[878] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE thermcell_main(ngrid,nlay,ptimestep & |
---|
| 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
| 8 | & ,fm0,entr0,zqla,lmax & |
---|
| 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[879] | 10 | & ,r_aspect,l_mix,w2di,tho & |
---|
| 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th) |
---|
[878] | 12 | |
---|
| 13 | IMPLICIT NONE |
---|
| 14 | |
---|
| 15 | !======================================================================= |
---|
| 16 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 17 | ! Version du 09.02.07 |
---|
| 18 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 19 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 20 | ! |
---|
| 21 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
| 22 | ! |
---|
| 23 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
| 24 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
| 25 | ! mélange |
---|
| 26 | ! |
---|
| 27 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
| 28 | ! en compte: |
---|
| 29 | ! 1. un flux de masse montant |
---|
| 30 | ! 2. un flux de masse descendant |
---|
| 31 | ! 3. un entrainement |
---|
| 32 | ! 4. un detrainement |
---|
| 33 | ! |
---|
| 34 | !======================================================================= |
---|
| 35 | |
---|
| 36 | !----------------------------------------------------------------------- |
---|
| 37 | ! declarations: |
---|
| 38 | ! ------------- |
---|
| 39 | |
---|
| 40 | #include "dimensions.h" |
---|
| 41 | #include "dimphy.h" |
---|
| 42 | #include "YOMCST.h" |
---|
| 43 | #include "YOETHF.h" |
---|
| 44 | #include "FCTTRE.h" |
---|
| 45 | |
---|
| 46 | ! arguments: |
---|
| 47 | ! ---------- |
---|
| 48 | |
---|
| 49 | INTEGER ngrid,nlay,w2di,tho |
---|
| 50 | real ptimestep,l_mix,r_aspect |
---|
| 51 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 52 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 53 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 54 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 55 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 56 | real pphi(ngrid,nlay) |
---|
| 57 | |
---|
| 58 | ! local: |
---|
| 59 | ! ------ |
---|
| 60 | |
---|
[879] | 61 | integer,save :: igout=1521 |
---|
[878] | 62 | integer,save :: lunout=6 |
---|
[879] | 63 | integer,save :: lev_out=1 |
---|
[878] | 64 | |
---|
| 65 | INTEGER ig,k,l,ll |
---|
| 66 | real zsortie1d(klon) |
---|
| 67 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 68 | INTEGER lmix(klon) |
---|
| 69 | real linter(klon) |
---|
| 70 | real zmix(klon) |
---|
| 71 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev) |
---|
| 72 | real zmax_sec(klon) |
---|
| 73 | real w_est(klon,klev+1) |
---|
| 74 | !on garde le zmax du pas de temps precedent |
---|
| 75 | real zmax0(klon) |
---|
| 76 | save zmax0 |
---|
| 77 | |
---|
| 78 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 79 | real deltaz(klon,klev) |
---|
| 80 | REAL zh(klon,klev),zdhadj(klon,klev) |
---|
| 81 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 82 | REAL ztv(klon,klev) |
---|
| 83 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 84 | real zl(klon,klev) |
---|
| 85 | real zsortie(klon,klev) |
---|
| 86 | real zva(klon,klev) |
---|
| 87 | real zua(klon,klev) |
---|
| 88 | real zoa(klon,klev) |
---|
| 89 | |
---|
| 90 | real zta(klon,klev) |
---|
| 91 | real zha(klon,klev) |
---|
| 92 | real fraca(klon,klev+1) |
---|
| 93 | real zf,zf2 |
---|
| 94 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 95 | real q2(klon,klev) |
---|
| 96 | common/comtherm/thetath2,wth2 |
---|
| 97 | |
---|
| 98 | real ratqscth(klon,klev) |
---|
| 99 | real var |
---|
| 100 | real vardiff |
---|
| 101 | real ratqsdiff(klon,klev) |
---|
| 102 | integer isplit,nsplit |
---|
| 103 | parameter (nsplit=10) |
---|
| 104 | data isplit/0/ |
---|
| 105 | save isplit |
---|
| 106 | |
---|
| 107 | logical sorties |
---|
