRUE. |
---|
| 874 | END IF |
---|
| 875 | END DO |
---|
| 876 | |
---|
| 877 | |
---|
| 878 | ! Check qx and qw positivity |
---|
| 879 | ! -------------------------- |
---|
| 880 | DO i = 1, klon |
---|
[2641] | 881 | q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), & |
---|
| 882 | (qe(i,1)+(1.-sigmaw(i))*deltaqw(i,1))) |
---|
[1992] | 883 | END DO |
---|
| 884 | DO k = 2, klev |
---|
| 885 | DO i = 1, klon |
---|
[2641] | 886 | q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), & |
---|
| 887 | (qe(i,k)+(1.-sigmaw(i))*deltaqw(i,k))) |
---|
[1992] | 888 | IF (q1_min(i)<=q0_min(i)) THEN |
---|
| 889 | q0_min(i) = q1_min(i) |
---|
| 890 | END IF |
---|
| 891 | END DO |
---|
| 892 | END DO |
---|
| 893 | |
---|
| 894 | DO i = 1, klon |
---|
| 895 | ok_qx_qw(i) = q0_min(i) >= 0. |
---|
| 896 | alpha(i) = 1. |
---|
| 897 | END DO |
---|
| 898 | |
---|
[2720] | 899 | IF (prt_level>=10) THEN |
---|
[2787] | 900 | PRINT *, 'wake-4, sigmaw(igout), cstar(igout), wape(igout), ktop(igout) ', & |
---|
| 901 | sigmaw(igout), cstar(igout), wape(igout), ktop(igout) |
---|
[2720] | 902 | ENDIF |
---|
| 903 | |
---|
| 904 | |
---|
[1992] | 905 | ! C ----------------------------------------------------------------- |
---|
| 906 | ! Sub-time-stepping |
---|
| 907 | ! ----------------- |
---|
| 908 | |
---|
| 909 | nsub = 10 |
---|
| 910 | dtimesub = dtime/nsub |
---|
| 911 | |
---|
| 912 | ! ------------------------------------------------------------ |
---|
| 913 | DO isubstep = 1, nsub |
---|
| 914 | ! ------------------------------------------------------------ |
---|
| 915 | |
---|
| 916 | ! wk_adv is the logical flag enabling wake evolution in the time advance |
---|
| 917 | ! loop |
---|
| 918 | DO i = 1, klon |
---|
| 919 | wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. |
---|
| 920 | END DO |
---|
[2720] | 921 | IF (prt_level>=10) THEN |
---|
[2787] | 922 | PRINT *, 'wake-4.1, isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) ', & |
---|
| 923 | isubstep,wk_adv(igout),cstar(igout),wape(igout), ptop(igout) |
---|
[2720] | 924 | ENDIF |
---|
[1992] | 925 | |
---|
| 926 | ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement |
---|
| 927 | ! négatif de ktop à kupper -------- |
---|
| 928 | ! cc On calcule pour cela une densité wdens0 pour laquelle on |
---|
| 929 | ! aurait un entrainement nul --- |
---|
| 930 | DO i = 1, klon |
---|
| 931 | ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', |
---|
| 932 | ! c $ isubstep,wk_adv(i),cstar(i),wape(i) |
---|
| 933 | IF (wk_adv(i) .AND. cstar(i)>0.01) THEN |
---|
| 934 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
[2641] | 935 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 936 | wdens0 = (sigmaw(i)/(4.*3.14))* & |
---|
| 937 | ((1.-sigmaw(i))*omg(i,kupper(i)+1)/((ph(i,1)-pupper(i))*cstar(i)))**(2) |
---|
[1992] | 938 | IF (wdens(i)<=wdens0*1.1) THEN |
---|
| 939 | wdens(i) = wdens0 |
---|
| 940 | END IF |
---|
| 941 | ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 942 | ! c $ ,ph(i,1)-pupper(i)', |
---|
| 943 | ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) |
---|
| 944 | ! c $ ,ph(i,1)-pupper(i) |
---|
| 945 | END IF |
---|
| 946 | END DO |
---|
| 947 | |
---|
| 948 | ! cc nrlmd |
---|
| 949 | |
---|
| 950 | DO i = 1, klon |
---|
| 951 | IF (wk_adv(i)) THEN |
---|
[1403] | 952 | gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) |
---|
[2641] | 953 | !jyg< |
---|
| 954 | !! sigmaw(i) = amin1(sigmaw(i), sigmaw_max) |
---|
| 955 | sigmaw_targ = min(sigmaw(i), sigmaw_max) |
---|
| 956 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 957 | sigmaw(i) = sigmaw_targ |
---|
| 958 | !>jyg |
---|
[1992] | 959 | END IF |
---|
| 960 | END DO |
---|
[2641] | 961 | |
---|
[1992] | 962 | DO i = 1, klon |
---|
| 963 | IF (wk_adv(i)) THEN |
---|
| 964 | ! cc nrlmd Introduction du taux de mortalité des poches et |
---|
| 965 | ! test sur sigmaw_max=0.4 |
---|
| 966 | ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub |
---|
| 967 | IF (sigmaw(i)>=sigmaw_max) THEN |
---|
| 968 | death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) |
---|
| 969 | ELSE |
---|
| 970 | death_rate(i) = 0. |
---|
| 971 | END IF |
---|
[2641] | 972 | |
---|
[1992] | 973 | d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & |
---|
| 974 | dtimesub |
---|
| 975 | ! $ - nat_rate(i)*sigmaw(i)*dtimesub |
---|
| 976 | ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 977 | ! c $ death_rate(i),ktop(i),kupper(i)', |
---|
| 978 | ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), |
---|
| 979 | ! c $ death_rate(i),ktop(i),kupper(i) |
---|
[1403] | 980 | |
---|
[1992] | 981 | ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub |
---|
| 982 | ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! |
---|
| 983 | ! wdens = wdens0/(10.*sigmaw) |
---|
| 984 | ! sigmaw =max(sigmaw,sigd_con) |
---|
| 985 | ! sigmaw =max(sigmaw,sigmad) |
---|
| 986 | END IF |
---|
| 987 | END DO |
---|
| 988 | |
---|
| 989 | ! calcul de la difference de vitesse verticale poche - zone non perturbee |
---|
| 990 | ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg |
---|
[2720] | 991 | ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on definit |
---|
[1992] | 992 | ! IM 060208 au niveau k=1..? |
---|
[2720] | 993 | !JYG 161013 Correction : maintenant omg est dimensionne a klev. |
---|
[1992] | 994 | DO k = 1, klev |
---|
| 995 | DO i = 1, klon |
---|
| 996 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 997 | dp_deltomg(i, k) = 0. |
---|
| 998 | END IF |
---|
| 999 | END DO |
---|
| 1000 | END DO |
---|
[2720] | 1001 | DO k = 1, klev |
---|
[1992] | 1002 | DO i = 1, klon |
---|
| 1003 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1004 | omg(i, k) = 0. |
---|
| 1005 | END IF |
---|
| 1006 | END DO |
---|
| 1007 | END DO |
---|
| 1008 | |
---|
| 1009 | DO i = 1, klon |
---|
| 1010 | IF (wk_adv(i)) THEN |
---|
| 1011 | z(i) = 0. |
---|
| 1012 | omg(i, 1) = 0. |
---|
| 1013 | dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) |
---|
| 1014 | END IF |
---|
| 1015 | END DO |
---|
| 1016 | |
---|
| 1017 | DO k = 2, klev |
---|
| 1018 | DO i = 1, klon |
---|
| 1019 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
[974] | 1020 | dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) |
---|
[1992] | 1021 | z(i) = z(i) + dz(i) |
---|
| 1022 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1023 | omg(i, k) = dp_deltomg(i, 1)*z(i) |
---|
| 1024 | END IF |
