1 | SUBROUTINE concvl(iflag_clos, & |
---|
2 | dtime, paprs, pplay, k_upper_cv, & |
---|
3 | t, q, t_wake, q_wake, s_wake, u, v, tra, ntra, & |
---|
4 | Ale, Alp, sig1, w01, & |
---|
5 | d_t, d_q, d_u, d_v, d_tra, & |
---|
6 | rain, snow, kbas, ktop, sigd, & |
---|
7 | cbmf, plcl, plfc, wbeff, upwd, dnwd, dnwdbis, & |
---|
8 | Ma, mip, Vprecip, & |
---|
9 | cape, cin, tvp, Tconv, iflag, & |
---|
10 | pbase, bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr, & |
---|
11 | qcondc, wd, pmflxr, pmflxs, & |
---|
12 | !RomP >>> |
---|
13 | !! . da,phi,mp,dd_t,dd_q,lalim_conv,wght_th) |
---|
14 | da, phi, mp, phi2, d1a, dam, sij, clw, elij, & ! RomP |
---|
15 | dd_t, dd_q, lalim_conv, wght_th, & ! RomP |
---|
16 | evap, ep, epmlmMm, eplaMm, & ! RomP |
---|
17 | wdtrainA, wdtrainM, wght, qtc, sigt, & |
---|
18 | tau_cld_cv, coefw_cld_cv) ! RomP+RL, AJ |
---|
19 | !RomP <<< |
---|
20 | ! ************************************************************** |
---|
21 | ! * |
---|
22 | ! CONCVL * |
---|
23 | ! * |
---|
24 | ! * |
---|
25 | ! written by : Sandrine Bony-Lena, 17/05/2003, 11.16.04 * |
---|
26 | ! modified by : * |
---|
27 | ! ************************************************************** |
---|
28 | |
---|
29 | |
---|
30 | USE dimphy |
---|
31 | USE infotrac_phy, ONLY: nbtr |
---|
32 | USE phys_local_var_mod, ONLY: omega |
---|
33 | USE print_control_mod, ONLY: prt_level, lunout |
---|
34 | IMPLICIT NONE |
---|
35 | ! ====================================================================== |
---|
36 | ! Auteur(s): S. Bony-Lena (LMD/CNRS) date: ??? |
---|
37 | ! Objet: schema de convection de Emanuel (1991) interface |
---|
38 | ! ====================================================================== |
---|
39 | ! Arguments: |
---|
40 | ! dtime--input-R-pas d'integration (s) |
---|
41 | ! s-------input-R-la vAleur "s" pour chaque couche |
---|
42 | ! sigs----input-R-la vAleur "sigma" de chaque couche |
---|
43 | ! sig-----input-R-la vAleur de "sigma" pour chaque niveau |
---|
44 | ! psolpa--input-R-la pression au sol (en Pa) |
---|
45 | ! pskapa--input-R-exponentiel kappa de psolpa |
---|
46 | ! h-------input-R-enthAlpie potentielle (Cp*T/P**kappa) |
---|
47 | ! q-------input-R-vapeur d'eau (en kg/kg) |
---|
48 | |
---|
49 | ! work*: input et output: deux variables de travail, |
---|
50 | ! on peut les mettre a 0 au debut |
---|
51 | ! ALE--------input-R-energie disponible pour soulevement |
---|
52 | ! ALP--------input-R-puissance disponible pour soulevement |
---|
53 | |
---|
54 | ! d_h--------output-R-increment de l'enthAlpie potentielle (h) |
---|
55 | ! d_q--------output-R-increment de la vapeur d'eau |
---|
56 | ! rain-------output-R-la pluie (mm/s) |
---|
57 | ! snow-------output-R-la neige (mm/s) |
---|
58 | ! upwd-------output-R-saturated updraft mass flux (kg/m**2/s) |