| 108 | real rho(klon,klev),rhobarz(klon,klev+1),masse(klon,klev) |
---|
| 109 | real zpspsk(klon,klev) |
---|
| 110 | |
---|
| 111 | real wmax(klon) |
---|
| 112 | real wmax_sec(klon) |
---|
| 113 | real fm0(klon,klev+1),entr0(klon,klev),detr(klon,klev) |
---|
| 114 | real detr0(klon,klev) |
---|
| 115 | real fm(klon,klev+1),entr(klon,klev) |
---|
| 116 | |
---|
| 117 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 118 | !niveau de condensation |
---|
[879] | 119 | integer nivcon(klon) |
---|
[878] | 120 | real zcon(klon) |
---|
| 121 | REAL CHI |
---|
| 122 | real zcon2(klon) |
---|
| 123 | real pcon(klon) |
---|
| 124 | real zqsat(klon,klev) |
---|
| 125 | real zqsatth(klon,klev) |
---|
| 126 | |
---|
| 127 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 128 | real detr_star(klon,klev) |
---|
| 129 | real alim_star_tot(klon),alim_star2(klon) |
---|
| 130 | real alim_star(klon,klev) |
---|
| 131 | real f(klon), f0(klon) |
---|
| 132 | save f0 |
---|
| 133 | real zlevinter(klon) |
---|
| 134 | logical debut |
---|
| 135 | real seuil |
---|
| 136 | |
---|
| 137 | ! |
---|
[879] | 138 | !nouvelles variables pour la convection |
---|
| 139 | real Ale_bl(klon) |
---|
| 140 | real Alp_bl(klon) |
---|
| 141 | real alp_int(klon) |
---|
| 142 | real ale_int(klon) |
---|
| 143 | integer n_int(klon) |
---|
| 144 | real fm_tot(klon) |
---|
| 145 | real wght_th(klon,klev) |
---|
| 146 | integer lalim_conv(klon) |
---|
| 147 | logical therm |
---|
| 148 | save therm |
---|
[878] | 149 | |
---|
| 150 | character*2 str2 |
---|
| 151 | character*10 str10 |
---|
| 152 | |
---|
| 153 | EXTERNAL SCOPY |
---|
| 154 | ! |
---|
| 155 | |
---|
| 156 | !----------------------------------------------------------------------- |
---|
| 157 | ! initialisation: |
---|
| 158 | ! --------------- |
---|
| 159 | ! |
---|
| 160 | |
---|
| 161 | seuil=0.25 |
---|
| 162 | |
---|
| 163 | if (lev_out.ge.1) print*,'thermcell_main V4' |
---|
| 164 | |
---|
| 165 | sorties=.true. |
---|
| 166 | IF(ngrid.NE.klon) THEN |
---|
| 167 | PRINT* |
---|
| 168 | PRINT*,'STOP dans convadj' |
---|
| 169 | PRINT*,'ngrid =',ngrid |
---|
| 170 | PRINT*,'klon =',klon |
---|
| 171 | ENDIF |
---|
| 172 | ! |
---|
| 173 | !Initialisation |
---|
| 174 | ! |
---|
| 175 | do ig=1,klon |
---|
| 176 | if ((debut).or.((.not.debut).and.(f0(ig).lt.1.e-10))) then |
---|
| 177 | f0(ig)=1.e-5 |
---|
| 178 | zmax0(ig)=40. |
---|
[879] | 179 | therm=.false. |
---|
[878] | 180 | endif |
---|
| 181 | enddo |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | !----------------------------------------------------------------------- |
---|
| 186 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 187 | ! -------------------------------------------------------------------- |
---|
| 188 | ! |
---|
| 189 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 190 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 191 | |
---|
| 192 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
| 193 | |
---|
| 194 | !------------------------------------------------------------------------ |
---|
| 195 | ! -------------------- |
---|
| 196 | ! |
---|
| 197 | ! |
---|
| 198 | ! + + + + + + + + + + + |
---|
| 199 | ! |
---|
| 200 | ! |
---|
| 201 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 202 | ! wh,wt,wo ... |
---|
| 203 | ! |
---|
| 204 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 205 | ! |
---|
| 206 | ! |
---|
| 207 | ! -------------------- zlev(1) |
---|
| 208 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 209 | ! |
---|
| 210 | ! |
---|
| 211 | |
---|
| 212 | !----------------------------------------------------------------------- |
---|
| 213 | ! Calcul des altitudes des couches |
---|
| 214 | !----------------------------------------------------------------------- |
---|
| 215 | |
---|
| 216 | do l=2,nlay |
---|
| 217 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 218 | enddo |
---|
| 219 | zlev(:,1)=0. |
---|
