1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE radlwsw(dist, rmu0, fract, |
---|
5 | . paprs, pplay,tsol,alb1, alb2, t,q,wo, |
---|
6 | . cldfra, cldemi, cldtaupd, |
---|
7 | . heat,heat0,cool,cool0,radsol,albpla, |
---|
8 | . topsw,toplw,solsw,sollw, |
---|
9 | . sollwdown, |
---|
10 | . topsw0,toplw0,solsw0,sollw0, |
---|
11 | . lwdn0, lwdn, lwup0, lwup, |
---|
12 | . swdn0, swdn, swup0, swup, |
---|
13 | . ok_ade, ok_aie, |
---|
14 | . tau_ae, piz_ae, cg_ae, |
---|
15 | . topswad, solswad, |
---|
16 | . cldtaupi, topswai, solswai,qsat,flwc,fiwc) |
---|
17 | c |
---|
18 | USE dimphy |
---|
19 | IMPLICIT none |
---|
20 | c====================================================================== |
---|
21 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 |
---|
22 | c Objet: interface entre le modele et les rayonnements |
---|
23 | c Arguments: |
---|
24 | c dist-----input-R- distance astronomique terre-soleil |
---|
25 | c rmu0-----input-R- cosinus de l'angle zenithal |
---|
26 | c fract----input-R- duree d'ensoleillement normalisee |
---|
27 | c co2_ppm--input-R- concentration du gaz carbonique (en ppm) |
---|
28 | c solaire--input-R- constante solaire (W/m**2) |
---|
29 | c paprs----input-R- pression a inter-couche (Pa) |
---|
30 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
31 | c tsol-----input-R- temperature du sol (en K) |
---|
32 | c alb1-----input-R- albedo du sol(entre 0 et 1) dans l'interval visible |
---|
33 | c alb2-----input-R- albedo du sol(entre 0 et 1) dans l'interval proche infra-rouge |
---|
34 | c t--------input-R- temperature (K) |
---|
35 | c q--------input-R- vapeur d'eau (en kg/kg) |
---|
36 | c wo-------input-R- contenu en ozone (en kg/kg) correction MPL 100505 |
---|
37 | c cldfra---input-R- fraction nuageuse (entre 0 et 1) |
---|
38 | c cldtaupd---input-R- epaisseur optique des nuages dans le visible (present-day value) |
---|
39 | c cldemi---input-R- emissivite des nuages dans l'IR (entre 0 et 1) |
---|
40 | c ok_ade---input-L- apply the Aerosol Direct Effect or not? |
---|
41 | c ok_aie---input-L- apply the Aerosol Indirect Effect or not? |
---|
42 | c tau_ae, piz_ae, cg_ae-input-R- aerosol optical properties (calculated in aeropt.F) |
---|
43 | c cldtaupi-input-R- epaisseur optique des nuages dans le visible |
---|
44 | c calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller |
---|
45 | c droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd |
---|
46 | c it is needed for the diagnostics of the aerosol indirect radiative forcing |
---|
47 | c |
---|
48 | c heat-----output-R- echauffement atmospherique (visible) (K/jour) |
---|
49 | c cool-----output-R- refroidissement dans l'IR (K/jour) |
---|
50 | c radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas) |
---|
51 | c albpla---output-R- albedo planetaire (entre 0 et 1) |
---|
52 | c topsw----output-R- flux solaire net au sommet de l'atm. |
---|
53 | c toplw----output-R- ray. IR montant au sommet de l'atmosphere |
---|
54 | c solsw----output-R- flux solaire net a la surface |
---|
55 | c sollw----output-R- ray. IR montant a la surface |
---|
56 | c solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir) |
---|
57 | c topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir) |
---|
58 | c solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind) |
---|
59 | c topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind) |
---|
60 | c |
---|
61 | c ATTENTION: swai and swad have to be interpreted in the following manner: |
---|
62 | c --------- |
---|
63 | c ok_ade=F & ok_aie=F -both are zero |
---|
64 | c ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad |
---|
65 | c indirect is zero |
---|
66 | c ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
67 | c direct is zero |
---|
68 | c ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
69 | c aerosol direct forcing is F_{AD} = topswai-topswad |
---|
70 | c |
---|
71 | |
---|
72 | c====================================================================== |
---|
73 | cym#include "dimensions.h" |
---|
74 | cym#include "dimphy.h" |
---|
75 | cym#include "raddim.h" |
---|
76 | #include "YOETHF.h" |
---|
77 | c |
---|
78 | real rmu0(klon), fract(klon), dist |