---|
| 1025 | END DO |
---|
| 1026 | END DO |
---|
| 1027 | |
---|
| 1028 | DO i = 1, klon |
---|
| 1029 | IF (wk_adv(i)) THEN |
---|
| 1030 | dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) |
---|
| 1031 | ztop(i) = z(i) + dztop(i) |
---|
| 1032 | omgtop(i) = dp_deltomg(i, 1)*ztop(i) |
---|
| 1033 | END IF |
---|
| 1034 | END DO |
---|
| 1035 | |
---|
[2720] | 1036 | IF (prt_level>=10) THEN |
---|
| 1037 | PRINT *, 'wake-4.2, omg(igout,k) ', (k,omg(igout,k), k=1,klev) |
---|
[2787] | 1038 | PRINT *, 'wake-4.2, omgtop(igout), ptop(igout), ktop(igout) ', & |
---|
| 1039 | omgtop(igout), ptop(igout), ktop(igout) |
---|
[2720] | 1040 | ENDIF |
---|
| 1041 | |
---|
[1992] | 1042 | ! ----------------- |
---|
| 1043 | ! From m/s to Pa/s |
---|
| 1044 | ! ----------------- |
---|
| 1045 | |
---|
| 1046 | DO i = 1, klon |
---|
| 1047 | IF (wk_adv(i)) THEN |
---|
| 1048 | omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) |
---|
| 1049 | dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) |
---|
| 1050 | END IF |
---|
| 1051 | END DO |
---|
| 1052 | |
---|
| 1053 | DO k = 1, klev |
---|
| 1054 | DO i = 1, klon |
---|
| 1055 | IF (wk_adv(i) .AND. k<=ktop(i)) THEN |
---|
| 1056 | omg(i, k) = -rho(i, k)*rg*omg(i, k) |
---|
| 1057 | dp_deltomg(i, k) = dp_deltomg(i, 1) |
---|
| 1058 | END IF |
---|
| 1059 | END DO |
---|
| 1060 | END DO |
---|
| 1061 | |
---|
| 1062 | ! raccordement lineaire de omg de ptop a pupper |
---|
| 1063 | |
---|
| 1064 | DO i = 1, klon |
---|
| 1065 | IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN |
---|
| 1066 | omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & |
---|
| 1067 | rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) |
---|
| 1068 | dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & |
---|
| 1069 | (ptop(i)-pupper(i)) |
---|
| 1070 | END IF |
---|
| 1071 | END DO |
---|
| 1072 | |
---|
| 1073 | ! c DO i=1,klon |
---|
| 1074 | ! c print*,'Pente entre 0 et kupper (référence)' |
---|
| 1075 | ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) |
---|
| 1076 | ! c print*,'Pente entre ktop et kupper' |
---|
| 1077 | ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) |
---|
| 1078 | ! c ENDDO |
---|
| 1079 | ! c |
---|
| 1080 | DO k = 1, klev |
---|
| 1081 | DO i = 1, klon |
---|
| 1082 | IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN |
---|
| 1083 | dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) |
---|
| 1084 | omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) |
---|
| 1085 | END IF |
---|
| 1086 | END DO |
---|
| 1087 | END DO |
---|
[2720] | 1088 | !! print *,'omg(igout,k) ', (k,omg(igout,k),k=1,klev) |
---|
[1992] | 1089 | ! cc nrlmd |
---|
| 1090 | ! c DO i=1,klon |
---|
| 1091 | ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) |
---|
| 1092 | ! c END DO |
---|
| 1093 | ! cc |
---|
| 1094 | |
---|
| 1095 | |
---|
| 1096 | ! -- Compute wake average vertical velocity omgbw |
---|
| 1097 | |
---|
| 1098 | |
---|
[2720] | 1099 | DO k = 1, klev |
---|
[1992] | 1100 | DO i = 1, klon |
---|
[1146] | 1101 | IF (wk_adv(i)) THEN |
---|
[1992] | 1102 | omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) |
---|
| 1103 | END IF |
---|
| 1104 | END DO |
---|
| 1105 | END DO |
---|
| 1106 | ! -- and its vertical gradient dp_omgbw |
---|
| 1107 | |
---|
[2720] | 1108 | DO k = 1, klev-1 |
---|
[1992] | 1109 | DO i = 1, klon |
---|
[1146] | 1110 | IF (wk_adv(i)) THEN |
---|
[1992] | 1111 | dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) |
---|
| 1112 | END IF |
---|
| 1113 | END DO |
---|
| 1114 | END DO |
---|
[2720] | 1115 | DO i = 1, klon |
---|
| 1116 | IF (wk_adv(i)) THEN |
---|
| 1117 | dp_omgbw(i, klev) = 0. |
---|
| 1118 | END IF |
---|
| 1119 | END DO |
---|
[974] | 1120 | |
---|
[1992] | 1121 | ! -- Upstream coefficients for omgb velocity |
---|
| 1122 | ! -- (alpha_up(k) is the coefficient of the value at level k) |
---|
| 1123 | ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) |
---|
| 1124 | DO k = 1, klev |
---|
| 1125 | DO i = 1, klon |
---|
| 1126 | IF (wk_adv(i)) THEN |
---|
| 1127 | alpha_up(i, k) = 0. |
---|
| 1128 | IF (omgb(i,k)>0.) alpha_up(i, k) = 1. |
---|
| 1129 | END IF |
---|
| 1130 | END DO |
---|
| 1131 | END DO |
---|
[974] | 1132 | |
---|
[1992] | 1133 | ! Matrix expressing [The,deltatw] from [Th1,Th2] |
---|
[974] | 1134 | |
---|
[1992] | 1135 | DO i = 1, klon |
---|
| 1136 | IF (wk_adv(i)) THEN |
---|
| 1137 | rre1(i) = 1. - sigmaw(i) |
---|
| 1138 | rre2(i) = sigmaw(i) |
---|
| 1139 | END IF |
---|
| 1140 | END DO |
---|
| 1141 | rrd1 = -1. |
---|
| 1142 | rrd2 = 1. |
---|
[974] | 1143 | |
---|
[1992] | 1144 | ! -- Get [Th1,Th2], dth and [q1,q2] |
---|
[974] | 1145 | |
---|
[1992] | 1146 | DO k = 1, klev |
---|
| 1147 | DO i = 1, klon |
---|
| 1148 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1149 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1150 | th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area |
---|
| 1151 | th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake |
---|
| 1152 | q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area |
---|
| 1153 | q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake |
---|
| 1154 | END IF |
---|
| 1155 | END DO |
---|
| 1156 | END DO |
---|
[974] | 1157 | |
---|
[1992] | 1158 | DO i = 1, klon |
---|
| 1159 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1160 | d_th1(i, 1) = 0. |
---|
| 1161 | d_th2(i, 1) = 0. |
---|
| 1162 | d_dth(i, 1) = 0. |
---|
| 1163 | d_q1(i, 1) = 0. |
---|
| 1164 | d_q2(i, 1) = 0. |
---|
| 1165 | d_dq(i, 1) = 0. |
---|
| 1166 | END IF |
---|
| 1167 | END DO |
---|
[974] | 1168 | |
---|
[1992] | 1169 | DO k = 2, klev |
---|
| 1170 | DO i = 1, klon |
---|
| 1171 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN |
---|
| 1172 | d_th1(i, k) = th1(i, k-1) - th1(i, k) |
---|
| 1173 | d_th2(i, k) = th2(i, k-1) - th2(i, k) |
---|
| 1174 | d_dth(i, k) = dth(i, k-1) - dth(i, k) |
---|
| 1175 | d_q1(i, k) = q1(i, k-1) - q1(i, k) |
---|
| 1176 | d_q2(i, k) = q2(i, k-1) - q2(i, k) |
---|
| 1177 | d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) |
---|
| 1178 | END IF |
---|
| 1179 | END DO |
---|
| 1180 | END DO |
---|
[1146] | 1181 | |
---|
[1992] | 1182 | DO i = 1, klon |
---|
| 1183 | IF (wk_adv(i)) THEN |
---|
| 1184 | omgbdth(i, 1) = 0. |
---|
| 1185 | omgbdq(i, 1) = 0. |
---|
| 1186 | END IF |
---|
| 1187 | END DO |
---|
[1277] | 1188 | |
---|
[1992] | 1189 | DO k = 2, klev |
---|
