[878] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
[972] | 4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
[878] | 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
[972] | 8 | & ,fm0,entr0,detr0,zqla,lmax & |
---|
[878] | 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[972] | 10 | & ,r_aspect,l_mix,tau_thermals & |
---|
[927] | 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
| 12 | & ,zmax0, f0) |
---|
[878] | 13 | |
---|
[972] | 14 | USE dimphy |
---|
[878] | 15 | IMPLICIT NONE |
---|
| 16 | |
---|
| 17 | !======================================================================= |
---|
| 18 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 19 | ! Version du 09.02.07 |
---|
| 20 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 21 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 22 | ! |
---|
| 23 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 24 | ! |
---|
| 25 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 26 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 27 | ! mélange |
---|
| 28 | ! |
---|
| 29 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 30 | ! en compte: |
---|
| 31 | ! 1. un flux de masse montant |
---|
| 32 | ! 2. un flux de masse descendant |
---|
| 33 | ! 3. un entrainement |
---|
| 34 | ! 4. un detrainement |
---|
| 35 | ! |
---|
| 36 | !======================================================================= |
---|
| 37 | |
---|
| 38 | !----------------------------------------------------------------------- |
---|
| 39 | ! declarations: |
---|
| 40 | ! ------------- |
---|
| 41 | |
---|
| 42 | #include "dimensions.h" |
---|
[940] | 43 | !#include "dimphy.h" |
---|
[878] | 44 | #include "YOMCST.h" |
---|
| 45 | #include "YOETHF.h" |
---|
| 46 | #include "FCTTRE.h" |
---|
[938] | 47 | #include "iniprint.h" |
---|
[878] | 48 | |
---|
| 49 | ! arguments: |
---|
| 50 | ! ---------- |
---|
| 51 | |
---|
[972] | 52 | !IM 140508 |
---|
| 53 | INTEGER itap |
---|
| 54 | |
---|
| 55 | INTEGER ngrid,nlay,w2di |
---|
| 56 | real tau_thermals |
---|
[878] | 57 | real ptimestep,l_mix,r_aspect |
---|
| 58 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 59 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 60 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 61 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 62 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 63 | real pphi(ngrid,nlay) |
---|
| 64 | |
---|
| 65 | ! local: |
---|
| 66 | ! ------ |
---|
| 67 | |
---|
[972] | 68 | integer icount |
---|
| 69 | data icount/0/ |
---|
| 70 | save icount |
---|
| 71 | |
---|
[883] | 72 | integer,save :: igout=1 |
---|
[938] | 73 | integer,save :: lunout1=6 |
---|
[883] | 74 | integer,save :: lev_out=10 |
---|
[878] | 75 | |
---|
| 76 | INTEGER ig,k,l,ll |
---|
| 77 | real zsortie1d(klon) |
---|
| 78 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 79 | INTEGER lmix(klon) |
---|
| 80 | real linter(klon) |
---|
| 81 | real zmix(klon) |
---|
| 82 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev) |
---|
| 83 | real zmax_sec(klon) |
---|
| 84 | real w_est(klon,klev+1) |
---|
| 85 | !on garde le zmax du pas de temps precedent |
---|
| 86 | real zmax0(klon) |
---|
[927] | 87 | !FH/IM save zmax0 |
---|
[878] | 88 | |
---|
[972] | 89 | real lambda |
---|
| 90 | |
---|
[878] | 91 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 92 | real deltaz(klon,klev) |
---|
[972] | 93 | REAL zh(klon,klev) |
---|
[878] | 94 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 95 | REAL ztv(klon,klev) |
---|
| 96 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 97 | real zl(klon,klev) |
---|
| 98 | real zsortie(klon,klev) |
---|
| 99 | real zva(klon,klev) |
---|
| 100 | real zua(klon,klev) |
---|
| 101 | real zoa(klon,klev) |
---|
| 102 | |
---|
| 103 | real zta(klon,klev) |
---|
| 104 | real zha(klon,klev) |
---|
| 105 | real fraca(klon,klev+1) |
---|
| 106 | real zf,zf2 |
---|
| 107 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 108 | real q2(klon,klev) |
---|
[972] | 109 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