---|
59 | ! dnwd-------output-R-saturated downdraft mass flux (kg/m**2/s) |
---|
60 | ! dnwd0------output-R-unsaturated downdraft mass flux (kg/m**2/s) |
---|
61 | ! Ma---------output-R-adiabatic ascent mass flux (kg/m2/s) |
---|
62 | ! mip--------output-R-mass flux shed by adiabatic ascent (kg/m2/s) |
---|
63 | ! Vprecip----output-R-vertical profile of total precipitation (kg/m2/s) |
---|
64 | ! Tconv------output-R-environment temperature seen by convective scheme (K) |
---|
65 | ! Cape-------output-R-CAPE (J/kg) |
---|
66 | ! Cin -------output-R-CIN (J/kg) |
---|
67 | ! Tvp--------output-R-Temperature virtuelle d'une parcelle soulevee |
---|
68 | ! adiabatiquement a partir du niveau 1 (K) |
---|
69 | ! deltapb----output-R-distance entre LCL et base de la colonne (<0 ; Pa) |
---|
70 | ! Ice_flag---input-L-TRUE->prise en compte de la thermodynamique de la glace |
---|
71 | ! dd_t-------output-R-increment de la temperature du aux descentes precipitantes |
---|
72 | ! dd_q-------output-R-increment de la vapeur d'eau du aux desc precip |
---|
73 | ! lalim_conv- |
---|
74 | ! wght_th---- |
---|
75 | ! evap-------output-R |
---|
76 | ! ep---------output-R |
---|
77 | ! epmlmMm----output-R |
---|
78 | ! eplaMm-----output-R |
---|
79 | ! wdtrainA---output-R |
---|
80 | ! wdtrainM---output-R |
---|
81 | ! wght-------output-R |
---|
82 | ! ====================================================================== |
---|
83 | |
---|
84 | |
---|
85 | include "clesphys.h" |
---|
86 | |
---|
87 | INTEGER iflag_clos |
---|
88 | |
---|
89 | REAL dtime, paprs(klon, klev+1), pplay(klon, klev) |
---|
90 | INTEGER k_upper_cv |
---|
91 | REAL t(klon, klev), q(klon, klev), u(klon, klev), v(klon, klev) |
---|
92 | REAL t_wake(klon, klev), q_wake(klon, klev) |
---|
93 | REAL s_wake(klon) |
---|
94 | REAL tra(klon, klev, nbtr) |
---|
95 | INTEGER ntra |
---|
96 | REAL sig1(klon, klev), w01(klon, klev), ptop2(klon) |
---|
97 | REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) |
---|
98 | REAL Ale(klon), Alp(klon) |
---|
99 | |
---|
100 | REAL d_t(klon, klev), d_q(klon, klev), d_u(klon, klev), d_v(klon, klev) |
---|
101 | REAL dd_t(klon, klev), dd_q(klon, klev) |
---|
102 | REAL d_tra(klon, klev, nbtr) |
---|
103 | REAL rain(klon), snow(klon) |
---|
104 | |
---|
105 | INTEGER kbas(klon), ktop(klon) |
---|
106 | REAL em_ph(klon, klev+1), em_p(klon, klev) |
---|
107 | REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) |
---|
108 | |
---|
109 | !! REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev) !jyg |
---|
110 | REAL Ma(klon, klev), mip(klon, klev), Vprecip(klon, klev+1) !jyg |
---|
111 | REAL Vprecipi(klon, klev+1) !jyg |
---|
112 | REAL wght(klon, klev) !RL |
---|
113 | |
---|
114 | REAL da(klon, klev), phi(klon, klev, klev), mp(klon, klev) |
---|
115 | ! RomP >>> |