| 1190 | DO i = 1, klon |
---|
| 1191 | IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces |
---|
| 1192 | omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) |
---|
| 1193 | omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) |
---|
| 1194 | END IF |
---|
| 1195 | END DO |
---|
| 1196 | END DO |
---|
[1403] | 1197 | |
---|
[2720] | 1198 | IF (prt_level>=10) THEN |
---|
| 1199 | PRINT *, 'wake-4.3, th1(igout,k) ', (k,th1(igout,k), k=1,klev) |
---|
| 1200 | PRINT *, 'wake-4.3, th2(igout,k) ', (k,th2(igout,k), k=1,klev) |
---|
| 1201 | PRINT *, 'wake-4.3, dth(igout,k) ', (k,dth(igout,k), k=1,klev) |
---|
| 1202 | PRINT *, 'wake-4.3, omgbdth(igout,k) ', (k,omgbdth(igout,k), k=1,klev) |
---|
| 1203 | ENDIF |
---|
| 1204 | |
---|
[1992] | 1205 | ! ----------------------------------------------------------------- |
---|
[2720] | 1206 | DO k = 1, klev-1 |
---|
[1992] | 1207 | DO i = 1, klon |
---|
| 1208 | IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN |
---|
| 1209 | ! ----------------------------------------------------------------- |
---|
[974] | 1210 | |
---|
[1992] | 1211 | ! Compute redistribution (advective) term |
---|
[1403] | 1212 | |
---|
[1992] | 1213 | d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
[2641] | 1214 | (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k) - & |
---|
| 1215 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1)- & |
---|
| 1216 | (1.-alpha_up(i,k))*omgbdth(i,k)- & |
---|
| 1217 | alpha_up(i,k+1)*omgbdth(i,k+1))*ppi(i, k) |
---|
[2720] | 1218 | ! print*,'d_deltatw=', k, d_deltatw(i,k) |
---|
[1403] | 1219 | |
---|
[1992] | 1220 | d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & |
---|
[2641] | 1221 | (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1222 | rrd2*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1)- & |
---|
| 1223 | (1.-alpha_up(i,k))*omgbdq(i,k)- & |
---|
| 1224 | alpha_up(i,k+1)*omgbdq(i,k+1)) |
---|
[2720] | 1225 | ! print*,'d_deltaqw=', k, d_deltaqw(i,k) |
---|
[974] | 1226 | |
---|
[1992] | 1227 | ! and increment large scale tendencies |
---|
[974] | 1228 | |
---|
| 1229 | |
---|
| 1230 | |
---|
| 1231 | |
---|
[1992] | 1232 | ! C |
---|
| 1233 | ! ----------------------------------------------------------------- |
---|
[2641] | 1234 | d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)- & |
---|
| 1235 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/ & |
---|
| 1236 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1237 | -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1238 | (ph(i,k)-ph(i,k+1)) )*ppi(i, k) |
---|
[974] | 1239 | |
---|
[2641] | 1240 | d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)- & |
---|
| 1241 | rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/ & |
---|
| 1242 | (ph(i,k)-ph(i,k+1)) & |
---|
| 1243 | -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i,k+1))/ & |
---|
| 1244 | (ph(i,k)-ph(i,k+1)) ) |
---|
[1992] | 1245 | ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN |
---|
[2641] | 1246 | d_te(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i,k)/(ph(i,k)-ph(i,k+1)))*ppi(i, k) |
---|
[1403] | 1247 | |
---|
[2641] | 1248 | d_qe(i, k) = dtimesub*(rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i,k)/(ph(i,k)-ph(i,k+1))) |
---|
[1403] | 1249 | |
---|
[1992] | 1250 | END IF |
---|
| 1251 | ! cc |
---|
| 1252 | END DO |
---|
| 1253 | END DO |
---|
| 1254 | ! ------------------------------------------------------------------ |
---|
[974] | 1255 | |
---|
[2720] | 1256 | IF (prt_level>=10) THEN |
---|
| 1257 | PRINT *, 'wake-4.3, d_deltatw(igout,k) ', (k,d_deltatw(igout,k), k=1,klev) |
---|
| 1258 | PRINT *, 'wake-4.3, d_deltaqw(igout,k) ', (k,d_deltaqw(igout,k), k=1,klev) |
---|
| 1259 | ENDIF |
---|
| 1260 | |
---|
[1992] | 1261 | ! Increment state variables |
---|
[974] | 1262 | |
---|
[1992] | 1263 | DO k = 1, klev |
---|
| 1264 | DO i = 1, klon |
---|
| 1265 | ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN |
---|
| 1266 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1267 | ! cc |
---|
[974] | 1268 | |
---|
[1146] | 1269 | |
---|
[974] | 1270 | |
---|
[1992] | 1271 | ! Coefficient de répartition |
---|
[974] | 1272 | |
---|
[1992] | 1273 | crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & |
---|
| 1274 | (ph(i,kupper(i))-ph(i,1)) |
---|
[2641] | 1275 | crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/ & |
---|
| 1276 | (p(i,1)-ph(i,kupper(i))) |
---|
[974] | 1277 | |
---|
| 1278 | |
---|
[1992] | 1279 | ! Reintroduce compensating subsidence term. |
---|
[1146] | 1280 | |
---|
[1992] | 1281 | ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw |
---|
| 1282 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) |
---|
| 1283 | ! . /(1-sigmaw) |
---|
| 1284 | ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw |
---|
| 1285 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) |
---|
| 1286 | ! . /(1-sigmaw) |
---|
[974] | 1287 | |
---|
[1992] | 1288 | ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw |
---|
| 1289 | ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) |
---|
| 1290 | ! . /(1-sigmaw) |
---|
| 1291 | ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw |
---|
| 1292 | ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) |
---|
| 1293 | ! . /(1-sigmaw) |
---|
[974] | 1294 | |
---|
[1992] | 1295 | dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) |
---|
| 1296 | dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) |
---|
| 1297 | ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) |
---|
[974] | 1298 | |
---|
[2160] | 1299 | ! |
---|
[1146] | 1300 | |
---|
[1992] | 1301 | ! cc nrlmd Prise en compte du taux de mortalité |
---|
| 1302 | ! cc Définitions de entr, detr |
---|
| 1303 | detr(i, k) = 0. |
---|
[1146] | 1304 | |
---|
[1992] | 1305 | entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & |
---|
| 1306 | sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) |
---|
[1146] | 1307 | |
---|
[1992] | 1308 | spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) |
---|
| 1309 | ! cc spread(i,k) = |
---|
| 1310 | ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ |
---|
| 1311 | ! cc $ sigmaw(i) |
---|
[1146] | 1312 | |
---|
| 1313 | |
---|
[1992] | 1314 | ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU |
---|
| 1315 | ! Jingmei |
---|
[1146] | 1316 | |
---|
[1992] | 1317 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), |
---|
| 1318 | ! & Tgw(i,k),deltatw(i,k) |
---|
