[878] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE thermcell_main(ngrid,nlay,ptimestep & |
---|
| 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
| 8 | & ,fm0,entr0,zqla,lmax & |
---|
| 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[879] | 10 | & ,r_aspect,l_mix,w2di,tho & |
---|
[927] | 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
| 12 | & ,zmax0, f0) |
---|
[878] | 13 | |
---|
[940] | 14 | use dimphy |
---|
[878] | 15 | IMPLICIT NONE |
---|
| 16 | |
---|
| 17 | !======================================================================= |
---|
| 18 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 19 | ! Version du 09.02.07 |
---|
| 20 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 21 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 22 | ! |
---|
| 23 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 24 | ! |
---|
| 25 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 26 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 27 | ! mélange |
---|
| 28 | ! |
---|
| 29 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 30 | ! en compte: |
---|
| 31 | ! 1. un flux de masse montant |
---|
| 32 | ! 2. un flux de masse descendant |
---|
| 33 | ! 3. un entrainement |
---|
| 34 | ! 4. un detrainement |
---|
| 35 | ! |
---|
| 36 | !======================================================================= |
---|
| 37 | |
---|
| 38 | !----------------------------------------------------------------------- |
---|
| 39 | ! declarations: |
---|
| 40 | ! ------------- |
---|
| 41 | |
---|
| 42 | #include "dimensions.h" |
---|
[940] | 43 | !#include "dimphy.h" |
---|
[878] | 44 | #include "YOMCST.h" |
---|
| 45 | #include "YOETHF.h" |
---|
| 46 | #include "FCTTRE.h" |
---|
[938] | 47 | #include "iniprint.h" |
---|
[878] | 48 | |
---|
| 49 | ! arguments: |
---|
| 50 | ! ---------- |
---|
| 51 | |
---|
| 52 | INTEGER ngrid,nlay,w2di,tho |
---|
| 53 | real ptimestep,l_mix,r_aspect |
---|
| 54 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 55 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 56 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 57 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 58 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 59 | real pphi(ngrid,nlay) |
---|
| 60 | |
---|
| 61 | ! local: |
---|
| 62 | ! ------ |
---|
| 63 | |
---|
[883] | 64 | integer,save :: igout=1 |
---|
[938] | 65 | integer,save :: lunout1=6 |
---|
[883] | 66 | integer,save :: lev_out=10 |
---|
[878] | 67 | |
---|
| 68 | INTEGER ig,k,l,ll |
---|
| 69 | real zsortie1d(klon) |
---|
| 70 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 71 | INTEGER lmix(klon) |
---|
| 72 | real linter(klon) |
---|
| 73 | real zmix(klon) |
---|
| 74 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev) |
---|
| 75 | real zmax_sec(klon) |
---|
| 76 | real w_est(klon,klev+1) |
---|
| 77 | !on garde le zmax du pas de temps precedent |
---|
| 78 | real zmax0(klon) |
---|
[927] | 79 | !FH/IM save zmax0 |
---|
[878] | 80 | |
---|
| 81 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 82 | real deltaz(klon,klev) |
---|
| 83 | REAL zh(klon,klev),zdhadj(klon,klev) |
---|
| 84 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 85 | REAL ztv(klon,klev) |
---|
| 86 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 87 | real zl(klon,klev) |
---|
| 88 | real zsortie(klon,klev) |
---|
| 89 | real zva(klon,klev) |
---|
| 90 | real zua(klon,klev) |
---|
| 91 | real zoa(klon,klev) |
---|
| 92 | |
---|
| 93 | real zta(klon,klev) |
---|
| 94 | real zha(klon,klev) |
---|
| 95 | real fraca(klon,klev+1) |
---|
| 96 | real zf,zf2 |
---|