---|
116 | REAL phi2(klon, klev, klev) |
---|
117 | REAL d1a(klon, klev), dam(klon, klev) |
---|
118 | REAL sij(klon, klev, klev), clw(klon, klev), elij(klon, klev, klev) |
---|
119 | REAL wdtrainA(klon, klev), wdtrainM(klon, klev) |
---|
120 | REAL evap(klon, klev), ep(klon, klev) |
---|
121 | REAL epmlmMm(klon, klev, klev), eplaMm(klon, klev) |
---|
122 | ! RomP <<< |
---|
123 | REAL cape(klon), cin(klon), tvp(klon, klev) |
---|
124 | REAL Tconv(klon, klev) |
---|
125 | |
---|
126 | !CR:test: on passe lentr et alim_star des thermiques |
---|
127 | INTEGER lalim_conv(klon) |
---|
128 | REAL wght_th(klon, klev) |
---|
129 | REAL em_sig1feed ! sigma at lower bound of feeding layer |
---|
130 | REAL em_sig2feed ! sigma at upper bound of feeding layer |
---|
131 | REAL em_wght(klev) ! weight density determining the feeding mixture |
---|
132 | !on enleve le save |
---|
133 | ! SAVE em_sig1feed,em_sig2feed,em_wght |
---|
134 | |
---|
135 | INTEGER iflag(klon) |
---|
136 | REAL rflag(klon) |
---|
137 | REAL pbase(klon), bbase(klon) |
---|
138 | REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) |
---|
139 | REAL dplcldt(klon), dplcldr(klon) |
---|
140 | REAL qcondc(klon, klev) |
---|
141 | REAL qtc(klon, klev) |
---|
142 | REAL sigt(klon, klev) |
---|
143 | REAL wd(klon) |
---|
144 | REAL plim1(klon), plim2(klon), asupmax(klon, klev) |
---|
145 | REAL supmax0(klon), asupmaxmin(klon) |
---|
146 | |
---|
147 | REAL sigd(klon) |
---|
148 | REAL zx_t, zdelta, zx_qs, zcor |
---|
149 | REAL tau_cld_cv, coefw_cld_cv |
---|
150 | |
---|
151 | ! INTEGER iflag_mix |
---|
152 | ! SAVE iflag_mix |
---|
153 | INTEGER noff, minorig |
---|
154 | INTEGER i, k, itra |
---|
155 | REAL qs(klon, klev), qs_wake(klon, klev) |
---|
156 | REAL cbmf(klon), plcl(klon), plfc(klon), wbeff(klon) |
---|
157 | !LF SAVE cbmf |
---|
158 | !IM/JYG REAL, SAVE, ALLOCATABLE :: cbmf(:) |
---|
159 | !!!$OMP THREADPRIVATE(cbmf)! |
---|
160 | REAL cbmflast(klon) |
---|
161 | INTEGER ifrst |
---|
162 | SAVE ifrst |
---|
163 | DATA ifrst/0/ |
---|
164 | !$OMP THREADPRIVATE(ifrst) |
---|
165 | |
---|
166 | |
---|
167 | ! Variables supplementaires liees au bilan d'energie |
---|
168 | ! Real paire(klon) |
---|
169 | !LF Real ql(klon,klev) |
---|
170 | ! Save paire |
---|
171 | !LF Save ql |
---|
172 | !LF Real t1(klon,klev),q1(klon,klev) |
---|
173 | !LF Save t1,q1 |
---|
174 | ! Data paire /1./ |
---|
175 | REAL, SAVE, ALLOCATABLE :: ql(:, :), q1(:, :), t1(:, :) |
---|
176 | !$OMP THREADPRIVATE(ql, q1, t1) |
---|
177 | |
---|
178 | ! Variables liees au bilan d'energie et d'enthAlpi |
---|
179 | REAL ztsol(klon) |
---|
180 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, & |
---|
181 | h_qs_tot, qw_tot, ql_tot, qs_tot, ec_tot |
---|
182 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, & |
---|