| 1319 | d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & |
---|
| 1320 | dtimesub |
---|
| 1321 | ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) |
---|
| 1322 | ff(i) = d_deltatw(i, k)/dtimesub |
---|
[1403] | 1323 | |
---|
[1992] | 1324 | ! Sans GW |
---|
[1403] | 1325 | |
---|
[1992] | 1326 | ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) |
---|
[974] | 1327 | |
---|
[1992] | 1328 | ! GW formule 1 |
---|
| 1329 | |
---|
| 1330 | ! deltatw(k) = deltatw(k)+dtimesub* |
---|
| 1331 | ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) |
---|
| 1332 | |
---|
| 1333 | ! GW formule 2 |
---|
| 1334 | |
---|
| 1335 | IF (dtimesub*tgw(i,k)<1.E-10) THEN |
---|
[2641] | 1336 | d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k) - & |
---|
| 1337 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1338 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & ! cc |
---|
| 1339 | tgw(i,k)*deltatw(i,k) ) |
---|
[1992] | 1340 | ELSE |
---|
[2641] | 1341 | d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i,k)))* & |
---|
| 1342 | (ff(i)+dtke(i,k) - & |
---|
| 1343 | entr(i,k)*deltatw(i,k)/sigmaw(i) - & |
---|
| 1344 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) - & |
---|
| 1345 | tgw(i,k)*deltatw(i,k) ) |
---|
[1992] | 1346 | END IF |
---|
| 1347 | |
---|
| 1348 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1349 | |
---|
| 1350 | gg(i) = d_deltaqw(i, k)/dtimesub |
---|
| 1351 | |
---|
[2641] | 1352 | d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k) - & |
---|
| 1353 | entr(i,k)*deltaqw(i,k)/sigmaw(i) - & |
---|
| 1354 | (death_rate(i)*sigmaw(i)+detr(i,k))*deltaqw(i,k)/(1.-sigmaw(i))) |
---|
[1992] | 1355 | ! cc |
---|
| 1356 | |
---|
| 1357 | ! cc nrlmd |
---|
| 1358 | ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) |
---|
| 1359 | ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) |
---|
| 1360 | ! cc |
---|
| 1361 | END IF |
---|
| 1362 | END DO |
---|
| 1363 | END DO |
---|
| 1364 | |
---|
| 1365 | |
---|
| 1366 | ! Scale tendencies so that water vapour remains positive in w and x. |
---|
| 1367 | |
---|
| 1368 | CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 1369 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 1370 | |
---|
| 1371 | ! cc nrlmd |
---|
| 1372 | ! c print*,'alpha' |
---|
| 1373 | ! c do i=1,klon |
---|
| 1374 | ! c print*,alpha(i) |
---|
| 1375 | ! c end do |
---|
| 1376 | ! cc |
---|
| 1377 | DO k = 1, klev |
---|
| 1378 | DO i = 1, klon |
---|
| 1379 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1380 | d_te(i, k) = alpha(i)*d_te(i, k) |
---|
| 1381 | d_qe(i, k) = alpha(i)*d_qe(i, k) |
---|
| 1382 | d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) |
---|
| 1383 | d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) |
---|
| 1384 | d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) |
---|
| 1385 | END IF |
---|
| 1386 | END DO |
---|
| 1387 | END DO |
---|
| 1388 | DO i = 1, klon |
---|
| 1389 | IF (wk_adv(i)) THEN |
---|
| 1390 | d_sigmaw(i) = alpha(i)*d_sigmaw(i) |
---|
| 1391 | END IF |
---|
| 1392 | END DO |
---|
| 1393 | |
---|
| 1394 | ! Update large scale variables and wake variables |
---|
| 1395 | ! IM 060208 manque DO i + remplace DO k=1,kupper(i) |
---|
| 1396 | ! IM 060208 DO k = 1,kupper(i) |
---|
| 1397 | DO k = 1, klev |
---|
| 1398 | DO i = 1, klon |
---|
| 1399 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1400 | dtls(i, k) = dtls(i, k) + d_te(i, k) |
---|
| 1401 | dqls(i, k) = dqls(i, k) + d_qe(i, k) |
---|
| 1402 | ! cc nrlmd |
---|
| 1403 | d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) |
---|
| 1404 | d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) |
---|
| 1405 | ! cc |
---|
| 1406 | END IF |
---|
| 1407 | END DO |
---|
| 1408 | END DO |
---|
| 1409 | DO k = 1, klev |
---|
| 1410 | DO i = 1, klon |
---|
| 1411 | IF (wk_adv(i) .AND. k<=kupper(i)) THEN |
---|
| 1412 | te(i, k) = te0(i, k) + dtls(i, k) |
---|
| 1413 | qe(i, k) = qe0(i, k) + dqls(i, k) |
---|
| 1414 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1415 | deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) |
---|
| 1416 | deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) |
---|
| 1417 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1418 | ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) |
---|
| 1419 | ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) |
---|
| 1420 | END IF |
---|
| 1421 | END DO |
---|
| 1422 | END DO |
---|
| 1423 | DO i = 1, klon |
---|
| 1424 | IF (wk_adv(i)) THEN |
---|
| 1425 | sigmaw(i) = sigmaw(i) + d_sigmaw(i) |
---|
[2641] | 1426 | !jyg< |
---|
| 1427 | d_sigmaw2(i) = d_sigmaw2(i) + d_sigmaw(i) |
---|
| 1428 | !>jyg |
---|
[1992] | 1429 | END IF |
---|
| 1430 | END DO |
---|
| 1431 | |
---|
| 1432 | |
---|
| 1433 | ! Determine Ptop from buoyancy integral |
---|
| 1434 | ! --------------------------------------- |
---|
| 1435 | |
---|
| 1436 | ! - 1/ Pressure of the level where dth changes sign. |
---|
| 1437 | |
---|
| 1438 | DO i = 1, klon |
---|
| 1439 | IF (wk_adv(i)) THEN |
---|
| 1440 | ptop_provis(i) = ph(i, 1) |
---|
| 1441 | END IF |
---|
| 1442 | END DO |
---|
| 1443 | |
---|
| 1444 | DO k = 2, klev |
---|
| 1445 | DO i = 1, klon |
---|
| 1446 | IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & |
---|
| 1447 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
[2641] | 1448 | ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1449 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 1450 | END IF |
---|
| 1451 | END DO |
---|
| 1452 | END DO |
---|
| 1453 | |
---|
| 1454 | ! - 2/ dth integral |
---|
| 1455 | |
---|
| 1456 | DO i = 1, klon |
---|
| 1457 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1458 | sum_dth(i) = 0. |
---|
| 1459 | dthmin(i) = -delta_t_min |
---|
[974] | 1460 | z(i) = 0. |
---|
[1992] | 1461 | END IF |
---|
| 1462 | END DO |
---|
| 1463 | |
---|
| 1464 | DO k = 1, klev |
---|
| 1465 | DO i = 1, klon |
---|
| 1466 | IF (wk_adv(i)) THEN |
---|
| 1467 | dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1468 | IF (dz(i)>0) THEN |
---|
| 1469 | z(i) = z(i) + dz(i) |
---|
| 1470 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1471 | dthmin(i) = amin1(dthmin(i), dth(i,k)) |
---|
| 1472 | END IF |
---|
| 1473 | END IF |
---|
| 1474 | END DO |
---|
| 1475 | END DO |
---|
| 1476 | |
---|
| 1477 | ! - 3/ height of triangle with area= sum_dth and base = dthmin |
---|
| 1478 | |
---|
| 1479 | DO i = 1, klon |
---|