| 97 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 98 | real q2(klon,klev) |
---|
[940] | 99 | ! common/comtherm/thetath2,wth2 |
---|
[878] | 100 | |
---|
| 101 | real ratqscth(klon,klev) |
---|
| 102 | real var |
---|
| 103 | real vardiff |
---|
| 104 | real ratqsdiff(klon,klev) |
---|
| 105 | integer isplit,nsplit |
---|
| 106 | parameter (nsplit=10) |
---|
| 107 | data isplit/0/ |
---|
| 108 | save isplit |
---|
| 109 | |
---|
| 110 | logical sorties |
---|
| 111 | real rho(klon,klev),rhobarz(klon,klev+1),masse(klon,klev) |
---|
| 112 | real zpspsk(klon,klev) |
---|
| 113 | |
---|
| 114 | real wmax(klon) |
---|
| 115 | real wmax_sec(klon) |
---|
| 116 | real fm0(klon,klev+1),entr0(klon,klev),detr(klon,klev) |
---|
| 117 | real detr0(klon,klev) |
---|
| 118 | real fm(klon,klev+1),entr(klon,klev) |
---|
| 119 | |
---|
| 120 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 121 | !niveau de condensation |
---|
[879] | 122 | integer nivcon(klon) |
---|
[878] | 123 | real zcon(klon) |
---|
| 124 | REAL CHI |
---|
| 125 | real zcon2(klon) |
---|
| 126 | real pcon(klon) |
---|
| 127 | real zqsat(klon,klev) |
---|
| 128 | real zqsatth(klon,klev) |
---|
| 129 | |
---|
| 130 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 131 | real detr_star(klon,klev) |
---|
| 132 | real alim_star_tot(klon),alim_star2(klon) |
---|
| 133 | real alim_star(klon,klev) |
---|
| 134 | real f(klon), f0(klon) |
---|
[927] | 135 | !FH/IM save f0 |
---|
[878] | 136 | real zlevinter(klon) |
---|
| 137 | logical debut |
---|
| 138 | real seuil |
---|
| 139 | |
---|
| 140 | ! |
---|
[879] | 141 | !nouvelles variables pour la convection |
---|
| 142 | real Ale_bl(klon) |
---|
| 143 | real Alp_bl(klon) |
---|
| 144 | real alp_int(klon) |
---|
| 145 | real ale_int(klon) |
---|
| 146 | integer n_int(klon) |
---|
| 147 | real fm_tot(klon) |
---|
| 148 | real wght_th(klon,klev) |
---|
| 149 | integer lalim_conv(klon) |
---|
[926] | 150 | !v1d logical therm |
---|
| 151 | !v1d save therm |
---|
[878] | 152 | |
---|
| 153 | character*2 str2 |
---|
| 154 | character*10 str10 |
---|
| 155 | |
---|
| 156 | EXTERNAL SCOPY |
---|
| 157 | ! |
---|
| 158 | |
---|
| 159 | !----------------------------------------------------------------------- |
---|
| 160 | ! initialisation: |
---|
| 161 | ! --------------- |
---|
| 162 | ! |
---|
| 163 | |
---|
| 164 | seuil=0.25 |
---|
| 165 | |
---|
[938] | 166 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 167 | |
---|
| 168 | sorties=.true. |
---|
| 169 | IF(ngrid.NE.klon) THEN |
---|
| 170 | PRINT* |
---|
| 171 | PRINT*,'STOP dans convadj' |
---|
| 172 | PRINT*,'ngrid =',ngrid |
---|
| 173 | PRINT*,'klon =',klon |
---|
| 174 | ENDIF |
---|
| 175 | ! |
---|
| 176 | !Initialisation |
---|
| 177 | ! |
---|
| 178 | do ig=1,klon |
---|
[927] | 179 | !FH/IM 130308 if ((debut).or.((.not.debut).and.(f0(ig).lt.1.e-10))) then |
---|
| 180 | if ((.not.debut).and.(f0(ig).lt.1.e-10)) then |
---|
[878] | 181 | f0(ig)=1.e-5 |
---|
| 182 | zmax0(ig)=40. |
---|
[926] | 183 | !v1d therm=.false. |
---|
[878] | 184 | endif |
---|
| 185 | enddo |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | !----------------------------------------------------------------------- |
---|
| 189 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 190 | ! -------------------------------------------------------------------- |
---|
| 191 | ! |
---|
| 192 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 193 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 194 | |
---|
[938] | 195 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 196 | |
---|