183 | h_qs_tot, qw_tot, ql_tot, qs_tot, ec_tot |
---|
184 | !$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot) |
---|
185 | !$OMP THREADPRIVATE(h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) |
---|
186 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
187 | REAL d_h_vcol_phy |
---|
188 | REAL fs_bound, fq_bound |
---|
189 | SAVE d_h_vcol_phy |
---|
190 | !$OMP THREADPRIVATE(d_h_vcol_phy) |
---|
191 | REAL zero_v(klon) |
---|
192 | CHARACTER *15 ztit |
---|
193 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
194 | SAVE ip_ebil |
---|
195 | DATA ip_ebil/2/ |
---|
196 | !$OMP THREADPRIVATE(ip_ebil) |
---|
197 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
198 | SAVE if_ebil |
---|
199 | DATA if_ebil/2/ |
---|
200 | !$OMP THREADPRIVATE(if_ebil) |
---|
201 | !+jld ec_conser |
---|
202 | REAL d_t_ec(klon, klev) ! tendance du a la conersion Ec -> E thermique |
---|
203 | REAL zrcpd |
---|
204 | !-jld ec_conser |
---|
205 | !LF |
---|
206 | INTEGER nloc |
---|
207 | LOGICAL, SAVE :: first = .TRUE. |
---|
208 | !$OMP THREADPRIVATE(first) |
---|
209 | INTEGER, SAVE :: itap, igout |
---|
210 | !$OMP THREADPRIVATE(itap, igout) |
---|
211 | |
---|
212 | |
---|
213 | include "YOMCST.h" |
---|
214 | include "YOMCST2.h" |
---|
215 | include "YOETHF.h" |
---|
216 | include "FCTTRE.h" |
---|
217 | !jyg< |
---|
218 | include "conema3.h" |
---|
219 | !>jyg |
---|
220 | |
---|
221 | IF (first) THEN |
---|
222 | ! Allocate some variables LF 04/2008 |
---|
223 | |
---|
224 | !IM/JYG allocate(cbmf(klon)) |
---|
225 | ALLOCATE (ql(klon,klev)) |
---|
226 | ALLOCATE (t1(klon,klev)) |
---|
227 | ALLOCATE (q1(klon,klev)) |
---|
228 | itap = 0 |
---|
229 | igout = klon/2 + 1/klon |
---|
230 | END IF |
---|
231 | ! Incrementer le compteur de la physique |
---|
232 | itap = itap + 1 |
---|
233 | |
---|
234 | ! Copy T into Tconv |
---|
235 | DO k = 1, klev |
---|
236 | DO i = 1, klon |
---|
237 | Tconv(i, k) = t(i, k) |
---|
238 | END DO |
---|
239 | END DO |
---|
240 | |
---|
241 | IF (if_ebil>=1) THEN |
---|
242 | DO i = 1, klon |
---|
243 | ztsol(i) = t(i, 1) |
---|
244 | zero_v(i) = 0. |
---|
245 | DO k = 1, klev |
---|
246 | ql(i, k) = 0. |
---|
247 | END DO |
---|
248 | END DO |
---|
249 | END IF |
---|
250 | |
---|
251 | ! ym |
---|
252 | snow(:) = 0 |
---|
253 | |
---|
254 | ! IF (ifrst .EQ. 0) THEN |
---|
255 | ! ifrst = 1 |
---|
256 | IF (first) THEN |
---|
257 | first = .FALSE. |
---|
258 | |
---|
259 | ! =========================================================================== |
---|
260 | ! READ IN PARAMETERS FOR THE CLOSURE AND THE MIXING DISTRIBUTION |
---|
261 | ! =========================================================================== |
---|
262 | |
---|
263 | IF (iflag_con==3) THEN |
---|
264 | ! CALL cv3_inicp() |
---|
265 | CALL cv3_inip() |
---|