| 110 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 111 | |
---|
| 112 | real ratqscth(klon,klev) |
---|
| 113 | real var |
---|
| 114 | real vardiff |
---|
| 115 | real ratqsdiff(klon,klev) |
---|
| 116 | integer isplit,nsplit |
---|
| 117 | parameter (nsplit=10) |
---|
| 118 | data isplit/0/ |
---|
| 119 | save isplit |
---|
| 120 | |
---|
| 121 | logical sorties |
---|
[972] | 122 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
[878] | 123 | real zpspsk(klon,klev) |
---|
| 124 | |
---|
| 125 | real wmax(klon) |
---|
| 126 | real wmax_sec(klon) |
---|
[972] | 127 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
| 128 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
[878] | 129 | |
---|
| 130 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 131 | !niveau de condensation |
---|
[879] | 132 | integer nivcon(klon) |
---|
[878] | 133 | real zcon(klon) |
---|
| 134 | REAL CHI |
---|
| 135 | real zcon2(klon) |
---|
| 136 | real pcon(klon) |
---|
| 137 | real zqsat(klon,klev) |
---|
| 138 | real zqsatth(klon,klev) |
---|
| 139 | |
---|
| 140 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 141 | real detr_star(klon,klev) |
---|
| 142 | real alim_star_tot(klon),alim_star2(klon) |
---|
| 143 | real alim_star(klon,klev) |
---|
| 144 | real f(klon), f0(klon) |
---|
[927] | 145 | !FH/IM save f0 |
---|
[878] | 146 | real zlevinter(klon) |
---|
| 147 | logical debut |
---|
| 148 | real seuil |
---|
| 149 | |
---|
| 150 | ! |
---|
[879] | 151 | !nouvelles variables pour la convection |
---|
| 152 | real Ale_bl(klon) |
---|
| 153 | real Alp_bl(klon) |
---|
| 154 | real alp_int(klon) |
---|
| 155 | real ale_int(klon) |
---|
| 156 | integer n_int(klon) |
---|
| 157 | real fm_tot(klon) |
---|
| 158 | real wght_th(klon,klev) |
---|
| 159 | integer lalim_conv(klon) |
---|
[926] | 160 | !v1d logical therm |
---|
| 161 | !v1d save therm |
---|
[878] | 162 | |
---|
| 163 | character*2 str2 |
---|
| 164 | character*10 str10 |
---|
| 165 | |
---|
| 166 | EXTERNAL SCOPY |
---|
| 167 | ! |
---|
| 168 | |
---|
| 169 | !----------------------------------------------------------------------- |
---|
| 170 | ! initialisation: |
---|
| 171 | ! --------------- |
---|
| 172 | ! |
---|
| 173 | |
---|
| 174 | seuil=0.25 |
---|
| 175 | |
---|
[972] | 176 | if (debut) then |
---|
| 177 | fm0=0. |
---|
| 178 | entr0=0. |
---|
| 179 | detr0=0. |
---|
| 180 | endif |
---|
| 181 | |
---|
| 182 | fm=0. ; entr=0. ; detr=0. |
---|
| 183 | |
---|
| 184 | icount=icount+1 |
---|
| 185 | |
---|
| 186 | !IM 090508 beg |
---|
| 187 | !print*,'=====================================================================' |
---|
| 188 | !print*,'=====================================================================' |
---|
| 189 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
| 190 | !print*,'=====================================================================' |
---|
| 191 | !print*,'=====================================================================' |
---|
| 192 | !IM 090508 end |
---|
| 193 | |
---|
[938] | 194 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 195 | |
---|
| 196 | sorties=.true. |
---|
| 197 | IF(ngrid.NE.klon) THEN |
---|
| 198 | PRINT* |
---|
| 199 | PRINT*,'STOP dans convadj' |
---|
| 200 | PRINT*,'ngrid =',ngrid |
---|
| 201 | PRINT*,'klon =',klon |
---|
| 202 | ENDIF |
---|
| 203 | ! |
---|
| 204 | !Initialisation |
---|
| 205 | ! |
---|
[972] | 206 | ! IF (1.eq.0) THEN |
---|
| 207 | ! do ig=1,klon |
---|
[927] | 208 | !FH/IM 130308 if ((debut).or.((.not.debut).and.(f0(ig).lt.1.e-10))) then |
---|
[972] | 209 | ! if ((.not.debut).and.(f0(ig).lt.1.e-10)) then |
---|
| 210 | ! f0(ig)=1.e-5 |
---|
| 211 | ! zmax0(ig)=40. |
---|
[926] | 212 | !v1d therm=.false. |
---|
[972] | 213 | ! endif |
---|
| 214 | ! enddo |
---|
| 215 | ! ENDIF !(1.eq.0) THEN |
---|
| 216 | print*,'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
| 217 | do ig=1,klon |
---|
| 218 | if (prt_level.ge.20) then |
---|
| 219 | print*,'th_main ig f0',ig,f0(ig) |
---|
[878] | 220 | endif |
---|
[972] | 221 | f0(ig)=max(f0(ig),1.e-2) |
---|
| 222 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