| 1480 | IF (wk_adv(i)) THEN |
---|
| 1481 | hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) |
---|
| 1482 | hw(i) = amax1(hwmin, hw(i)) |
---|
| 1483 | END IF |
---|
| 1484 | END DO |
---|
| 1485 | |
---|
| 1486 | ! - 4/ now, get Ptop |
---|
| 1487 | |
---|
| 1488 | DO i = 1, klon |
---|
| 1489 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1490 | ktop(i) = 0 |
---|
| 1491 | z(i) = 0. |
---|
| 1492 | END IF |
---|
| 1493 | END DO |
---|
| 1494 | |
---|
| 1495 | DO k = 1, klev |
---|
| 1496 | DO i = 1, klon |
---|
| 1497 | IF (wk_adv(i)) THEN |
---|
| 1498 | dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) |
---|
| 1499 | IF (dz(i)>0) THEN |
---|
| 1500 | z(i) = z(i) + dz(i) |
---|
| 1501 | ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) |
---|
| 1502 | ktop(i) = k |
---|
| 1503 | END IF |
---|
| 1504 | END IF |
---|
| 1505 | END DO |
---|
| 1506 | END DO |
---|
| 1507 | |
---|
| 1508 | ! 4.5/Correct ktop and ptop |
---|
| 1509 | |
---|
| 1510 | DO i = 1, klon |
---|
| 1511 | IF (wk_adv(i)) THEN |
---|
| 1512 | ptop_new(i) = ptop(i) |
---|
| 1513 | END IF |
---|
| 1514 | END DO |
---|
| 1515 | |
---|
| 1516 | DO k = klev, 2, -1 |
---|
| 1517 | DO i = 1, klon |
---|
| 1518 | ! IM v3JYG; IF (k .GE. ktop(i) |
---|
| 1519 | IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & |
---|
| 1520 | dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN |
---|
[2641] | 1521 | ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1) - & |
---|
| 1522 | (dth(i,k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) |
---|
[1992] | 1523 | END IF |
---|
| 1524 | END DO |
---|
| 1525 | END DO |
---|
| 1526 | |
---|
| 1527 | |
---|
| 1528 | DO i = 1, klon |
---|
| 1529 | IF (wk_adv(i)) THEN |
---|
| 1530 | ptop(i) = ptop_new(i) |
---|
| 1531 | END IF |
---|
| 1532 | END DO |
---|
| 1533 | |
---|
| 1534 | DO k = klev, 1, -1 |
---|
| 1535 | DO i = 1, klon |
---|
| 1536 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1537 | IF (ph(i,k+1)<ptop(i)) ktop(i) = k |
---|
| 1538 | END IF |
---|
| 1539 | END DO |
---|
| 1540 | END DO |
---|
| 1541 | |
---|
| 1542 | ! 5/ Set deltatw & deltaqw to 0 above kupper |
---|
| 1543 | |
---|
| 1544 | DO k = 1, klev |
---|
| 1545 | DO i = 1, klon |
---|
| 1546 | IF (wk_adv(i) .AND. k>=kupper(i)) THEN |
---|
| 1547 | deltatw(i, k) = 0. |
---|
| 1548 | deltaqw(i, k) = 0. |
---|
[2641] | 1549 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1550 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1551 | END IF |
---|
| 1552 | END DO |
---|
| 1553 | END DO |
---|
| 1554 | |
---|
| 1555 | |
---|
| 1556 | ! -------------Cstar computation--------------------------------- |
---|
| 1557 | DO i = 1, klon |
---|
| 1558 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1559 | sum_thu(i) = 0. |
---|
| 1560 | sum_tu(i) = 0. |
---|
| 1561 | sum_qu(i) = 0. |
---|
| 1562 | sum_thvu(i) = 0. |
---|
| 1563 | sum_dth(i) = 0. |
---|
| 1564 | sum_dq(i) = 0. |
---|
| 1565 | sum_rho(i) = 0. |
---|
| 1566 | sum_dtdwn(i) = 0. |
---|
| 1567 | sum_dqdwn(i) = 0. |
---|
| 1568 | |
---|
| 1569 | av_thu(i) = 0. |
---|
[1992] | 1570 | av_tu(i) = 0. |
---|
| 1571 | av_qu(i) = 0. |
---|
[974] | 1572 | av_thvu(i) = 0. |
---|
| 1573 | av_dth(i) = 0. |
---|
| 1574 | av_dq(i) = 0. |
---|
[1992] | 1575 | av_rho(i) = 0. |
---|
| 1576 | av_dtdwn(i) = 0. |
---|
[974] | 1577 | av_dqdwn(i) = 0. |
---|
[1992] | 1578 | END IF |
---|
| 1579 | END DO |
---|
[974] | 1580 | |
---|
[1992] | 1581 | ! Integrals (and wake top level number) |
---|
| 1582 | ! -------------------------------------- |
---|
[974] | 1583 | |
---|
[1992] | 1584 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
[974] | 1585 | |
---|
[1992] | 1586 | DO i = 1, klon |
---|
| 1587 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1588 | z(i) = 1. |
---|
| 1589 | dz(i) = 1. |
---|
[2542] | 1590 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[974] | 1591 | sum_dth(i) = 0. |
---|
[1992] | 1592 | END IF |
---|
| 1593 | END DO |
---|
[974] | 1594 | |
---|
[1992] | 1595 | DO k = 1, klev |
---|
| 1596 | DO i = 1, klon |
---|
| 1597 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1598 | dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
| 1599 | IF (dz(i)>0) THEN |
---|
| 1600 | z(i) = z(i) + dz(i) |
---|
| 1601 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1602 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1603 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2542] | 1604 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 1605 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1606 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1607 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1608 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1609 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
| 1610 | END IF |
---|
| 1611 | END IF |
---|
| 1612 | END DO |
---|
| 1613 | END DO |
---|
| 1614 | |
---|
| 1615 | DO i = 1, klon |
---|
| 1616 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1617 | hw0(i) = z(i) |
---|
[1992] | 1618 | END IF |
---|
| 1619 | END DO |
---|
[974] | 1620 | |
---|
| 1621 | |
---|
[1992] | 1622 | ! - WAPE and mean forcing computation |
---|
| 1623 | ! --------------------------------------- |
---|
| 1624 | |
---|
| 1625 | ! --------------------------------------- |
---|
| 1626 | |
---|
| 1627 | ! Means |
---|
| 1628 | |
---|
| 1629 | DO i = 1, klon |
---|
| 1630 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
[974] | 1631 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1632 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1633 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1634 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1635 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1636 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1637 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1638 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1639 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1640 | |
---|
[2641] | 1641 | wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 1642 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
[1992] | 1643 | END IF |
---|
| 1644 | END DO |
---|
[974] | 1645 | |
---|
[1992] | 1646 | ! Filter out bad wakes |
---|
[974] | 1647 | |
---|
[1992] | 1648 | DO k = 1, klev |
---|
| 1649 | DO i = 1, klon |
---|
| 1650 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1651 | IF (wape(i)<0.) THEN |
---|
| 1652 | deltatw(i, k) = 0. |