| 197 | !------------------------------------------------------------------------ |
---|
| 198 | ! -------------------- |
---|
| 199 | ! |
---|
| 200 | ! |
---|
| 201 | ! + + + + + + + + + + + |
---|
| 202 | ! |
---|
| 203 | ! |
---|
| 204 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 205 | ! wh,wt,wo ... |
---|
| 206 | ! |
---|
| 207 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 208 | ! |
---|
| 209 | ! |
---|
| 210 | ! -------------------- zlev(1) |
---|
| 211 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 212 | ! |
---|
| 213 | ! |
---|
| 214 | |
---|
| 215 | !----------------------------------------------------------------------- |
---|
| 216 | ! Calcul des altitudes des couches |
---|
| 217 | !----------------------------------------------------------------------- |
---|
| 218 | |
---|
| 219 | do l=2,nlay |
---|
| 220 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 221 | enddo |
---|
| 222 | zlev(:,1)=0. |
---|
| 223 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 224 | do l=1,nlay |
---|
| 225 | zlay(:,l)=pphi(:,l)/RG |
---|
| 226 | enddo |
---|
| 227 | !calcul de l epaisseur des couches |
---|
| 228 | do l=1,nlay |
---|
| 229 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 230 | enddo |
---|
| 231 | |
---|
| 232 | ! print*,'2 OK convect8' |
---|
| 233 | !----------------------------------------------------------------------- |
---|
| 234 | ! Calcul des densites |
---|
| 235 | !----------------------------------------------------------------------- |
---|
| 236 | |
---|
| 237 | do l=1,nlay |
---|
| 238 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 239 | enddo |
---|
| 240 | |
---|
| 241 | do l=2,nlay |
---|
| 242 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 243 | enddo |
---|
| 244 | |
---|
| 245 | !calcul de la masse |
---|
| 246 | do l=1,nlay |
---|
| 247 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 248 | enddo |
---|
| 249 | |
---|
[938] | 250 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 251 | |
---|
| 252 | !------------------------------------------------------------------ |
---|
| 253 | ! |
---|
| 254 | ! /|\ |
---|
| 255 | ! -------- | F_k+1 ------- |
---|
| 256 | ! ----> D_k |
---|
| 257 | ! /|\ <---- E_k , A_k |
---|
| 258 | ! -------- | F_k --------- |
---|
| 259 | ! ----> D_k-1 |
---|
| 260 | ! <---- E_k-1 , A_k-1 |
---|
| 261 | ! |
---|
| 262 | ! |
---|
| 263 | ! |
---|
| 264 | ! |
---|
| 265 | ! |
---|
| 266 | ! --------------------------- |
---|
| 267 | ! |
---|
| 268 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 269 | ! lmax (zmax) | |
---|
| 270 | ! --------------------------- | |
---|
| 271 | ! | |
---|
| 272 | ! --------------------------- | |
---|
| 273 | ! | |
---|
| 274 | ! --------------------------- | |
---|
| 275 | ! | |
---|
| 276 | ! --------------------------- | |
---|
| 277 | ! | |
---|
| 278 | ! --------------------------- | |
---|
| 279 | ! | E |
---|
| 280 | ! --------------------------- | D |
---|
| 281 | ! | |
---|
| 282 | ! --------------------------- | |
---|
| 283 | ! | |
---|
| 284 | ! --------------------------- \ | |
---|
| 285 | ! lalim | | |
---|
| 286 | ! --------------------------- | | |
---|
| 287 | ! | | |
---|
| 288 | ! --------------------------- | | |
---|
| 289 | ! | A | |
---|
| 290 | ! --------------------------- | | |
---|
| 291 | ! | | |
---|
| 292 | ! --------------------------- | | |
---|
| 293 | ! lmin (=1 pour le moment) | | |
---|
| 294 | ! ----- F_lmin=0 ------------ / / |
---|
| 295 | ! |
---|
| 296 | ! --------------------------- |
---|
| 297 | ! ////////////////////////// |
---|
| 298 | ! |
---|
| 299 | ! |
---|