| 223 | enddo |
---|
[878] | 224 | |
---|
| 225 | !----------------------------------------------------------------------- |
---|
| 226 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 227 | ! -------------------------------------------------------------------- |
---|
| 228 | ! |
---|
| 229 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 230 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 231 | |
---|
[938] | 232 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 233 | |
---|
| 234 | !------------------------------------------------------------------------ |
---|
| 235 | ! -------------------- |
---|
| 236 | ! |
---|
| 237 | ! |
---|
| 238 | ! + + + + + + + + + + + |
---|
| 239 | ! |
---|
| 240 | ! |
---|
| 241 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 242 | ! wh,wt,wo ... |
---|
| 243 | ! |
---|
| 244 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 245 | ! |
---|
| 246 | ! |
---|
| 247 | ! -------------------- zlev(1) |
---|
| 248 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 249 | ! |
---|
| 250 | ! |
---|
| 251 | |
---|
| 252 | !----------------------------------------------------------------------- |
---|
| 253 | ! Calcul des altitudes des couches |
---|
| 254 | !----------------------------------------------------------------------- |
---|
| 255 | |
---|
| 256 | do l=2,nlay |
---|
| 257 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 258 | enddo |
---|
| 259 | zlev(:,1)=0. |
---|
| 260 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 261 | do l=1,nlay |
---|
| 262 | zlay(:,l)=pphi(:,l)/RG |
---|
| 263 | enddo |
---|
| 264 | !calcul de l epaisseur des couches |
---|
| 265 | do l=1,nlay |
---|
| 266 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 267 | enddo |
---|
| 268 | |
---|
| 269 | ! print*,'2 OK convect8' |
---|
| 270 | !----------------------------------------------------------------------- |
---|
| 271 | ! Calcul des densites |
---|
| 272 | !----------------------------------------------------------------------- |
---|
| 273 | |
---|
| 274 | do l=1,nlay |
---|
| 275 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 276 | enddo |
---|
| 277 | |
---|
[972] | 278 | !IM |
---|
| 279 | print*,'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
| 280 | rhobarz(:,1)=rho(:,1) |
---|
| 281 | |
---|
[878] | 282 | do l=2,nlay |
---|
| 283 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 284 | enddo |
---|
| 285 | |
---|
| 286 | !calcul de la masse |
---|
| 287 | do l=1,nlay |
---|
| 288 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 289 | enddo |
---|
| 290 | |
---|
[938] | 291 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 292 | |
---|
| 293 | !------------------------------------------------------------------ |
---|
| 294 | ! |
---|
| 295 | ! /|\ |
---|
| 296 | ! -------- | F_k+1 ------- |
---|
| 297 | ! ----> D_k |
---|
| 298 | ! /|\ <---- E_k , A_k |
---|
| 299 | ! -------- | F_k --------- |
---|
| 300 | ! ----> D_k-1 |
---|
| 301 | ! <---- E_k-1 , A_k-1 |
---|
| 302 | ! |
---|
| 303 | ! |
---|
| 304 | ! |
---|
| 305 | ! |
---|
| 306 | ! |
---|
| 307 | ! --------------------------- |
---|
| 308 | ! |
---|
| 309 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 310 | ! lmax (zmax) | |
---|
| 311 | ! --------------------------- | |
---|
| 312 | ! | |
---|
| 313 | ! --------------------------- | |
---|
| 314 | ! | |
---|
| 315 | ! --------------------------- | |
---|
| 316 | ! | |
---|
| 317 | ! --------------------------- | |
---|
| 318 | ! | |
---|
| 319 | ! --------------------------- | |
---|
| 320 | ! | E |
---|
| 321 | ! --------------------------- | D |
---|
| 322 | ! | |
---|
| 323 | ! --------------------------- | |
---|
| 324 | ! | |
---|
| 325 | ! --------------------------- \ | |
---|
| 326 | ! lalim | | |
---|
| 327 | ! --------------------------- | | |
---|
| 328 | ! | | |
---|
| 329 | ! --------------------------- | | |
---|
| 330 | ! | A | |
---|
| 331 | ! --------------------------- | | |
---|
| 332 | ! | | |
---|
| 333 | ! --------------------------- | | |
---|
| 334 | ! lmin (=1 pour le moment) | | |
---|
| 335 | ! ----- F_lmin=0 ------------ / / |