---|
| 1653 | deltaqw(i, k) = 0. |
---|
| 1654 | dth(i, k) = 0. |
---|
[2641] | 1655 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1656 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1657 | END IF |
---|
| 1658 | END IF |
---|
| 1659 | END DO |
---|
| 1660 | END DO |
---|
[974] | 1661 | |
---|
[1992] | 1662 | DO i = 1, klon |
---|
| 1663 | IF (wk_adv(i)) THEN !!! nrlmd |
---|
| 1664 | IF (wape(i)<0.) THEN |
---|
| 1665 | wape(i) = 0. |
---|
| 1666 | cstar(i) = 0. |
---|
| 1667 | hw(i) = hwmin |
---|
[2641] | 1668 | !jyg< |
---|
| 1669 | !! sigmaw(i) = max(sigmad, sigd_con(i)) |
---|
| 1670 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 1671 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1672 | sigmaw(i) = sigmaw_targ |
---|
| 1673 | !>jyg |
---|
[1992] | 1674 | fip(i) = 0. |
---|
| 1675 | gwake(i) = .FALSE. |
---|
| 1676 | ELSE |
---|
| 1677 | cstar(i) = stark*sqrt(2.*wape(i)) |
---|
| 1678 | gwake(i) = .TRUE. |
---|
| 1679 | END IF |
---|
| 1680 | END IF |
---|
| 1681 | END DO |
---|
| 1682 | |
---|
| 1683 | END DO ! end sub-timestep loop |
---|
| 1684 | |
---|
[2720] | 1685 | IF (prt_level>=10) THEN |
---|
[2787] | 1686 | PRINT *, 'wake-5, sigmaw(igout), cstar(igout), wape(igout), ptop(igout) ', & |
---|
| 1687 | sigmaw(igout), cstar(igout), wape(igout), ptop(igout) |
---|
[2720] | 1688 | ENDIF |
---|
[1992] | 1689 | |
---|
| 1690 | |
---|
| 1691 | ! ---------------------------------------------------------- |
---|
| 1692 | ! Determine wake final state; recompute wape, cstar, ktop; |
---|
| 1693 | ! filter out bad wakes. |
---|
| 1694 | ! ---------------------------------------------------------- |
---|
| 1695 | |
---|
| 1696 | ! 2.1 - Undisturbed area and Wake integrals |
---|
| 1697 | ! --------------------------------------------------------- |
---|
| 1698 | |
---|
| 1699 | DO i = 1, klon |
---|
| 1700 | ! cc nrlmd if (wk_adv(i)) then !!! nrlmd |
---|
| 1701 | IF (ok_qx_qw(i)) THEN |
---|
| 1702 | ! cc |
---|
| 1703 | z(i) = 0. |
---|
| 1704 | sum_thu(i) = 0. |
---|
| 1705 | sum_tu(i) = 0. |
---|
| 1706 | sum_qu(i) = 0. |
---|
| 1707 | sum_thvu(i) = 0. |
---|
| 1708 | sum_dth(i) = 0. |
---|
[2787] | 1709 | sum_half_dth(i) = 0. |
---|
[1992] | 1710 | sum_dq(i) = 0. |
---|
| 1711 | sum_rho(i) = 0. |
---|
| 1712 | sum_dtdwn(i) = 0. |
---|
| 1713 | sum_dqdwn(i) = 0. |
---|
| 1714 | |
---|
| 1715 | av_thu(i) = 0. |
---|
| 1716 | av_tu(i) = 0. |
---|
| 1717 | av_qu(i) = 0. |
---|
| 1718 | av_thvu(i) = 0. |
---|
| 1719 | av_dth(i) = 0. |
---|
| 1720 | av_dq(i) = 0. |
---|
| 1721 | av_rho(i) = 0. |
---|
| 1722 | av_dtdwn(i) = 0. |
---|
| 1723 | av_dqdwn(i) = 0. |
---|
[2787] | 1724 | |
---|
| 1725 | dthmin(i) = -delta_t_min |
---|
[1992] | 1726 | END IF |
---|
| 1727 | END DO |
---|
| 1728 | ! Potential temperatures and humidity |
---|
| 1729 | ! ---------------------------------------------------------- |
---|
| 1730 | |
---|
| 1731 | DO k = 1, klev |
---|
| 1732 | DO i = 1, klon |
---|
| 1733 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1734 | IF (ok_qx_qw(i)) THEN |
---|
| 1735 | ! cc |
---|
| 1736 | rho(i, k) = p(i, k)/(rd*te(i,k)) |
---|
| 1737 | IF (k==1) THEN |
---|
| 1738 | rhoh(i, k) = ph(i, k)/(rd*te(i,k)) |
---|
| 1739 | zhh(i, k) = 0 |
---|
| 1740 | ELSE |
---|
| 1741 | rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) |
---|
| 1742 | zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) |
---|
| 1743 | END IF |
---|
| 1744 | the(i, k) = te(i, k)/ppi(i, k) |
---|
| 1745 | thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) |
---|
| 1746 | tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) |
---|
| 1747 | qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) |
---|
| 1748 | rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) |
---|
| 1749 | dth(i, k) = deltatw(i, k)/ppi(i, k) |
---|
| 1750 | END IF |
---|
| 1751 | END DO |
---|
| 1752 | END DO |
---|
| 1753 | |
---|
| 1754 | ! Integrals (and wake top level number) |
---|
| 1755 | ! ----------------------------------------------------------- |
---|
| 1756 | |
---|
| 1757 | ! Initialize sum_thvu to 1st level virt. pot. temp. |
---|
| 1758 | |
---|
| 1759 | DO i = 1, klon |
---|
| 1760 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1761 | IF (ok_qx_qw(i)) THEN |
---|
| 1762 | ! cc |
---|
| 1763 | z(i) = 1. |
---|
| 1764 | dz(i) = 1. |
---|
[2787] | 1765 | dz_half(i) = 1. |
---|
[2542] | 1766 | sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) |
---|
[1992] | 1767 | sum_dth(i) = 0. |
---|
| 1768 | END IF |
---|
| 1769 | END DO |
---|
| 1770 | |
---|
| 1771 | DO k = 1, klev |
---|
| 1772 | DO i = 1, klon |
---|
| 1773 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1774 | IF (ok_qx_qw(i)) THEN |
---|
| 1775 | ! cc |
---|
| 1776 | dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) |
---|
[2787] | 1777 | dz_half(i) = -(amax1(ph(i,k+1),0.5*(ptop(i)+ph(i,1)))-ph(i,k))/(rho(i,k)*rg) |
---|
[1992] | 1778 | IF (dz(i)>0) THEN |
---|
| 1779 | z(i) = z(i) + dz(i) |
---|
| 1780 | sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) |
---|
| 1781 | sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) |
---|
| 1782 | sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) |
---|
[2542] | 1783 | sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) |
---|
[1992] | 1784 | sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) |
---|
| 1785 | sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) |
---|
| 1786 | sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) |
---|
| 1787 | sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) |
---|
| 1788 | sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) |
---|
[2787] | 1789 | ! |
---|
| 1790 | dthmin(i) = min(dthmin(i), dth(i,k)) |
---|
[1992] | 1791 | END IF |
---|
[2787] | 1792 | IF (dz_half(i)>0) THEN |
---|
| 1793 | sum_half_dth(i) = sum_half_dth(i) + dth(i, k)*dz_half(i) |
---|
| 1794 | END IF |
---|
[1992] | 1795 | END IF |
---|
| 1796 | END DO |
---|
| 1797 | END DO |
---|
| 1798 | |
---|
| 1799 | DO i = 1, klon |
---|
| 1800 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1801 | IF (ok_qx_qw(i)) THEN |
---|
| 1802 | ! cc |
---|
| 1803 | hw0(i) = z(i) |
---|
| 1804 | END IF |
---|
| 1805 | END DO |
---|
| 1806 | |
---|
| 1807 | ! - WAPE and mean forcing computation |
---|
| 1808 | ! ------------------------------------------------------------- |
---|
| 1809 | |
---|
| 1810 | ! Means |
---|
| 1811 | |
---|
| 1812 | DO i = 1, klon |
---|