| 300 | !============================================================================= |
---|
| 301 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 302 | !============================================================================= |
---|
| 303 | |
---|
| 304 | !------------------------------------------------------------------ |
---|
| 305 | ! 1. alim_star est le profil vertical de l'alimentation à la base du |
---|
| 306 | ! panache thermique, calculé à partir de la flotabilité de l'air sec |
---|
| 307 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 308 | !------------------------------------------------------------------ |
---|
| 309 | ! |
---|
| 310 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
| 311 | CALL thermcell_init(ngrid,nlay,ztv,zlev, & |
---|
| 312 | & lalim,lmin,alim_star,alim_star_tot,lev_out) |
---|
| 313 | |
---|
| 314 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lmin ') |
---|
| 315 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lalim ') |
---|
| 316 | |
---|
| 317 | |
---|
[938] | 318 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_init' |
---|
| 319 | if (prt_level.ge.10) then |
---|
[878] | 320 | write(lunout,*) 'Dans thermcell_main 1' |
---|
| 321 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 322 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 323 | write(lunout,*) ' ig l alim_star thetav' |
---|
| 324 | write(lunout,'(i6,i4,2e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 325 | & ,ztv(igout,l),l=1,lalim(igout)+4) |
---|
| 326 | endif |
---|
| 327 | |
---|
[938] | 328 | !v1d do ig=1,klon |
---|
[926] | 329 | !v1d if (alim_star(ig,1).gt.1.e-10) then |
---|
| 330 | !v1d therm=.true. |
---|
| 331 | !v1d endif |
---|
[938] | 332 | !v1d enddo |
---|
[878] | 333 | !----------------------------------------------------------------------------- |
---|
| 334 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 335 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 336 | ! Il s'agit d'un calcul de type CAPE |
---|
| 337 | ! zmax_sec est utilisé pour déterminer la géométrie du thermique. |
---|
| 338 | !------------------------------------------------------------------------------ |
---|
| 339 | ! |
---|
| 340 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 341 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
| 342 | |
---|
| 343 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 344 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 345 | |
---|
[938] | 346 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 347 | if (prt_level.ge.10) then |
---|
[878] | 348 | write(lunout,*) 'Dans thermcell_main 1b' |
---|
| 349 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 350 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 351 | write(lunout,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 352 | write(lunout,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 353 | & ,l=1,lalim(igout)+4) |
---|
| 354 | endif |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | |
---|
| 358 | !--------------------------------------------------------------------------------- |
---|
| 359 | !calcul du melange et des variables dans le thermique |
---|
| 360 | !-------------------------------------------------------------------------------- |
---|
| 361 | ! |
---|
| 362 | CALL thermcell_plume(ngrid,nlay,ztv,zthl,po,zl,rhobarz, & |
---|
| 363 | & zlev,pplev,pphi,zpspsk,l_mix,r_aspect,alim_star, & |
---|
| 364 | & lalim,zmax_sec,f0,detr_star,entr_star,f_star,ztva, & |
---|
| 365 | & ztla,zqla,zqta,zha,zw2,zqsatth,lmix,linter,lev_out) |
---|