---|
| 336 | ! |
---|
| 337 | ! --------------------------- |
---|
| 338 | ! ////////////////////////// |
---|
| 339 | ! |
---|
| 340 | ! |
---|
| 341 | !============================================================================= |
---|
| 342 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 343 | !============================================================================= |
---|
| 344 | |
---|
| 345 | !------------------------------------------------------------------ |
---|
| 346 | ! 1. alim_star est le profil vertical de l'alimentation à la base du |
---|
| 347 | ! panache thermique, calculé à partir de la flotabilité de l'air sec |
---|
| 348 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 349 | !------------------------------------------------------------------ |
---|
| 350 | ! |
---|
| 351 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
[972] | 352 | CALL thermcell_init(ngrid,nlay,ztv,zlay,zlev, & |
---|
[878] | 353 | & lalim,lmin,alim_star,alim_star_tot,lev_out) |
---|
| 354 | |
---|
| 355 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lmin ') |
---|
| 356 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lalim ') |
---|
| 357 | |
---|
| 358 | |
---|
[938] | 359 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_init' |
---|
| 360 | if (prt_level.ge.10) then |
---|
[972] | 361 | write(lunout1,*) 'Dans thermcell_main 1' |
---|
| 362 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 363 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 364 | write(lunout1,*) ' ig l alim_star thetav' |
---|
| 365 | write(lunout1,'(i6,i4,2e15.5)') (igout,l,alim_star(igout,l) & |
---|
[878] | 366 | & ,ztv(igout,l),l=1,lalim(igout)+4) |
---|
| 367 | endif |
---|
| 368 | |
---|
[938] | 369 | !v1d do ig=1,klon |
---|
[926] | 370 | !v1d if (alim_star(ig,1).gt.1.e-10) then |
---|
| 371 | !v1d therm=.true. |
---|
| 372 | !v1d endif |
---|
[938] | 373 | !v1d enddo |
---|
[878] | 374 | !----------------------------------------------------------------------------- |
---|
| 375 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 376 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 377 | ! Il s'agit d'un calcul de type CAPE |
---|
| 378 | ! zmax_sec est utilisé pour déterminer la géométrie du thermique. |
---|
| 379 | !------------------------------------------------------------------------------ |
---|
| 380 | ! |
---|
| 381 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 382 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
| 383 | |
---|
| 384 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 385 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 386 | |
---|
[938] | 387 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 388 | if (prt_level.ge.10) then |
---|
[972] | 389 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
| 390 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 391 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 392 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 393 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
[878] | 394 | & ,l=1,lalim(igout)+4) |
---|
| 395 | endif |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | |
---|
| 399 | !--------------------------------------------------------------------------------- |
---|
| 400 | !calcul du melange et des variables dans le thermique |
---|
| 401 | !-------------------------------------------------------------------------------- |
---|
| 402 | ! |
---|
[972] | 403 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
| 404 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
| 405 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
[878] | 406 | & zlev,pplev,pphi,zpspsk,l_mix,r_aspect,alim_star, & |
---|
| 407 | & lalim,zmax_sec,f0,detr_star,entr_star,f_star,ztva, & |
---|
| 408 | & ztla,zqla,zqta,zha,zw2,zqsatth,lmix,linter,lev_out) |
---|
[972] | 409 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
| 410 | |
---|
[878] | 411 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 412 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 413 | |
---|