266 | END IF |
---|
267 | |
---|
268 | ! =========================================================================== |
---|
269 | ! READ IN PARAMETERS FOR CONVECTIVE INHIBITION BY TROPOS. DRYNESS |
---|
270 | ! =========================================================================== |
---|
271 | |
---|
272 | ! c$$$ open (56,file='supcrit.data') |
---|
273 | ! c$$$ read (56,*) Supcrit1, Supcrit2 |
---|
274 | ! c$$$ close (56) |
---|
275 | |
---|
276 | IF (prt_level>=10) WRITE (lunout, *) 'supcrit1, supcrit2', supcrit1, supcrit2 |
---|
277 | |
---|
278 | ! =========================================================================== |
---|
279 | ! Initialisation pour les bilans d'eau et d'energie |
---|
280 | ! =========================================================================== |
---|
281 | IF (if_ebil>=1) d_h_vcol_phy = 0. |
---|
282 | |
---|
283 | DO i = 1, klon |
---|
284 | cbmf(i) = 0. |
---|
285 | !! plcl(i) = 0. |
---|
286 | sigd(i) = 0. |
---|
287 | END DO |
---|
288 | END IF !(ifrst .EQ. 0) |
---|
289 | |
---|
290 | ! Initialisation a chaque pas de temps |
---|
291 | plfc(:) = 0. |
---|
292 | wbeff(:) = 100. |
---|
293 | plcl(:) = 0. |
---|
294 | |
---|
295 | DO k = 1, klev + 1 |
---|
296 | DO i = 1, klon |
---|
297 | em_ph(i, k) = paprs(i, k)/100.0 |
---|
298 | pmflxr(i, k) = 0. |
---|
299 | pmflxs(i, k) = 0. |
---|
300 | END DO |
---|
301 | END DO |
---|
302 | |
---|
303 | DO k = 1, klev |
---|
304 | DO i = 1, klon |
---|
305 | em_p(i, k) = pplay(i, k)/100.0 |
---|
306 | END DO |
---|
307 | END DO |
---|
308 | |
---|
309 | |
---|
310 | ! Feeding layer |
---|
311 | |
---|
312 | em_sig1feed = 1. |
---|
313 | !jyg< |
---|
314 | ! em_sig2feed = 0.97 |
---|
315 | em_sig2feed = cvl_sig2feed |
---|
316 | !>jyg |
---|
317 | ! em_sig2feed = 0.8 |
---|
318 | ! Relative Weight densities |
---|
319 | DO k = 1, klev |
---|
320 | em_wght(k) = 1. |
---|
321 | END DO |
---|
322 | !CRtest: couche alim des tehrmiques ponderee par a* |
---|
323 | ! DO i = 1, klon |
---|
324 | ! do k=1,lalim_conv(i) |
---|
325 | ! em_wght(k)=wght_th(i,k) |
---|
326 | ! print*,'em_wght=',em_wght(k),wght_th(i,k) |
---|
327 | ! end do |
---|
328 | ! END DO |
---|
329 | |
---|
330 | IF (iflag_con==4) THEN |
---|
331 | DO k = 1, klev |
---|
332 | DO i = 1, klon |
---|
333 | zx_t = t(i, k) |
---|
334 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
335 | zx_qs = min(0.5, r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
336 | zcor = 1./(1.-retv*zx_qs) |
---|
337 | qs(i, k) = zx_qs*zcor |
---|
338 | END DO |
---|
339 | DO i = 1, klon |
---|
340 | zx_t = t_wake(i, k) |
---|
341 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
342 | zx_qs = min(0.5, r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
343 | zcor = 1./(1.-retv*zx_qs) |
---|
344 | qs_wake(i, k) = zx_qs*zcor |
---|
345 | END DO |