| 220 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 221 | do l=1,nlay |
---|
| 222 | zlay(:,l)=pphi(:,l)/RG |
---|
| 223 | enddo |
---|
| 224 | !calcul de l epaisseur des couches |
---|
| 225 | do l=1,nlay |
---|
| 226 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 227 | enddo |
---|
| 228 | |
---|
| 229 | ! print*,'2 OK convect8' |
---|
| 230 | !----------------------------------------------------------------------- |
---|
| 231 | ! Calcul des densites |
---|
| 232 | !----------------------------------------------------------------------- |
---|
| 233 | |
---|
| 234 | do l=1,nlay |
---|
| 235 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 236 | enddo |
---|
| 237 | |
---|
| 238 | do l=2,nlay |
---|
| 239 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 240 | enddo |
---|
| 241 | |
---|
| 242 | !calcul de la masse |
---|
| 243 | do l=1,nlay |
---|
| 244 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 245 | enddo |
---|
| 246 | |
---|
| 247 | if (lev_out.ge.1) print*,'thermcell_main apres initialisation' |
---|
| 248 | |
---|
| 249 | !------------------------------------------------------------------ |
---|
| 250 | ! |
---|
| 251 | ! /|\ |
---|
| 252 | ! -------- | F_k+1 ------- |
---|
| 253 | ! ----> D_k |
---|
| 254 | ! /|\ <---- E_k , A_k |
---|
| 255 | ! -------- | F_k --------- |
---|
| 256 | ! ----> D_k-1 |
---|
| 257 | ! <---- E_k-1 , A_k-1 |
---|
| 258 | ! |
---|
| 259 | ! |
---|
| 260 | ! |
---|
| 261 | ! |
---|
| 262 | ! |
---|
| 263 | ! --------------------------- |
---|
| 264 | ! |
---|
| 265 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 266 | ! lmax (zmax) | |
---|
| 267 | ! --------------------------- | |
---|
| 268 | ! | |
---|
| 269 | ! --------------------------- | |
---|
| 270 | ! | |
---|
| 271 | ! --------------------------- | |
---|
| 272 | ! | |
---|
| 273 | ! --------------------------- | |
---|
| 274 | ! | |
---|
| 275 | ! --------------------------- | |
---|
| 276 | ! | E |
---|
| 277 | ! --------------------------- | D |
---|
| 278 | ! | |
---|
| 279 | ! --------------------------- | |
---|
| 280 | ! | |
---|
| 281 | ! --------------------------- \ | |
---|
| 282 | ! lalim | | |
---|
| 283 | ! --------------------------- | | |
---|
| 284 | ! | | |
---|
| 285 | ! --------------------------- | | |
---|
| 286 | ! | A | |
---|
| 287 | ! --------------------------- | | |
---|
| 288 | ! | | |
---|
| 289 | ! --------------------------- | | |
---|
| 290 | ! lmin (=1 pour le moment) | | |
---|
| 291 | ! ----- F_lmin=0 ------------ / / |
---|
| 292 | ! |
---|
| 293 | ! --------------------------- |
---|
| 294 | ! ////////////////////////// |
---|
| 295 | ! |
---|
| 296 | ! |
---|
| 297 | !============================================================================= |
---|
| 298 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 299 | !============================================================================= |
---|
| 300 | |
---|
| 301 | !------------------------------------------------------------------ |
---|
| 302 | ! 1. alim_star est le profil vertical de l'alimentation à la base du |
---|
| 303 | ! panache thermique, calculé à partir de la flotabilité de l'air sec |
---|
| 304 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 305 | !------------------------------------------------------------------ |
---|
| 306 | ! |
---|
| 307 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
| 308 | CALL thermcell_init(ngrid,nlay,ztv,zlev, & |
---|
| 309 | & lalim,lmin,alim_star,alim_star_tot,lev_out) |
---|
| 310 | |
---|
| 311 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lmin ') |
---|
| 312 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_init lalim ') |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_init' |
---|
| 316 | if (lev_out.ge.10) then |
---|
| 317 | write(lunout,*) 'Dans thermcell_main 1' |
---|
| 318 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 319 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 320 | write(lunout,*) ' ig l alim_star thetav' |