[938] | 414 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 415 | if (prt_level.ge.10) then |
---|
[972] | 416 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
| 417 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 418 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 419 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 420 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
[878] | 421 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 422 | endif |
---|
| 423 | |
---|
| 424 | !------------------------------------------------------------------------------- |
---|
| 425 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 426 | !------------------------------------------------------------------------------- |
---|
| 427 | ! |
---|
| 428 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 429 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 433 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 434 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 435 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 436 | |
---|
[938] | 437 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 438 | |
---|
| 439 | !------------------------------------------------------------------------------- |
---|
| 440 | ! Fermeture,determination de f |
---|
| 441 | !------------------------------------------------------------------------------- |
---|
| 442 | |
---|
| 443 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
[972] | 444 | & zlev,lalim,alim_star,zmax_sec,wmax_sec,zmax,wmax,f,lev_out) |
---|
[878] | 445 | |
---|
[938] | 446 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 447 | |
---|
[972] | 448 | if (tau_thermals>1.) then |
---|
| 449 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 450 | f0=(1.-lambda)*f+lambda*f0 |
---|
| 451 | else |
---|
| 452 | f0=f |
---|
| 453 | endif |
---|
| 454 | |
---|
| 455 | ! Test valable seulement en 1D mais pas genant |
---|
| 456 | if (.not. (f0(1).ge.0.) ) then |
---|
| 457 | stop'Dans thermcell_main' |
---|
| 458 | endif |
---|
| 459 | |
---|
[878] | 460 | !------------------------------------------------------------------------------- |
---|
| 461 | !deduction des flux |
---|
| 462 | !------------------------------------------------------------------------------- |
---|
| 463 | |
---|
[972] | 464 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
[878] | 465 | & lalim,lmax,alim_star, & |
---|
| 466 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
[972] | 467 | & detr,zqla,lev_out,lunout1,igout) |
---|
| 468 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
[878] | 469 | |
---|
[938] | 470 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 471 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 472 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 473 | |
---|
| 474 | !------------------------------------------------------------------ |
---|
[972] | 475 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
| 476 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
| 477 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
| 478 | !------------------------------------------------------------------ |
---|
[878] | 479 | |
---|
[972] | 480 | if (tau_thermals>1.) then |
---|
| 481 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 482 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
| 483 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
| 484 | ! detr0=(1.-lambda)*detr+lambda*detr0 |
---|
[878] | 485 | else |
---|
| 486 | fm0=fm |
---|
| 487 | entr0=entr |
---|
| 488 | detr0=detr |
---|
| 489 | endif |
---|
| 490 | |
---|
[972] | 491 | !c------------------------------------------------------------------ |
---|
| 492 | ! calcul du transport vertical |
---|
| 493 | !------------------------------------------------------------------ |
---|
| 494 | |
---|
[878] | 495 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 496 | & zthl,zdthladj,zta,lev_out) |
---|
| 497 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 498 | & po,pdoadj,zoa,lev_out) |
---|
| 499 | |
---|
[883] | 500 | !------------------------------------------------------------------ |
---|