| 366 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 367 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 368 | |
---|
[938] | 369 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 370 | if (prt_level.ge.10) then |
---|
[878] | 371 | write(lunout,*) 'Dans thermcell_main 2' |
---|
| 372 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 373 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 374 | write(lunout,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 375 | write(lunout,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
| 376 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 377 | endif |
---|
| 378 | |
---|
| 379 | !------------------------------------------------------------------------------- |
---|
| 380 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 381 | !------------------------------------------------------------------------------- |
---|
| 382 | ! |
---|
| 383 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 384 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 388 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 389 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 390 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 391 | |
---|
[938] | 392 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 393 | |
---|
| 394 | !------------------------------------------------------------------------------- |
---|
| 395 | ! Fermeture,determination de f |
---|
| 396 | !------------------------------------------------------------------------------- |
---|
| 397 | |
---|
| 398 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
| 399 | & zlev,lalim,alim_star,zmax_sec,wmax_sec,zmax,wmax,f,f0,lev_out) |
---|
| 400 | |
---|
[938] | 401 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 402 | |
---|
| 403 | !------------------------------------------------------------------------------- |
---|
| 404 | !deduction des flux |
---|
| 405 | !------------------------------------------------------------------------------- |
---|
| 406 | |
---|
| 407 | CALL thermcell_flux(ngrid,nlay,ptimestep,masse, & |
---|
| 408 | & lalim,lmax,alim_star, & |
---|
| 409 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
| 410 | & detr,zqla,zmax,lev_out,lunout,igout) |
---|
| 411 | |
---|
[938] | 412 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 413 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 414 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 415 | |
---|
| 416 | !c------------------------------------------------------------------ |
---|
| 417 | ! calcul du transport vertical |
---|
| 418 | !------------------------------------------------------------------ |
---|
| 419 | |
---|
| 420 | if (w2di.eq.1) then |
---|
| 421 | fm0=fm0+ptimestep*(fm-fm0)/float(tho) |
---|
| 422 | entr0=entr0+ptimestep*(entr-entr0)/float(tho) |
---|
| 423 | else |
---|
| 424 | fm0=fm |
---|
| 425 | entr0=entr |
---|
| 426 | detr0=detr |
---|
| 427 | endif |
---|
| 428 | |
---|
| 429 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 430 | & zthl,zdthladj,zta,lev_out) |
---|
| 431 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 432 | & po,pdoadj,zoa,lev_out) |
---|
| 433 | |
---|
[883] | 434 | !------------------------------------------------------------------ |
---|
| 435 | ! Calcul de la fraction de l'ascendance |
---|
| 436 | !------------------------------------------------------------------ |
---|
| 437 | do ig=1,klon |
---|
| 438 | fraca(ig,1)=0. |
---|
| 439 | fraca(ig,nlay+1)=0. |
---|
| 440 | enddo |
---|
| 441 | do l=2,nlay |
---|
| 442 | do ig=1,klon |
---|
| 443 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 444 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 445 | else |