---|
| 321 | write(lunout,'(i6,i4,2e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 322 | & ,ztv(igout,l),l=1,lalim(igout)+4) |
---|
| 323 | endif |
---|
| 324 | |
---|
[879] | 325 | do ig=1,klon |
---|
| 326 | if (alim_star(ig,1).gt.1.e-10) then |
---|
| 327 | therm=.true. |
---|
| 328 | endif |
---|
| 329 | enddo |
---|
[878] | 330 | !----------------------------------------------------------------------------- |
---|
| 331 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 332 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 333 | ! Il s'agit d'un calcul de type CAPE |
---|
| 334 | ! zmax_sec est utilisé pour déterminer la géométrie du thermique. |
---|
| 335 | !------------------------------------------------------------------------------ |
---|
| 336 | ! |
---|
| 337 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 338 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
| 339 | |
---|
| 340 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 341 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 342 | |
---|
| 343 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 344 | if (lev_out.ge.10) then |
---|
| 345 | write(lunout,*) 'Dans thermcell_main 1b' |
---|
| 346 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 347 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 348 | write(lunout,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 349 | write(lunout,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 350 | & ,l=1,lalim(igout)+4) |
---|
| 351 | endif |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | |
---|
| 355 | !--------------------------------------------------------------------------------- |
---|
| 356 | !calcul du melange et des variables dans le thermique |
---|
| 357 | !-------------------------------------------------------------------------------- |
---|
| 358 | ! |
---|
| 359 | CALL thermcell_plume(ngrid,nlay,ztv,zthl,po,zl,rhobarz, & |
---|
| 360 | & zlev,pplev,pphi,zpspsk,l_mix,r_aspect,alim_star, & |
---|
| 361 | & lalim,zmax_sec,f0,detr_star,entr_star,f_star,ztva, & |
---|
| 362 | & ztla,zqla,zqta,zha,zw2,zqsatth,lmix,linter,lev_out) |
---|
| 363 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 364 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 365 | |
---|
| 366 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 367 | if (lev_out.ge.10) then |
---|
| 368 | write(lunout,*) 'Dans thermcell_main 2' |
---|
| 369 | write(lunout,*) 'lmin ',lmin(igout) |
---|
| 370 | write(lunout,*) 'lalim ',lalim(igout) |
---|
| 371 | write(lunout,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 372 | write(lunout,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
| 373 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 374 | endif |
---|
| 375 | |
---|
| 376 | !------------------------------------------------------------------------------- |
---|
| 377 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 378 | !------------------------------------------------------------------------------- |
---|
| 379 | ! |
---|
| 380 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 381 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 385 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 386 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 387 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 388 | |
---|
| 389 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
| 390 | |
---|
| 391 | !------------------------------------------------------------------------------- |
---|
| 392 | ! Fermeture,determination de f |
---|
| 393 | !------------------------------------------------------------------------------- |
---|
| 394 | |
---|
| 395 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
| 396 | & zlev,lalim,alim_star,zmax_sec,wmax_sec,zmax,wmax,f,f0,lev_out) |
---|
| 397 | |
---|
| 398 | if(lev_out.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