| 501 | ! Calcul de la fraction de l'ascendance |
---|
| 502 | !------------------------------------------------------------------ |
---|
| 503 | do ig=1,klon |
---|
| 504 | fraca(ig,1)=0. |
---|
| 505 | fraca(ig,nlay+1)=0. |
---|
| 506 | enddo |
---|
| 507 | do l=2,nlay |
---|
| 508 | do ig=1,klon |
---|
| 509 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 510 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 511 | else |
---|
| 512 | fraca(ig,l)=0. |
---|
| 513 | endif |
---|
| 514 | enddo |
---|
| 515 | enddo |
---|
| 516 | |
---|
| 517 | !------------------------------------------------------------------ |
---|
| 518 | ! calcul du transport vertical du moment horizontal |
---|
| 519 | !------------------------------------------------------------------ |
---|
[878] | 520 | |
---|
[972] | 521 | !IM 090508 |
---|
[883] | 522 | if (1.eq.1) then |
---|
[972] | 523 | !IM 070508 vers. _dq |
---|
| 524 | ! if (1.eq.0) then |
---|
[883] | 525 | |
---|
| 526 | |
---|
[878] | 527 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 528 | ! de pression horizontal avec l'environnement |
---|
| 529 | |
---|
| 530 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 531 | & ,fraca,zmax & |
---|
[972] | 532 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
| 533 | !IM 050508 & ,zu,zv,pduadj,pdvadj,zua,zva,igout,lev_out) |
---|
[878] | 534 | else |
---|
| 535 | |
---|
| 536 | ! calcul purement conservatif pour le transport de V |
---|
| 537 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 538 | & ,zu,pduadj,zua,lev_out) |
---|
| 539 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 540 | & ,zv,pdvadj,zva,lev_out) |
---|
| 541 | endif |
---|
| 542 | |
---|
| 543 | ! print*,'13 OK convect8' |
---|
| 544 | do l=1,nlay |
---|
| 545 | do ig=1,ngrid |
---|
| 546 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 547 | enddo |
---|
| 548 | enddo |
---|
| 549 | |
---|
[972] | 550 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
[878] | 551 | !------------------------------------------------------------------ |
---|
| 552 | ! Calculs de diagnostiques pour les sorties |
---|
| 553 | !------------------------------------------------------------------ |
---|
| 554 | !calcul de fraca pour les sorties |
---|
| 555 | |
---|
| 556 | if (sorties) then |
---|
[972] | 557 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
[878] | 558 | ! calcul du niveau de condensation |
---|
| 559 | ! initialisation |
---|
| 560 | do ig=1,ngrid |
---|
[879] | 561 | nivcon(ig)=0 |
---|
[878] | 562 | zcon(ig)=0. |
---|
| 563 | enddo |
---|
| 564 | !nouveau calcul |
---|
| 565 | do ig=1,ngrid |
---|
| 566 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 567 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 568 | enddo |
---|
| 569 | do k=1,nlay |
---|
| 570 | do ig=1,ngrid |
---|
| 571 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 572 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 573 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 574 | endif |
---|
| 575 | enddo |
---|
| 576 | enddo |
---|
[972] | 577 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
[878] | 578 | do k=nlay,1,-1 |
---|
| 579 | do ig=1,ngrid |
---|
| 580 | if (zqla(ig,k).gt.1e-10) then |
---|
| 581 | nivcon(ig)=k |
---|
| 582 | zcon(ig)=zlev(ig,k) |
---|
| 583 | endif |
---|
| 584 | enddo |
---|
| 585 | enddo |
---|
[972] | 586 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
[878] | 587 | !calcul des moments |
---|
| 588 | !initialisation |
---|
| 589 | do l=1,nlay |
---|
| 590 | do ig=1,ngrid |
---|
| 591 | q2(ig,l)=0. |
---|
| 592 | wth2(ig,l)=0. |
---|
| 593 | wth3(ig,l)=0. |
---|
| 594 | ratqscth(ig,l)=0. |
---|
| 595 | ratqsdiff(ig,l)=0. |
---|
| 596 | enddo |
---|
| 597 | enddo |
---|
[972] | 598 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
| 599 | print*,'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
[878] | 600 | do l=1,nlay |
---|
| 601 | do ig=1,ngrid |
---|
| 602 | zf=fraca(ig,l) |
---|
| 603 | zf2=zf/(1.-zf) |
---|
[972] | 604 | ! |
---|
| 605 | if (prt_level.ge.10) print*,'14e OK convect8 ig,l,zf,zf2',ig,l,zf,zf2 |
---|
| 606 | ! |
---|