---|
346 | END DO |
---|
347 | ELSE ! iflag_con=3 (modif de puristes qui fait la diffce pour la convergence numerique) |
---|
348 | DO k = 1, klev |
---|
349 | DO i = 1, klon |
---|
350 | zx_t = t(i, k) |
---|
351 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
352 | zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 |
---|
353 | zx_qs = min(0.5, zx_qs) |
---|
354 | zcor = 1./(1.-retv*zx_qs) |
---|
355 | zx_qs = zx_qs*zcor |
---|
356 | qs(i, k) = zx_qs |
---|
357 | END DO |
---|
358 | DO i = 1, klon |
---|
359 | zx_t = t_wake(i, k) |
---|
360 | zdelta = max(0., sign(1.,rtt-zx_t)) |
---|
361 | zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 |
---|
362 | zx_qs = min(0.5, zx_qs) |
---|
363 | zcor = 1./(1.-retv*zx_qs) |
---|
364 | zx_qs = zx_qs*zcor |
---|
365 | qs_wake(i, k) = zx_qs |
---|
366 | END DO |
---|
367 | END DO |
---|
368 | END IF ! iflag_con |
---|
369 | |
---|
370 | ! ------------------------------------------------------------------ |
---|
371 | |
---|
372 | ! Main driver for convection: |
---|
373 | ! iflag_con=3 -> nvlle version de KE (JYG) |
---|
374 | ! iflag_con = 30 -> equivAlent to convect3 |
---|
375 | ! iflag_con = 4 -> equivAlent to convect1/2 |
---|
376 | |
---|
377 | |
---|
378 | IF (iflag_con==30) THEN |
---|
379 | |
---|
380 | ! print *, '-> cv_driver' !jyg |
---|
381 | CALL cv_driver(klon, klev, klevp1, ntra, iflag_con, & |
---|
382 | t, q, qs, u, v, tra, & |
---|
383 | em_p, em_ph, iflag, & |
---|
384 | d_t, d_q, d_u, d_v, d_tra, rain, & |
---|
385 | Vprecip, cbmf, sig1, w01, & !jyg |
---|
386 | kbas, ktop, & |
---|
387 | dtime, Ma, upwd, dnwd, dnwdbis, qcondc, wd, cape, & |
---|
388 | da, phi, mp, phi2, d1a, dam, sij, clw, elij, & !RomP |
---|
389 | evap, ep, epmlmMm, eplaMm, & !RomP |
---|
390 | wdtrainA, wdtrainM) !RomP |
---|
391 | ! print *, 'cv_driver ->' !jyg |
---|
392 | |
---|
393 | DO i = 1, klon |
---|
394 | cbmf(i) = Ma(i, kbas(i)) |
---|
395 | END DO |
---|
396 | |
---|
397 | !RL |
---|
398 | wght(:, :) = 0. |
---|
399 | DO i = 1, klon |
---|
400 | wght(i, 1) = 1. |
---|
401 | END DO |
---|
402 | !RL |
---|
403 | |
---|
404 | ELSE |
---|
405 | |
---|
406 | !LF necessary for gathered fields |
---|
407 | nloc = klon |
---|
408 | CALL cva_driver(klon, klev, klev+1, ntra, nloc, k_upper_cv, & |
---|
409 | iflag_con, iflag_mix, iflag_ice_thermo, & |
---|
410 | iflag_clos, ok_conserv_q, dtime, cvl_comp_threshold, & |
---|
411 | t, q, qs, t_wake, q_wake, qs_wake, s_wake, u, v, tra, & |
---|
412 | em_p, em_ph, & |
---|
413 | Ale, Alp, omega, & |
---|
414 | em_sig1feed, em_sig2feed, em_wght, & |
---|
415 | iflag, d_t, d_q, d_u, d_v, d_tra, rain, kbas, ktop, & |
---|
416 | cbmf, plcl, plfc, wbeff, sig1, w01, ptop2, sigd, & |
---|
417 | Ma, mip, Vprecip, Vprecipi, upwd, dnwd, dnwdbis, qcondc, wd, & |
---|
418 | cape, cin, tvp, & |