| 399 | |
---|
| 400 | !------------------------------------------------------------------------------- |
---|
| 401 | !deduction des flux |
---|
| 402 | !------------------------------------------------------------------------------- |
---|
| 403 | |
---|
| 404 | CALL thermcell_flux(ngrid,nlay,ptimestep,masse, & |
---|
| 405 | & lalim,lmax,alim_star, & |
---|
| 406 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
| 407 | & detr,zqla,zmax,lev_out,lunout,igout) |
---|
| 408 | |
---|
| 409 | if (lev_out.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
| 410 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 411 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 412 | |
---|
| 413 | !c------------------------------------------------------------------ |
---|
| 414 | ! calcul du transport vertical |
---|
| 415 | !------------------------------------------------------------------ |
---|
| 416 | |
---|
| 417 | if (w2di.eq.1) then |
---|
| 418 | fm0=fm0+ptimestep*(fm-fm0)/float(tho) |
---|
| 419 | entr0=entr0+ptimestep*(entr-entr0)/float(tho) |
---|
| 420 | else |
---|
| 421 | fm0=fm |
---|
| 422 | entr0=entr |
---|
| 423 | detr0=detr |
---|
| 424 | endif |
---|
| 425 | |
---|
| 426 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 427 | & zthl,zdthladj,zta,lev_out) |
---|
| 428 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 429 | & po,pdoadj,zoa,lev_out) |
---|
| 430 | |
---|
| 431 | if (1.eq.0) then |
---|
| 432 | |
---|
| 433 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 434 | ! de pression horizontal avec l'environnement |
---|
| 435 | |
---|
| 436 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 437 | & ,fraca,zmax & |
---|
| 438 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
| 439 | else |
---|
| 440 | |
---|
| 441 | ! calcul purement conservatif pour le transport de V |
---|
| 442 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 443 | & ,zu,pduadj,zua,lev_out) |
---|
| 444 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 445 | & ,zv,pdvadj,zva,lev_out) |
---|
| 446 | endif |
---|
| 447 | |
---|
| 448 | ! print*,'13 OK convect8' |
---|
| 449 | do l=1,nlay |
---|
| 450 | do ig=1,ngrid |
---|
| 451 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 452 | enddo |
---|
| 453 | enddo |
---|
| 454 | |
---|
| 455 | print*,'14 OK convect8' |
---|
| 456 | !------------------------------------------------------------------ |
---|
| 457 | ! Calculs de diagnostiques pour les sorties |
---|
| 458 | !------------------------------------------------------------------ |
---|
| 459 | !calcul de fraca pour les sorties |
---|
| 460 | |
---|
| 461 | if (sorties) then |
---|
| 462 | do ig=1,klon |
---|
| 463 | fraca(ig,1)=0. |
---|
| 464 | enddo |
---|
| 465 | do l=2,nlay |
---|
| 466 | do ig=1,klon |
---|
| 467 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 468 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 469 | else |
---|
| 470 | fraca(ig,l)=0. |
---|
| 471 | endif |
---|
| 472 | enddo |
---|
| 473 | enddo |
---|
| 474 | |
---|
| 475 | print*,'14a OK convect8' |
---|
| 476 | ! calcul du niveau de condensation |
---|
| 477 | ! initialisation |
---|
| 478 | do ig=1,ngrid |
---|
[879] | 479 | nivcon(ig)=0 |
---|
[878] | 480 | zcon(ig)=0. |
---|
| 481 | enddo |
---|
| 482 | !nouveau calcul |
---|
| 483 | do ig=1,ngrid |
---|
| 484 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 485 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 486 | enddo |
---|
| 487 | do k=1,nlay |
---|
| 488 | do ig=1,ngrid |
---|
| 489 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 490 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 491 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 492 | endif |
---|
| 493 | enddo |
---|
| 494 | enddo |
---|
| 495 | print*,'14b OK convect8' |
---|
| 496 | do k=nlay,1,-1 |
---|
| 497 | do ig=1,ngrid |
---|
| 498 | if (zqla(ig,k).gt.1e-10) then |
---|
| 499 | nivcon(ig)=k |
---|