| 607 | if (prt_level.ge.10) print*,'14f OK convect8 ig,l,zha zh zpspsk ',ig,l,zha(ig,l),zh(ig,l),zpspsk(ig,l) |
---|
[878] | 608 | thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
[972] | 609 | if(zw2(ig,l).gt.1.e-10) then |
---|
| 610 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 611 | else |
---|
| 612 | wth2(ig,l)=0. |
---|
| 613 | endif |
---|
[878] | 614 | ! print*,'wth2=',wth2(ig,l) |
---|
| 615 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 616 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
[972] | 617 | if (prt_level.ge.10) print*,'14g OK convect8 ig,l,po',ig,l,po(ig,l) |
---|
[878] | 618 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 619 | !test: on calcul q2/po=ratqsc |
---|
| 620 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 621 | enddo |
---|
| 622 | enddo |
---|
[879] | 623 | !calcul de ale_bl et alp_bl |
---|
| 624 | !pour le calcul d'une valeur intégrée entre la surface et lmax |
---|
| 625 | do ig=1,ngrid |
---|
| 626 | alp_int(ig)=0. |
---|
| 627 | ale_int(ig)=0. |
---|
| 628 | n_int(ig)=0 |
---|
| 629 | enddo |
---|
[972] | 630 | ! |
---|
| 631 | do l=1,nlay |
---|
[879] | 632 | do ig=1,ngrid |
---|
[972] | 633 | if(l.LE.lmax(ig)) THEN |
---|
| 634 | alp_int(ig)=alp_int(ig)+0.5*rhobarz(ig,l)*wth3(ig,l) |
---|
| 635 | ale_int(ig)=ale_int(ig)+0.5*zw2(ig,l)**2 |
---|
| 636 | n_int(ig)=n_int(ig)+1 |
---|
| 637 | endif |
---|
[879] | 638 | enddo |
---|
| 639 | enddo |
---|
| 640 | ! print*,'avant calcul ale et alp' |
---|
| 641 | !calcul de ALE et ALP pour la convection |
---|
| 642 | do ig=1,ngrid |
---|
| 643 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix_bis(ig))*wth3(ig,lmix(ig)) |
---|
| 644 | ! Alp_bl(ig)=0.5*rhobarz(ig,nivcon(ig))*wth3(ig,nivcon(ig)) |
---|
| 645 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix(ig))*wth3(ig,lmix(ig)) |
---|
| 646 | ! & *0.1 |
---|
| 647 | !valeur integree de alp_bl * 0.5: |
---|
| 648 | if (n_int(ig).gt.0) then |
---|
| 649 | Alp_bl(ig)=0.5*alp_int(ig)/n_int(ig) |
---|
| 650 | ! if (Alp_bl(ig).lt.0.) then |
---|
| 651 | ! Alp_bl(ig)=0. |
---|
| 652 | endif |
---|
| 653 | ! endif |
---|
| 654 | ! write(18,*),'rhobarz,wth3,Alp',rhobarz(ig,nivcon(ig)), |
---|
| 655 | ! s wth3(ig,nivcon(ig)),Alp_bl(ig) |
---|
| 656 | ! write(18,*),'ALP_BL',Alp_bl(ig),lmix(ig) |
---|
| 657 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 658 | ! if (nivcon(ig).eq.1) then |
---|
| 659 | ! Ale_bl(ig)=0. |
---|
| 660 | ! else |
---|
| 661 | !valeur max de ale_bl: |
---|
| 662 | Ale_bl(ig)=0.5*zw2(ig,lmix(ig))**2 |
---|
| 663 | ! & /2. |
---|
| 664 | ! & *0.1 |
---|
| 665 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 666 | ! if (n_int(ig).gt.0) then |
---|
| 667 | ! Ale_bl(ig)=ale_int(ig)/n_int(ig) |
---|
| 668 | ! Ale_bl(ig)=4. |
---|
| 669 | ! endif |
---|
| 670 | ! endif |
---|
| 671 | ! Ale_bl(ig)=0.5*wth2(ig,lmix_bis(ig)) |
---|
| 672 | ! Ale_bl(ig)=wth2(ig,nivcon(ig)) |
---|
| 673 | ! write(19,*),'wth2,ALE_BL',wth2(ig,nivcon(ig)),Ale_bl(ig) |
---|
| 674 | enddo |
---|
| 675 | !test:calcul de la ponderation des couches pour KE |
---|
| 676 | !initialisations |
---|
| 677 | ! print*,'ponderation' |
---|
| 678 | do ig=1,ngrid |
---|
| 679 | fm_tot(ig)=0. |
---|
| 680 | enddo |
---|
| 681 | do ig=1,ngrid |
---|
| 682 | do k=1,klev |
---|
| 683 | wght_th(ig,k)=1. |
---|
| 684 | enddo |
---|
| 685 | enddo |
---|
| 686 | do ig=1,ngrid |
---|
| 687 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 688 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 689 | lalim_conv(ig)=lalim(ig) |
---|
| 690 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 691 | enddo |
---|
| 692 | do ig=1,ngrid |
---|
| 693 | do k=1,lalim_conv(ig) |
---|
| 694 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 695 | enddo |
---|
| 696 | enddo |
---|
| 697 | do ig=1,ngrid |
---|
| 698 | do k=1,lalim_conv(ig) |
---|
| 699 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 700 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 701 | endif |
---|
| 702 | !on pondere chaque couche par a* |
---|
| 703 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 704 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 705 | else |