---|
419 | dd_t, dd_q, plim1, plim2, asupmax, supmax0, & |
---|
420 | asupmaxmin, lalim_conv, & |
---|
421 | !AC!+!RomP+jyg |
---|
422 | !! da,phi,mp,phi2,d1a,dam,sij,clw,elij, & ! RomP |
---|
423 | !! evap,ep,epmlmMm,eplaMm, ! RomP |
---|
424 | da, phi, mp, phi2, d1a, dam, sij, wght, & ! RomP+RL |
---|
425 | clw, elij, evap, ep, epmlmMm, eplaMm, & ! RomP+RL |
---|
426 | wdtrainA, wdtrainM, qtc, sigt, & |
---|
427 | tau_cld_cv, coefw_cld_cv) ! RomP,AJ |
---|
428 | !AC!+!RomP+jyg |
---|
429 | END IF |
---|
430 | ! ------------------------------------------------------------------ |
---|
431 | IF (prt_level>=10) WRITE (lunout, *) ' cva_driver -> cbmf,plcl,plfc,wbeff ', & |
---|
432 | cbmf(1), plcl(1), plfc(1), wbeff(1) |
---|
433 | |
---|
434 | DO i = 1, klon |
---|
435 | rain(i) = rain(i)/86400. |
---|
436 | rflag(i) = iflag(i) |
---|
437 | END DO |
---|
438 | |
---|
439 | DO k = 1, klev |
---|
440 | DO i = 1, klon |
---|
441 | d_t(i, k) = dtime*d_t(i, k) |
---|
442 | d_q(i, k) = dtime*d_q(i, k) |
---|
443 | d_u(i, k) = dtime*d_u(i, k) |
---|
444 | d_v(i, k) = dtime*d_v(i, k) |
---|
445 | END DO |
---|
446 | END DO |
---|
447 | |
---|
448 | IF (iflag_con==30) THEN |
---|
449 | DO itra = 1, ntra |
---|
450 | DO k = 1, klev |
---|
451 | DO i = 1, klon |
---|
452 | !RL! d_tra(i,k,itra) =dtime*d_tra(i,k,itra) |
---|
453 | d_tra(i, k, itra) = 0. |
---|
454 | END DO |
---|
455 | END DO |
---|
456 | END DO |
---|
457 | END IF |
---|
458 | |
---|
459 | !!AC! |
---|
460 | IF (iflag_con==3) THEN |
---|
461 | DO itra = 1, ntra |
---|
462 | DO k = 1, klev |
---|
463 | DO i = 1, klon |
---|
464 | !RL! d_tra(i,k,itra) =dtime*d_tra(i,k,itra) |
---|
465 | d_tra(i, k, itra) = 0. |
---|
466 | END DO |
---|
467 | END DO |
---|
468 | END DO |
---|
469 | END IF |
---|
470 | !!AC! |
---|
471 | |
---|
472 | DO k = 1, klev |
---|
473 | DO i = 1, klon |
---|
474 | t1(i, k) = t(i, k) + d_t(i, k) |
---|
475 | q1(i, k) = q(i, k) + d_q(i, k) |
---|
476 | END DO |
---|
477 | END DO |
---|
478 | ! !jyg |
---|
479 | IF (iflag_con == 30 .OR. iflag_ice_thermo ==0) THEN |
---|
480 | ! --Separation neige/pluie (pour diagnostics) !jyg |
---|
481 | DO k = 1, klev !jyg |
---|
482 | DO i = 1, klon !jyg |
---|
483 | IF (t1(i,k)<rtt) THEN !jyg |
---|
484 | pmflxs(i, k) = Vprecip(i, k) !jyg |
---|
485 | ELSE !jyg |
---|
486 | pmflxr(i, k) = Vprecip(i, k) !jyg |
---|
487 | END IF !jyg |
---|
488 | END DO !jyg |
---|
489 | END DO !jyg |
---|
490 | ELSE |
---|
491 | DO k = 1, klev !jyg |
---|
492 | DO i = 1, klon !jyg |
---|
493 | pmflxs(i, k) = Vprecipi(i, k) !jyg |
---|
494 | pmflxr(i, k) = Vprecip(i, k)-Vprecipi(i, k) !jyg |
---|
495 | END DO !jyg |
---|
496 | END DO !jyg |
---|
497 | ENDIF |
---|
498 | |
---|
499 | ! c IF (if_ebil.ge.2) THEN |
---|
500 | ! c ztit='after convect' |
---|