---|
| 446 | fraca(ig,l)=0. |
---|
| 447 | endif |
---|
| 448 | enddo |
---|
| 449 | enddo |
---|
| 450 | |
---|
| 451 | !------------------------------------------------------------------ |
---|
| 452 | ! calcul du transport vertical du moment horizontal |
---|
| 453 | !------------------------------------------------------------------ |
---|
[878] | 454 | |
---|
[883] | 455 | if (1.eq.1) then |
---|
| 456 | |
---|
| 457 | |
---|
[878] | 458 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 459 | ! de pression horizontal avec l'environnement |
---|
| 460 | |
---|
| 461 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 462 | & ,fraca,zmax & |
---|
[883] | 463 | & ,zu,zv,pduadj,pdvadj,zua,zva,igout,lev_out) |
---|
[878] | 464 | else |
---|
| 465 | |
---|
| 466 | ! calcul purement conservatif pour le transport de V |
---|
| 467 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 468 | & ,zu,pduadj,zua,lev_out) |
---|
| 469 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 470 | & ,zv,pdvadj,zva,lev_out) |
---|
| 471 | endif |
---|
| 472 | |
---|
| 473 | ! print*,'13 OK convect8' |
---|
| 474 | do l=1,nlay |
---|
| 475 | do ig=1,ngrid |
---|
| 476 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 477 | enddo |
---|
| 478 | enddo |
---|
| 479 | |
---|
[938] | 480 | ! print*,'14 OK convect8' |
---|
[878] | 481 | !------------------------------------------------------------------ |
---|
| 482 | ! Calculs de diagnostiques pour les sorties |
---|
| 483 | !------------------------------------------------------------------ |
---|
| 484 | !calcul de fraca pour les sorties |
---|
| 485 | |
---|
| 486 | if (sorties) then |
---|
[938] | 487 | ! print*,'14a OK convect8' |
---|
[878] | 488 | ! calcul du niveau de condensation |
---|
| 489 | ! initialisation |
---|
| 490 | do ig=1,ngrid |
---|
[879] | 491 | nivcon(ig)=0 |
---|
[878] | 492 | zcon(ig)=0. |
---|
| 493 | enddo |
---|
| 494 | !nouveau calcul |
---|
| 495 | do ig=1,ngrid |
---|
| 496 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 497 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 498 | enddo |
---|
| 499 | do k=1,nlay |
---|
| 500 | do ig=1,ngrid |
---|
| 501 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 502 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 503 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 504 | endif |
---|
| 505 | enddo |
---|
| 506 | enddo |
---|
[938] | 507 | ! print*,'14b OK convect8' |
---|
[878] | 508 | do k=nlay,1,-1 |
---|
| 509 | do ig=1,ngrid |
---|
| 510 | if (zqla(ig,k).gt.1e-10) then |
---|
| 511 | nivcon(ig)=k |
---|
| 512 | zcon(ig)=zlev(ig,k) |
---|
| 513 | endif |
---|
| 514 | enddo |
---|
| 515 | enddo |
---|
[938] | 516 | ! print*,'14c OK convect8' |
---|
[878] | 517 | !calcul des moments |
---|
| 518 | !initialisation |
---|
| 519 | do l=1,nlay |
---|
| 520 | do ig=1,ngrid |
---|
| 521 | q2(ig,l)=0. |
---|
| 522 | wth2(ig,l)=0. |
---|
| 523 | wth3(ig,l)=0. |
---|
| 524 | ratqscth(ig,l)=0. |
---|
| 525 | ratqsdiff(ig,l)=0. |
---|
| 526 | enddo |
---|
| 527 | enddo |
---|
[938] | 528 | ! print*,'14d OK convect8' |
---|
[878] | 529 | do l=1,nlay |
---|
| 530 | do ig=1,ngrid |
---|
| 531 | zf=fraca(ig,l) |
---|
| 532 | zf2=zf/(1.-zf) |
---|
| 533 | thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
| 534 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 535 | ! print*,'wth2=',wth2(ig,l) |
---|
| 536 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 537 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
| 538 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 539 | !test: on calcul q2/po=ratqsc |