| 1813 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1814 | IF (ok_qx_qw(i)) THEN |
---|
| 1815 | ! cc |
---|
| 1816 | av_thu(i) = sum_thu(i)/hw0(i) |
---|
| 1817 | av_tu(i) = sum_tu(i)/hw0(i) |
---|
| 1818 | av_qu(i) = sum_qu(i)/hw0(i) |
---|
| 1819 | av_thvu(i) = sum_thvu(i)/hw0(i) |
---|
| 1820 | av_dth(i) = sum_dth(i)/hw0(i) |
---|
| 1821 | av_dq(i) = sum_dq(i)/hw0(i) |
---|
| 1822 | av_rho(i) = sum_rho(i)/hw0(i) |
---|
| 1823 | av_dtdwn(i) = sum_dtdwn(i)/hw0(i) |
---|
| 1824 | av_dqdwn(i) = sum_dqdwn(i)/hw0(i) |
---|
| 1825 | |
---|
[2641] | 1826 | wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i) + & |
---|
| 1827 | av_dth(i)*av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) |
---|
[1992] | 1828 | END IF |
---|
| 1829 | END DO |
---|
| 1830 | |
---|
[2641] | 1831 | |
---|
| 1832 | |
---|
[1992] | 1833 | ! Prognostic variable update |
---|
| 1834 | ! ------------------------------------------------------------ |
---|
| 1835 | |
---|
| 1836 | ! Filter out bad wakes |
---|
| 1837 | |
---|
[2787] | 1838 | IF (flag_wk_check_trgl) THEN |
---|
| 1839 | ! Check triangular shape of dth profile |
---|
| 1840 | DO i = 1, klon |
---|
| 1841 | IF (ok_qx_qw(i)) THEN |
---|
| 1842 | !! print *,'wake, hw0(i), dthmin(i) ', hw0(i), dthmin(i) |
---|
| 1843 | !! print *,'wake, 2.*sum_dth(i)/(hw0(i)*dthmin(i)) ', & |
---|
| 1844 | !! 2.*sum_dth(i)/(hw0(i)*dthmin(i)) |
---|
| 1845 | !! print *,'wake, sum_half_dth(i), sum_dth(i) ', & |
---|
| 1846 | !! sum_half_dth(i), sum_dth(i) |
---|
| 1847 | IF ((hw0(i) < 1.) .or. (dthmin(i) >= -delta_t_min) ) THEN |
---|
| 1848 | wape2(i) = -1. |
---|
| 1849 | !! print *,'wake, rej 1' |
---|
| 1850 | ELSE IF (abs(2.*sum_dth(i)/(hw0(i)*dthmin(i)) - 1.) > 0.5) THEN |
---|
| 1851 | wape2(i) = -1. |
---|
| 1852 | !! print *,'wake, rej 2' |
---|
| 1853 | ELSE IF (abs(sum_half_dth(i)) < 0.5*abs(sum_dth(i)) ) THEN |
---|
| 1854 | wape2(i) = -1. |
---|
| 1855 | !! print *,'wake, rej 3' |
---|
| 1856 | END IF |
---|
| 1857 | END IF |
---|
| 1858 | END DO |
---|
| 1859 | END IF |
---|
| 1860 | |
---|
| 1861 | |
---|
[1992] | 1862 | DO k = 1, klev |
---|
| 1863 | DO i = 1, klon |
---|
| 1864 | ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN |
---|
| 1865 | IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN |
---|
| 1866 | ! cc |
---|
| 1867 | deltatw(i, k) = 0. |
---|
| 1868 | deltaqw(i, k) = 0. |
---|
| 1869 | dth(i, k) = 0. |
---|
[2641] | 1870 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1871 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1872 | END IF |
---|
| 1873 | END DO |
---|
| 1874 | END DO |
---|
| 1875 | |
---|
| 1876 | |
---|
| 1877 | DO i = 1, klon |
---|
| 1878 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1879 | IF (ok_qx_qw(i)) THEN |
---|
| 1880 | ! cc |
---|
| 1881 | IF (wape2(i)<0.) THEN |
---|
[974] | 1882 | wape2(i) = 0. |
---|
[1992] | 1883 | cstar2(i) = 0. |
---|
[974] | 1884 | hw(i) = hwmin |
---|
[2641] | 1885 | !jyg< |
---|
| 1886 | !! sigmaw(i) = amax1(sigmad, sigd_con(i)) |
---|
| 1887 | sigmaw_targ = max(sigmad, sigd_con(i)) |
---|
| 1888 | d_sigmaw2(i) = d_sigmaw2(i) + sigmaw_targ - sigmaw(i) |
---|
| 1889 | sigmaw(i) = sigmaw_targ |
---|
| 1890 | !>jyg |
---|
[974] | 1891 | fip(i) = 0. |
---|
| 1892 | gwake(i) = .FALSE. |
---|
| 1893 | ELSE |
---|
[1992] | 1894 | IF (prt_level>=10) PRINT *, 'wape2>0' |
---|
| 1895 | cstar2(i) = stark*sqrt(2.*wape2(i)) |
---|
[974] | 1896 | gwake(i) = .TRUE. |
---|
[1992] | 1897 | END IF |
---|
| 1898 | END IF |
---|
| 1899 | END DO |
---|
[974] | 1900 | |
---|
[1992] | 1901 | DO i = 1, klon |
---|
| 1902 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1903 | IF (ok_qx_qw(i)) THEN |
---|
| 1904 | ! cc |
---|
| 1905 | ktopw(i) = ktop(i) |
---|
| 1906 | END IF |
---|
| 1907 | END DO |
---|
[974] | 1908 | |
---|
[1992] | 1909 | DO i = 1, klon |
---|
| 1910 | ! cc nrlmd IF ( wk_adv(i)) THEN |
---|
| 1911 | IF (ok_qx_qw(i)) THEN |
---|
| 1912 | ! cc |
---|
| 1913 | IF (ktopw(i)>0 .AND. gwake(i)) THEN |
---|
[1403] | 1914 | |
---|
[1992] | 1915 | ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) |
---|
| 1916 | ! cc heff = 600. |
---|
| 1917 | ! Utilisation de la hauteur hw |
---|
| 1918 | ! c heff = 0.7*hw |
---|
| 1919 | heff(i) = hw(i) |
---|
[1403] | 1920 | |
---|
[1992] | 1921 | fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & |
---|
| 1922 | sqrt(sigmaw(i)*wdens(i)*3.14) |
---|
| 1923 | fip(i) = alpk*fip(i) |
---|
| 1924 | ! jyg2 |
---|
| 1925 | ELSE |
---|
| 1926 | fip(i) = 0. |
---|
| 1927 | END IF |
---|
| 1928 | END IF |
---|
| 1929 | END DO |
---|
[1146] | 1930 | |
---|
[1992] | 1931 | ! Limitation de sigmaw |
---|
| 1932 | |
---|
| 1933 | ! cc nrlmd |
---|
| 1934 | ! DO i=1,klon |
---|
| 1935 | ! IF (OK_qx_qw(i)) THEN |
---|
| 1936 | ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max |
---|
| 1937 | ! ENDIF |
---|
| 1938 | ! ENDDO |
---|
| 1939 | ! cc |
---|
| 1940 | DO k = 1, klev |
---|
| 1941 | DO i = 1, klon |
---|
| 1942 | |
---|
| 1943 | ! cc nrlmd On maintient désormais constant sigmaw en régime |
---|
| 1944 | ! permanent |
---|
| 1945 | ! cc IF ((sigmaw(i).GT.sigmaw_max).or. |
---|
| 1946 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1947 | .NOT. ok_qx_qw(i)) THEN |
---|
| 1948 | ! cc |
---|
| 1949 | dtls(i, k) = 0. |
---|
| 1950 | dqls(i, k) = 0. |
---|
| 1951 | deltatw(i, k) = 0. |
---|
| 1952 | deltaqw(i, k) = 0. |
---|
[2641] | 1953 | d_deltatw2(i,k) = -deltatw0(i,k) |
---|
| 1954 | d_deltaqw2(i,k) = -deltaqw0(i,k) |
---|
[1992] | 1955 | END IF |
---|
| 1956 | END DO |
---|
| 1957 | END DO |
---|
| 1958 | |
---|
| 1959 | ! cc nrlmd On maintient désormais constant sigmaw en régime permanent |
---|
| 1960 | DO i = 1, klon |
---|
| 1961 | IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & |
---|
| 1962 | .NOT. ok_qx_qw(i)) THEN |
---|
[2641] | 1963 | ktopw(i) = 0 |
---|
[1992] | 1964 | wape(i) = 0. |
---|
| 1965 | cstar(i) = 0. |
---|
[2408] | 1966 | !!jyg Outside subroutine "Wake" hw and sigmaw are zero when there are no wakes |
---|
| 1967 | !! hw(i) = hwmin !jyg |
---|
| 1968 | !! sigmaw(i) = sigmad !jyg |
---|
| 1969 | hw(i) = 0. !jyg |
---|
| 1970 | sigmaw(i) = 0. !jyg |
---|
[1992] | 1971 | fip(i) = 0. |
---|
| 1972 | ELSE |
---|
| 1973 | wape(i) = wape2(i) |
---|
| 1974 | cstar(i) = cstar2(i) |
---|
| 1975 | END IF |
---|
| 1976 | ! c print*,'wape wape2 ktopw OK_qx_qw =', |
---|
| 1977 | ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) |
---|
| 1978 | END DO |