501 | ! c CALL diagetpq(paire,ztit,ip_ebil,2,2,dtime |
---|
502 | ! c e , t1,q1,ql,qs,u,v,paprs,pplay |
---|
503 | ! c s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
504 | ! c call diagphy(paire,ztit,ip_ebil |
---|
505 | ! c e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
506 | ! c e , zero_v, rain, zero_v, ztsol |
---|
507 | ! c e , d_h_vcol, d_qt, d_ec |
---|
508 | ! c s , fs_bound, fq_bound ) |
---|
509 | ! c END IF |
---|
510 | |
---|
511 | |
---|
512 | ! les traceurs ne sont pas mis dans cette version de convect4: |
---|
513 | IF (iflag_con==4) THEN |
---|
514 | DO itra = 1, ntra |
---|
515 | DO k = 1, klev |
---|
516 | DO i = 1, klon |
---|
517 | d_tra(i, k, itra) = 0. |
---|
518 | END DO |
---|
519 | END DO |
---|
520 | END DO |
---|
521 | END IF |
---|
522 | ! print*, 'concvl->: dd_t,dd_q ',dd_t(1,1),dd_q(1,1) |
---|
523 | |
---|
524 | DO k = 1, klev |
---|
525 | DO i = 1, klon |
---|
526 | dtvpdt1(i, k) = 0. |
---|
527 | dtvpdq1(i, k) = 0. |
---|
528 | END DO |
---|
529 | END DO |
---|
530 | DO i = 1, klon |
---|
531 | dplcldt(i) = 0. |
---|
532 | dplcldr(i) = 0. |
---|
533 | END DO |
---|
534 | |
---|
535 | IF (prt_level>=20) THEN |
---|
536 | DO k = 1, klev |
---|
537 | ! print*,'physiq apres_add_con i k it d_u d_v d_t d_q qdl0',igout, & |
---|
538 | ! k,itap,d_u_con(igout,k) ,d_v_con(igout,k), d_t_con(igout,k), & |
---|
539 | ! d_q_con(igout,k),dql0(igout,k) |
---|
540 | ! print*,'phys apres_add_con itap Ma cin ALE ALP wak t q undi t q', & |
---|
541 | ! itap,Ma(igout,k),cin(igout),ALE(igout), ALP(igout), & |
---|
542 | ! t_wake(igout,k),q_wake(igout,k),t_undi(igout,k),q_undi(igout,k) |
---|
543 | ! print*,'phy apres_add_con itap CON rain snow EMA wk1 wk2 Vpp mip', & |
---|
544 | ! itap,rain_con(igout),snow_con(igout),ema_work1(igout,k), & |
---|
545 | ! ema_work2(igout,k),Vprecip(igout,k), mip(igout,k) |
---|
546 | ! print*,'phy apres_add_con itap upwd dnwd dnwd0 cape tvp Tconv ', & |
---|
547 | ! itap,upwd(igout,k),dnwd(igout,k),dnwd0(igout,k),cape(igout), & |
---|
548 | ! tvp(igout,k),Tconv(igout,k) |
---|
549 | ! print*,'phy apres_add_con itap dtvpdt dtvdq dplcl dplcldr qcondc', & |
---|
550 | ! itap,dtvpdt1(igout,k),dtvpdq1(igout,k),dplcldt(igout), & |
---|
551 | ! dplcldr(igout),qcondc(igout,k) |
---|
552 | ! print*,'phy apres_add_con itap wd pmflxr Kpmflxr Kp1 Kpmflxs Kp1', & |
---|
553 | ! itap,wd(igout),pmflxr(igout,k),pmflxr(igout,k+1),pmflxs(igout,k), & |
---|
554 | ! pmflxs(igout,k+1) |
---|
555 | ! print*,'phy apres_add_con itap da phi mp ftd fqd lalim wgth', & |
---|
556 | ! itap,da(igout,k),phi(igout,k,k),mp(igout,k),ftd(igout,k), & |
---|
557 | ! fqd(igout,k),lalim_conv(igout),wght_th(igout,k) |
---|
558 | END DO |
---|
559 | END IF !(prt_level.EQ.20) THEN |
---|
560 | |
---|
561 | RETURN |
---|
562 | END SUBROUTINE concvl |
---|
563 | |
---|