---|
| 540 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 541 | enddo |
---|
| 542 | enddo |
---|
[879] | 543 | !calcul de ale_bl et alp_bl |
---|
| 544 | !pour le calcul d'une valeur intégrée entre la surface et lmax |
---|
| 545 | do ig=1,ngrid |
---|
| 546 | alp_int(ig)=0. |
---|
| 547 | ale_int(ig)=0. |
---|
| 548 | n_int(ig)=0 |
---|
| 549 | enddo |
---|
| 550 | do ig=1,ngrid |
---|
| 551 | ! do l=nivcon(ig),lmax(ig) |
---|
| 552 | do l=1,lmax(ig) |
---|
| 553 | alp_int(ig)=alp_int(ig)+0.5*rhobarz(ig,l)*wth3(ig,l) |
---|
| 554 | ale_int(ig)=ale_int(ig)+0.5*zw2(ig,l)**2 |
---|
| 555 | n_int(ig)=n_int(ig)+1 |
---|
| 556 | enddo |
---|
| 557 | enddo |
---|
| 558 | ! print*,'avant calcul ale et alp' |
---|
| 559 | !calcul de ALE et ALP pour la convection |
---|
| 560 | do ig=1,ngrid |
---|
| 561 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix_bis(ig))*wth3(ig,lmix(ig)) |
---|
| 562 | ! Alp_bl(ig)=0.5*rhobarz(ig,nivcon(ig))*wth3(ig,nivcon(ig)) |
---|
| 563 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix(ig))*wth3(ig,lmix(ig)) |
---|
| 564 | ! & *0.1 |
---|
| 565 | !valeur integree de alp_bl * 0.5: |
---|
| 566 | if (n_int(ig).gt.0) then |
---|
| 567 | Alp_bl(ig)=0.5*alp_int(ig)/n_int(ig) |
---|
| 568 | ! if (Alp_bl(ig).lt.0.) then |
---|
| 569 | ! Alp_bl(ig)=0. |
---|
| 570 | endif |
---|
| 571 | ! endif |
---|
| 572 | ! write(18,*),'rhobarz,wth3,Alp',rhobarz(ig,nivcon(ig)), |
---|
| 573 | ! s wth3(ig,nivcon(ig)),Alp_bl(ig) |
---|
| 574 | ! write(18,*),'ALP_BL',Alp_bl(ig),lmix(ig) |
---|
| 575 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 576 | ! if (nivcon(ig).eq.1) then |
---|
| 577 | ! Ale_bl(ig)=0. |
---|
| 578 | ! else |
---|
| 579 | !valeur max de ale_bl: |
---|
| 580 | Ale_bl(ig)=0.5*zw2(ig,lmix(ig))**2 |
---|
| 581 | ! & /2. |
---|
| 582 | ! & *0.1 |
---|
| 583 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 584 | ! if (n_int(ig).gt.0) then |
---|
| 585 | ! Ale_bl(ig)=ale_int(ig)/n_int(ig) |
---|
| 586 | ! Ale_bl(ig)=4. |
---|
| 587 | ! endif |
---|
| 588 | ! endif |
---|
| 589 | ! Ale_bl(ig)=0.5*wth2(ig,lmix_bis(ig)) |
---|
| 590 | ! Ale_bl(ig)=wth2(ig,nivcon(ig)) |
---|
| 591 | ! write(19,*),'wth2,ALE_BL',wth2(ig,nivcon(ig)),Ale_bl(ig) |
---|
| 592 | enddo |
---|
| 593 | !test:calcul de la ponderation des couches pour KE |
---|
| 594 | !initialisations |
---|
| 595 | ! print*,'ponderation' |
---|
| 596 | do ig=1,ngrid |
---|
| 597 | fm_tot(ig)=0. |
---|
| 598 | enddo |
---|
| 599 | do ig=1,ngrid |
---|
| 600 | do k=1,klev |
---|
| 601 | wght_th(ig,k)=1. |
---|
| 602 | enddo |
---|
| 603 | enddo |
---|
| 604 | do ig=1,ngrid |
---|
| 605 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 606 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 607 | lalim_conv(ig)=lalim(ig) |
---|
| 608 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 609 | enddo |
---|
| 610 | do ig=1,ngrid |
---|
| 611 | do k=1,lalim_conv(ig) |
---|
| 612 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 613 | enddo |
---|
| 614 | enddo |
---|
| 615 | do ig=1,ngrid |
---|
| 616 | do k=1,lalim_conv(ig) |
---|
| 617 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 618 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 619 | endif |
---|
| 620 | !on pondere chaque couche par a* |
---|
| 621 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 622 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 623 | else |
---|
| 624 | wght_th(ig,k)=1. |
---|
| 625 | endif |
---|
| 626 | enddo |
---|
| 627 | enddo |
---|
| 628 | ! print*,'apres wght_th' |
---|
| 629 | !test pour prolonger la convection |
---|