| 500 | zcon(ig)=zlev(ig,k) |
---|
| 501 | endif |
---|
| 502 | enddo |
---|
| 503 | enddo |
---|
| 504 | print*,'14c OK convect8' |
---|
| 505 | !calcul des moments |
---|
| 506 | !initialisation |
---|
| 507 | do l=1,nlay |
---|
| 508 | do ig=1,ngrid |
---|
| 509 | q2(ig,l)=0. |
---|
| 510 | wth2(ig,l)=0. |
---|
| 511 | wth3(ig,l)=0. |
---|
| 512 | ratqscth(ig,l)=0. |
---|
| 513 | ratqsdiff(ig,l)=0. |
---|
| 514 | enddo |
---|
| 515 | enddo |
---|
| 516 | print*,'14d OK convect8' |
---|
| 517 | do l=1,nlay |
---|
| 518 | do ig=1,ngrid |
---|
| 519 | zf=fraca(ig,l) |
---|
| 520 | zf2=zf/(1.-zf) |
---|
| 521 | thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
| 522 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 523 | ! print*,'wth2=',wth2(ig,l) |
---|
| 524 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 525 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
| 526 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 527 | !test: on calcul q2/po=ratqsc |
---|
| 528 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 529 | enddo |
---|
| 530 | enddo |
---|
[879] | 531 | !calcul de ale_bl et alp_bl |
---|
| 532 | !pour le calcul d'une valeur intégrée entre la surface et lmax |
---|
| 533 | do ig=1,ngrid |
---|
| 534 | alp_int(ig)=0. |
---|
| 535 | ale_int(ig)=0. |
---|
| 536 | n_int(ig)=0 |
---|
| 537 | enddo |
---|
| 538 | do ig=1,ngrid |
---|
| 539 | ! do l=nivcon(ig),lmax(ig) |
---|
| 540 | do l=1,lmax(ig) |
---|
| 541 | alp_int(ig)=alp_int(ig)+0.5*rhobarz(ig,l)*wth3(ig,l) |
---|
| 542 | ale_int(ig)=ale_int(ig)+0.5*zw2(ig,l)**2 |
---|
| 543 | n_int(ig)=n_int(ig)+1 |
---|
| 544 | enddo |
---|
| 545 | enddo |
---|
| 546 | ! print*,'avant calcul ale et alp' |
---|
| 547 | !calcul de ALE et ALP pour la convection |
---|
| 548 | do ig=1,ngrid |
---|
| 549 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix_bis(ig))*wth3(ig,lmix(ig)) |
---|
| 550 | ! Alp_bl(ig)=0.5*rhobarz(ig,nivcon(ig))*wth3(ig,nivcon(ig)) |
---|
| 551 | ! Alp_bl(ig)=0.5*rhobarz(ig,lmix(ig))*wth3(ig,lmix(ig)) |
---|
| 552 | ! & *0.1 |
---|
| 553 | !valeur integree de alp_bl * 0.5: |
---|
| 554 | if (n_int(ig).gt.0) then |
---|
| 555 | Alp_bl(ig)=0.5*alp_int(ig)/n_int(ig) |
---|
| 556 | ! if (Alp_bl(ig).lt.0.) then |
---|
| 557 | ! Alp_bl(ig)=0. |
---|
| 558 | endif |
---|
| 559 | ! endif |
---|
| 560 | ! write(18,*),'rhobarz,wth3,Alp',rhobarz(ig,nivcon(ig)), |
---|
| 561 | ! s wth3(ig,nivcon(ig)),Alp_bl(ig) |
---|
| 562 | ! write(18,*),'ALP_BL',Alp_bl(ig),lmix(ig) |
---|
| 563 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 564 | ! if (nivcon(ig).eq.1) then |
---|
| 565 | ! Ale_bl(ig)=0. |
---|
| 566 | ! else |
---|
| 567 | !valeur max de ale_bl: |
---|
| 568 | Ale_bl(ig)=0.5*zw2(ig,lmix(ig))**2 |
---|
| 569 | ! & /2. |
---|
| 570 | ! & *0.1 |
---|
| 571 | ! Ale_bl(ig)=0.5*zw2(ig,lmix_bis(ig))**2 |
---|
| 572 | ! if (n_int(ig).gt.0) then |
---|
| 573 | ! Ale_bl(ig)=ale_int(ig)/n_int(ig) |
---|
| 574 | ! Ale_bl(ig)=4. |
---|
| 575 | ! endif |
---|
| 576 | ! endif |
---|
| 577 | ! Ale_bl(ig)=0.5*wth2(ig,lmix_bis(ig)) |
---|
| 578 | ! Ale_bl(ig)=wth2(ig,nivcon(ig)) |
---|
| 579 | ! write(19,*),'wth2,ALE_BL',wth2(ig,nivcon(ig)),Ale_bl(ig) |
---|
| 580 | enddo |
---|
| 581 | !test:calcul de la ponderation des couches pour KE |
---|
| 582 | !initialisations |
---|
| 583 | ! print*,'ponderation' |
---|
| 584 | do ig=1,ngrid |
---|
| 585 | fm_tot(ig)=0. |
---|
| 586 | enddo |
---|
| 587 | do ig=1,ngrid |
---|
| 588 | do k=1,klev |
---|
| 589 | wght_th(ig,k)=1. |
---|
| 590 | enddo |
---|
| 591 | enddo |
---|
| 592 | do ig=1,ngrid |
---|
| 593 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 594 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 595 | lalim_conv(ig)=lalim(ig) |
---|
| 596 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 597 | enddo |
---|
| 598 | do ig=1,ngrid |
---|
| 599 | do k=1,lalim_conv(ig) |
---|
| 600 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 601 | enddo |