---|
| 1979 | |
---|
[2720] | 1980 | IF (prt_level>=10) THEN |
---|
| 1981 | PRINT *, 'wake-6, wape wape2 ktopw OK_qx_qw =', & |
---|
| 1982 | wape(igout),wape2(igout),ktopw(igout),OK_qx_qw(igout) |
---|
| 1983 | ENDIF |
---|
| 1984 | |
---|
| 1985 | |
---|
[2641] | 1986 | ! ----------------------------------------------------------------- |
---|
| 1987 | ! Get back to tendencies per second |
---|
[1992] | 1988 | |
---|
[2641] | 1989 | DO k = 1, klev |
---|
| 1990 | DO i = 1, klon |
---|
| 1991 | |
---|
| 1992 | ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN |
---|
[2787] | 1993 | !jyg< |
---|
| 1994 | !! IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN |
---|
| 1995 | IF (ok_qx_qw(i)) THEN |
---|
| 1996 | !>jyg |
---|
[2641] | 1997 | ! cc |
---|
| 1998 | dtls(i, k) = dtls(i, k)/dtime |
---|
| 1999 | dqls(i, k) = dqls(i, k)/dtime |
---|
| 2000 | d_deltatw2(i, k) = d_deltatw2(i, k)/dtime |
---|
| 2001 | d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime |
---|
| 2002 | d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime |
---|
| 2003 | ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) |
---|
| 2004 | ! c $ ,death_rate(i)*sigmaw(i) |
---|
| 2005 | END IF |
---|
| 2006 | END DO |
---|
| 2007 | END DO |
---|
| 2008 | !jyg< |
---|
| 2009 | DO i = 1, klon |
---|
| 2010 | d_sigmaw2(i) = d_sigmaw2(i)/dtime |
---|
| 2011 | d_wdens2(i) = d_wdens2(i)/dtime |
---|
| 2012 | ENDDO |
---|
| 2013 | !>jyg |
---|
| 2014 | |
---|
[3899] | 2015 | do i = 1, klon |
---|
| 2016 | if (ktopw(i) /= 0) then |
---|
| 2017 | rate_uns(i) = - amdwn(i, ktopw(i)) / wdens(i) |
---|
| 2018 | else |
---|
| 2019 | rate_uns(i) = -1. |
---|
| 2020 | end if |
---|
| 2021 | end do |
---|
[2641] | 2022 | |
---|
[3899] | 2023 | theta_vs = zxtsol * (1e5 / ph(:, 1))**rkappa * (1 + epsim1 * q_seri(:, 1)) |
---|
[2641] | 2024 | |
---|
[3899] | 2025 | forall (i = 1:klon, ktopw(i) /= 0 .and. theta_vs(i) >= av_thvu(i)) & |
---|
| 2026 | theta_v_uns(i) = the(i, ktopw(i)) * (1. + epsim1 * qe(i, ktopw(i))) |
---|
| 2027 | |
---|
| 2028 | call WriteField_phy("thu", thu, klev) |
---|
| 2029 | call WriteField_phy("qu", qu, klev) |
---|
| 2030 | call WriteField_phy("av_thvu", av_thvu, 1) |
---|
| 2031 | call WriteField_phy("ktopw", real(ktopw), 1) |
---|
| 2032 | call WriteField_phy("wdens", wdens, 1) |
---|
| 2033 | call WriteField_phy("av_rho", av_rho, 1) |
---|
| 2034 | call WriteField_phy("rate_uns", rate_uns, 1) |
---|
| 2035 | call WriteField_phy("theta_vs", theta_vs, 1) |
---|
| 2036 | call WriteField_phy("the", the, klev) |
---|
| 2037 | call WriteField_phy("qe", qe, klev) |
---|
| 2038 | |
---|
| 2039 | do i = 1, klon |
---|
| 2040 | call cold_pool_death(z_cp0, r0, h0, eps_cp, beta, av_thvu_constant, & |
---|
| 2041 | k_star, av_thvu(i), rate_uns(i), theta_vs(i), theta_v_uns(i), & |
---|
| 2042 | sens_w(i) / (av_rho(i) * rcpd * (theta_vs(i) - theta_v_uns(i))), & |
---|
| 2043 | av_rho(i), return_code(i), wake_lifetime(i), wake_final_radius(i), & |
---|
| 2044 | wake_final_height(i)) |
---|
| 2045 | end do |
---|
| 2046 | if (any(return_code /= 0)) print *, & |
---|
| 2047 | "cold_pool_death: return_code /= 0 somewhere, itap = ", itap |
---|
| 2048 | |
---|
[1992] | 2049 | RETURN |
---|
| 2050 | END SUBROUTINE wake |
---|
| 2051 | |
---|
| 2052 | SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & |
---|
| 2053 | d_deltaqw, sigmaw, d_sigmaw, alpha) |
---|
| 2054 | ! ------------------------------------------------------ |
---|
| 2055 | ! Dtermination du coefficient alpha tel que les tendances |
---|
| 2056 | ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent |
---|
| 2057 | ! a une humidite positive dans la zone (x) et dans la zone (w). |
---|
| 2058 | ! ------------------------------------------------------ |
---|
[2220] | 2059 | IMPLICIT NONE |
---|
[1992] | 2060 | |
---|
| 2061 | ! Input |
---|
| 2062 | REAL qe(nlon, nl), d_qe(nlon, nl) |
---|
| 2063 | REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) |
---|
| 2064 | REAL sigmaw(nlon), d_sigmaw(nlon) |
---|
| 2065 | LOGICAL wk_adv(nlon) |
---|
| 2066 | INTEGER nl, nlon |
---|
| 2067 | ! Output |
---|
| 2068 | REAL alpha(nlon) |
---|
| 2069 | ! Internal variables |
---|
| 2070 | REAL zeta(nlon, nl) |
---|
| 2071 | REAL alpha1(nlon) |
---|
| 2072 | REAL x, a, b, c, discrim |
---|
| 2073 | REAL epsilon |
---|
| 2074 | ! DATA epsilon/1.e-15/ |
---|
[2220] | 2075 | INTEGER i,k |
---|
[1992] | 2076 | |
---|
| 2077 | DO k = 1, nl |
---|
| 2078 | DO i = 1, nlon |
---|
| 2079 | IF (wk_adv(i)) THEN |
---|
| 2080 | IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN |
---|
| 2081 | zeta(i, k) = 0. |
---|
[1146] | 2082 | ELSE |
---|
[1992] | 2083 | zeta(i, k) = 1. |
---|
[1146] | 2084 | END IF |
---|
[1992] | 2085 | END IF |
---|
| 2086 | END DO |
---|
| 2087 | DO i = 1, nlon |
---|
| 2088 | IF (wk_adv(i)) THEN |
---|
| 2089 | x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & |
---|
[2641] | 2090 | (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i) * & |
---|
| 2091 | (deltaqw(i,k)+d_deltaqw(i,k)) |
---|
[1992] | 2092 | a = -d_sigmaw(i)*d_deltaqw(i, k) |
---|
| 2093 | b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & |
---|
| 2094 | deltaqw(i, k)*d_sigmaw(i) |
---|
| 2095 | c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon |
---|
| 2096 | discrim = b*b - 4.*a*c |
---|
| 2097 | ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim |
---|
| 2098 | IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap |
---|
| 2099 | alpha1(i) = 1. |
---|
[1146] | 2100 | ELSE |
---|
[1992] | 2101 | IF (x>=0.) THEN |
---|
| 2102 | alpha1(i) = 1. |
---|
| 2103 | ELSE |
---|
| 2104 | IF (a>0.) THEN |
---|
[2641] | 2105 | alpha1(i) = 0.9*min( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2106 | (-b+sqrt(discrim))/(2.*a) ) |
---|
[1992] | 2107 | ELSE IF (a==0.) THEN |
---|
| 2108 | alpha1(i) = 0.9*(-c/b) |
---|
| 2109 | ELSE |
---|
| 2110 | ! print*,'a,b,c discrim',a,b,c discrim |
---|
[2641] | 2111 | alpha1(i) = 0.9*max( (2.*c)/(-b+sqrt(discrim)), & |
---|
| 2112 | (-b+sqrt(discrim))/(2.*a)) |
---|
[1992] | 2113 | END IF |
---|
| 2114 | END IF |
---|
| 2115 | END IF |
---|
| 2116 | alpha(i) = min(alpha(i), alpha1(i)) |
---|
| 2117 | END IF |
---|
| 2118 | END DO |
---|
| 2119 | END DO |
---|
[1146] | 2120 | |
---|
[1992] | 2121 | RETURN |
---|
| 2122 | END SUBROUTINE wake_vec_modulation |
---|
[974] | 2123 | |
---|
[879] | 2124 | |
---|
[2641] | 2125 | |
---|
| 2126 | |
---|