| 630 | do ig=1,ngrid |
---|
[926] | 631 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 632 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
[879] | 633 | lalim_conv(ig)=1 |
---|
| 634 | wght_th(ig,1)=1. |
---|
| 635 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 636 | endif |
---|
| 637 | enddo |
---|
| 638 | |
---|
[878] | 639 | !calcul du ratqscdiff |
---|
[938] | 640 | ! print*,'14e OK convect8' |
---|
[878] | 641 | var=0. |
---|
| 642 | vardiff=0. |
---|
| 643 | ratqsdiff(:,:)=0. |
---|
| 644 | do ig=1,ngrid |
---|
| 645 | do l=1,lalim(ig) |
---|
| 646 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 647 | enddo |
---|
| 648 | enddo |
---|
[938] | 649 | ! print*,'14f OK convect8' |
---|
[878] | 650 | do ig=1,ngrid |
---|
| 651 | do l=1,lalim(ig) |
---|
| 652 | zf=fraca(ig,l) |
---|
| 653 | zf2=zf/(1.-zf) |
---|
| 654 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 655 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 656 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 657 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 658 | enddo |
---|
| 659 | enddo |
---|
[938] | 660 | ! print*,'14g OK convect8' |
---|
[878] | 661 | do l=1,nlay |
---|
| 662 | do ig=1,ngrid |
---|
| 663 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 664 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 665 | enddo |
---|
| 666 | enddo |
---|
| 667 | !-------------------------------------------------------------------- |
---|
| 668 | ! |
---|
| 669 | !ecriture des fichiers sortie |
---|
| 670 | ! print*,'15 OK convect8' |
---|
| 671 | |
---|
| 672 | isplit=isplit+1 |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | #ifdef und |
---|
[938] | 676 | if (prt_level.ge.1) print*,'thermcell_main sorties 1D' |
---|
[878] | 677 | #include "thermcell_out1d.h" |
---|
| 678 | #endif |
---|
| 679 | |
---|
| 680 | |
---|
| 681 | ! #define troisD |
---|
[938] | 682 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
[878] | 683 | #ifdef troisD |
---|
| 684 | #include "thermcell_out3d.h" |
---|
| 685 | #endif |
---|
| 686 | |
---|
| 687 | endif |
---|
| 688 | |
---|
[938] | 689 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 690 | |
---|
| 691 | return |
---|
| 692 | end |
---|
| 693 | |
---|
| 694 | !----------------------------------------------------------------------------- |
---|
| 695 | |
---|
| 696 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[938] | 697 | IMPLICIT NONE |
---|
| 698 | #include "iniprint.h" |
---|
[878] | 699 | |
---|
[938] | 700 | integer i, k, klon,klev |
---|
[878] | 701 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 702 | real ztv(klon,klev) |
---|
| 703 | real po(klon,klev) |
---|
| 704 | real ztva(klon,klev) |
---|
| 705 | real zqla(klon,klev) |
---|
| 706 | real f_star(klon,klev) |
---|
| 707 | real zw2(klon,klev) |
---|
| 708 | integer long(klon) |
---|
| 709 | real seuil |
---|
| 710 | character*21 comment |
---|
| 711 | |
---|
[938] | 712 | if (prt_level.ge.1) THEN |
---|
| 713 | print*,'WARNING !!! TEST ',comment |
---|
| 714 | endif |
---|
[879] | 715 | return |
---|
| 716 | |
---|
[878] | 717 | ! test sur la hauteur des thermiques ... |
---|
| 718 | do i=1,klon |
---|
| 719 | if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 720 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 721 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 722 | do k=1,klev |
---|
| 723 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 724 | enddo |
---|
| 725 | ! stop |
---|
| 726 | endif |
---|
| 727 | enddo |
---|
| 728 | |
---|
| 729 | |
---|
| 730 | return |
---|
| 731 | end |
---|
| 732 | |
---|