---|
| 706 | wght_th(ig,k)=1. |
---|
| 707 | endif |
---|
| 708 | enddo |
---|
| 709 | enddo |
---|
| 710 | ! print*,'apres wght_th' |
---|
| 711 | !test pour prolonger la convection |
---|
| 712 | do ig=1,ngrid |
---|
[926] | 713 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 714 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
[879] | 715 | lalim_conv(ig)=1 |
---|
| 716 | wght_th(ig,1)=1. |
---|
| 717 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 718 | endif |
---|
| 719 | enddo |
---|
| 720 | |
---|
[878] | 721 | !calcul du ratqscdiff |
---|
[972] | 722 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
[878] | 723 | var=0. |
---|
| 724 | vardiff=0. |
---|
| 725 | ratqsdiff(:,:)=0. |
---|
| 726 | do ig=1,ngrid |
---|
| 727 | do l=1,lalim(ig) |
---|
| 728 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 729 | enddo |
---|
| 730 | enddo |
---|
[972] | 731 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
[878] | 732 | do ig=1,ngrid |
---|
| 733 | do l=1,lalim(ig) |
---|
| 734 | zf=fraca(ig,l) |
---|
| 735 | zf2=zf/(1.-zf) |
---|
| 736 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 737 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 738 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 739 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 740 | enddo |
---|
| 741 | enddo |
---|
[972] | 742 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
[878] | 743 | do l=1,nlay |
---|
| 744 | do ig=1,ngrid |
---|
| 745 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 746 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 747 | enddo |
---|
| 748 | enddo |
---|
| 749 | !-------------------------------------------------------------------- |
---|
| 750 | ! |
---|
| 751 | !ecriture des fichiers sortie |
---|
| 752 | ! print*,'15 OK convect8' |
---|
| 753 | |
---|
| 754 | isplit=isplit+1 |
---|
| 755 | |
---|
| 756 | |
---|
| 757 | #ifdef und |
---|
[938] | 758 | if (prt_level.ge.1) print*,'thermcell_main sorties 1D' |
---|
[878] | 759 | #include "thermcell_out1d.h" |
---|
| 760 | #endif |
---|
| 761 | |
---|
| 762 | |
---|
[972] | 763 | #define troisD |
---|
| 764 | #undef troisD |
---|
[938] | 765 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
[878] | 766 | #ifdef troisD |
---|
| 767 | #include "thermcell_out3d.h" |
---|
| 768 | #endif |
---|
| 769 | |
---|
| 770 | endif |
---|
| 771 | |
---|
[938] | 772 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 773 | |
---|
[972] | 774 | ! if(icount.eq.501) stop'au pas 301 dans thermcell_main' |
---|
[878] | 775 | return |
---|
| 776 | end |
---|
| 777 | |
---|
| 778 | !----------------------------------------------------------------------------- |
---|
| 779 | |
---|
| 780 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[938] | 781 | IMPLICIT NONE |
---|
| 782 | #include "iniprint.h" |
---|
[878] | 783 | |
---|
[938] | 784 | integer i, k, klon,klev |
---|
[878] | 785 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 786 | real ztv(klon,klev) |
---|
| 787 | real po(klon,klev) |
---|
| 788 | real ztva(klon,klev) |
---|
| 789 | real zqla(klon,klev) |
---|
| 790 | real f_star(klon,klev) |
---|
| 791 | real zw2(klon,klev) |
---|
| 792 | integer long(klon) |
---|
| 793 | real seuil |
---|
| 794 | character*21 comment |
---|
| 795 | |
---|
[938] | 796 | if (prt_level.ge.1) THEN |
---|
| 797 | print*,'WARNING !!! TEST ',comment |
---|
| 798 | endif |
---|
[879] | 799 | return |
---|
| 800 | |
---|
[878] | 801 | ! test sur la hauteur des thermiques ... |
---|
| 802 | do i=1,klon |
---|
[972] | 803 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 804 | if (prt_level.ge.10) then |
---|
[878] | 805 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 806 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 807 | do k=1,klev |
---|
| 808 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 809 | enddo |
---|
| 810 | ! stop |
---|
[972] | 811 | endif |
---|
[878] | 812 | enddo |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | return |
---|
| 816 | end |
---|
| 817 | |
---|