---|
| 602 | enddo |
---|
| 603 | do ig=1,ngrid |
---|
| 604 | do k=1,lalim_conv(ig) |
---|
| 605 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 606 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 607 | endif |
---|
| 608 | !on pondere chaque couche par a* |
---|
| 609 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 610 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 611 | else |
---|
| 612 | wght_th(ig,k)=1. |
---|
| 613 | endif |
---|
| 614 | enddo |
---|
| 615 | enddo |
---|
| 616 | ! print*,'apres wght_th' |
---|
| 617 | !test pour prolonger la convection |
---|
| 618 | do ig=1,ngrid |
---|
| 619 | if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 620 | lalim_conv(ig)=1 |
---|
| 621 | wght_th(ig,1)=1. |
---|
| 622 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 623 | endif |
---|
| 624 | enddo |
---|
| 625 | |
---|
[878] | 626 | !calcul du ratqscdiff |
---|
| 627 | print*,'14e OK convect8' |
---|
| 628 | var=0. |
---|
| 629 | vardiff=0. |
---|
| 630 | ratqsdiff(:,:)=0. |
---|
| 631 | do ig=1,ngrid |
---|
| 632 | do l=1,lalim(ig) |
---|
| 633 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 634 | enddo |
---|
| 635 | enddo |
---|
| 636 | print*,'14f OK convect8' |
---|
| 637 | do ig=1,ngrid |
---|
| 638 | do l=1,lalim(ig) |
---|
| 639 | zf=fraca(ig,l) |
---|
| 640 | zf2=zf/(1.-zf) |
---|
| 641 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 642 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 643 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 644 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 645 | enddo |
---|
| 646 | enddo |
---|
| 647 | print*,'14g OK convect8' |
---|
| 648 | do l=1,nlay |
---|
| 649 | do ig=1,ngrid |
---|
| 650 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 651 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 652 | enddo |
---|
| 653 | enddo |
---|
| 654 | !-------------------------------------------------------------------- |
---|
| 655 | ! |
---|
| 656 | !ecriture des fichiers sortie |
---|
| 657 | ! print*,'15 OK convect8' |
---|
| 658 | |
---|
| 659 | isplit=isplit+1 |
---|
| 660 | |
---|
| 661 | |
---|
| 662 | #ifdef und |
---|
| 663 | if (lev_out.ge.1) print*,'thermcell_main sorties 1D' |
---|
| 664 | #include "thermcell_out1d.h" |
---|
| 665 | #endif |
---|
| 666 | |
---|
| 667 | |
---|
| 668 | ! #define troisD |
---|
| 669 | if (lev_out.ge.1) print*,'thermcell_main sorties 3D' |
---|
| 670 | #ifdef troisD |
---|
| 671 | #include "thermcell_out3d.h" |
---|
| 672 | #endif |
---|
| 673 | |
---|
| 674 | endif |
---|
| 675 | |
---|
| 676 | if (lev_out.ge.1) print*,'thermcell_main FIN OK' |
---|
| 677 | |
---|
| 678 | return |
---|
| 679 | end |
---|
| 680 | |
---|
| 681 | !----------------------------------------------------------------------------- |
---|
| 682 | |
---|
| 683 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
| 684 | |
---|
| 685 | integer klon,klev |
---|
| 686 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 687 | real ztv(klon,klev) |
---|
| 688 | real po(klon,klev) |
---|
| 689 | real ztva(klon,klev) |
---|
| 690 | real zqla(klon,klev) |
---|
| 691 | real f_star(klon,klev) |
---|
| 692 | real zw2(klon,klev) |
---|
| 693 | integer long(klon) |
---|
| 694 | real seuil |
---|
| 695 | character*21 comment |
---|
| 696 | |
---|
[879] | 697 | print*,'WARNING !!! TEST ',comment |
---|
| 698 | return |
---|
| 699 | |
---|
[878] | 700 | ! test sur la hauteur des thermiques ... |
---|
| 701 | do i=1,klon |
---|
| 702 | if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 703 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 704 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 705 | do k=1,klev |
---|
| 706 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 707 | enddo |
---|
| 708 | ! stop |
---|
| 709 | endif |
---|
| 710 | enddo |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | return |
---|
| 714 | end |
---|
| 715 | |
---|