---|
79 | cIM real co2_ppm |
---|
80 | cIM real solaire |
---|
81 | #include "clesphys.h" |
---|
82 | c |
---|
83 | real paprs(klon,klev+1), pplay(klon,klev) |
---|
84 | real alb1(klon), alb2(klon), tsol(klon) |
---|
85 | real t(klon,klev), q(klon,klev), wo(klon,klev) |
---|
86 | real cldfra(klon,klev), cldemi(klon,klev), cldtaupd(klon,klev) |
---|
87 | real heat(klon,klev), cool(klon,klev) |
---|
88 | real heat0(klon,klev), cool0(klon,klev) |
---|
89 | real radsol(klon), topsw(klon), toplw(klon) |
---|
90 | real solsw(klon), sollw(klon), albpla(klon) |
---|
91 | real topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) |
---|
92 | real sollwdown(klon) |
---|
93 | cIM output 3D |
---|
94 | REAL*8 ZFSUP(KDLON,KFLEV+1) |
---|
95 | REAL*8 ZFSDN(KDLON,KFLEV+1) |
---|
96 | REAL*8 ZFSUP0(KDLON,KFLEV+1) |
---|
97 | REAL*8 ZFSDN0(KDLON,KFLEV+1) |
---|
98 | c |
---|
99 | REAL*8 ZFLUP(KDLON,KFLEV+1) |
---|
100 | REAL*8 ZFLDN(KDLON,KFLEV+1) |
---|
101 | REAL*8 ZFLUP0(KDLON,KFLEV+1) |
---|
102 | REAL*8 ZFLDN0(KDLON,KFLEV+1) |
---|
103 | c |
---|
104 | REAL*8 zx_alpha1, zx_alpha2 |
---|
105 | c |
---|
106 | #include "YOMCST.h" |
---|
107 | c |
---|
108 | INTEGER k, kk, i, j, iof, nb_gr |
---|
109 | EXTERNAL LW_LMDAR4,SW_LMDAR4 |
---|
110 | c |
---|
111 | cIM ctes ds clesphys.h REAL*8 RCO2, RCH4, RN2O, RCFC11, RCFC12 |
---|
112 | REAL*8 PSCT |
---|
113 | c |
---|
114 | REAL*8 PALBD(kdlon,2), PALBP(kdlon,2) |
---|
115 | REAL*8 PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon) |
---|
116 | REAL*8 PPSOL(kdlon), PDP(kdlon,klev) |
---|
117 | REAL*8 PTL(kdlon,kflev+1), PPMB(kdlon,kflev+1) |
---|
118 | REAL*8 PTAVE(kdlon,kflev) |
---|
119 | REAL*8 PWV(kdlon,kflev), PQS(kdlon,kflev), POZON(kdlon,kflev) |
---|
120 | REAL*8 PAER(kdlon,kflev,5) |
---|
121 | REAL*8 PCLDLD(kdlon,kflev) |
---|
122 | REAL*8 PCLDLU(kdlon,kflev) |
---|
123 | REAL*8 PCLDSW(kdlon,kflev) |
---|
124 | REAL*8 PTAU(kdlon,2,kflev) |
---|
125 | REAL*8 POMEGA(kdlon,2,kflev) |
---|
126 | REAL*8 PCG(kdlon,2,kflev) |
---|
127 | c |
---|
128 | REAL*8 zfract(kdlon), zrmu0(kdlon), zdist |
---|
129 | c |
---|
130 | REAL*8 zheat(kdlon,kflev), zcool(kdlon,kflev) |
---|
131 | REAL*8 zheat0(kdlon,kflev), zcool0(kdlon,kflev) |
---|
132 | REAL*8 ztopsw(kdlon), ztoplw(kdlon) |
---|
133 | REAL*8 zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon) |
---|
134 | cIM |
---|
135 | REAL*8 zsollwdown(kdlon) |
---|
136 | c |
---|
137 | REAL*8 ztopsw0(kdlon), ztoplw0(kdlon) |
---|
138 | REAL*8 zsolsw0(kdlon), zsollw0(kdlon) |
---|
139 | REAL*8 zznormcp |
---|
140 | cIM output 3D : SWup, SWdn, LWup, LWdn |
---|
141 | REAL swdn(klon,kflev+1),swdn0(klon,kflev+1) |
---|
142 | REAL swup(klon,kflev+1),swup0(klon,kflev+1) |
---|
143 | REAL lwdn(klon,kflev+1),lwdn0(klon,kflev+1) |
---|
144 | REAL lwup(klon,kflev+1),lwup0(klon,kflev+1) |
---|
145 | REAL qsat(klon,klev),flwc(klon,klev),fiwc(klon,klev) |
---|
146 | c-OB |
---|
147 | cjq the following quantities are needed for the aerosol radiative forcings |
---|
148 | |
---|
149 | real topswad(klon), solswad(klon) ! output: aerosol direct forcing at TOA and surface |
---|
150 | real topswai(klon), solswai(klon) ! output: aerosol indirect forcing atTOA and surface |
---|
151 | real tau_ae(klon,klev,2), piz_ae(klon,klev,2), cg_ae(klon,klev,2) ! aerosol optical properties (see aeropt.F) |
---|
152 | real cldtaupi(klon,klev) ! cloud optical thickness for pre-industrial aerosol concentrations |
---|
153 | ! (i.e., with a smaller droplet concentrationand thus larger droplet radii) |
---|
154 | logical ok_ade, ok_aie ! switches whether to use aerosol direct (indirect) effects or not |
---|
155 | real*8 tauae(kdlon,kflev,2) ! aer opt properties |
---|
156 | real*8 pizae(kdlon,kflev,2) |
---|
157 | real*8 cgae(kdlon,kflev,2) |
---|
158 | REAL*8 PTAUA(kdlon,2,kflev) ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use |
---|
159 | REAL*8 POMEGAA(kdlon,2,kflev) ! dito for single scatt albedo |
---|
160 | REAL*8 ztopswad(kdlon), zsolswad(kdlon) ! Aerosol direct forcing at TOAand surface |
---|
161 | REAL*8 ztopswai(kdlon), zsolswai(kdlon) ! dito, indirect |
---|
162 | cjq-end |
---|
163 | !rv |
---|
164 | tauae(:,:,:)=0. |
---|
165 | pizae(:,:,:)=0. |
---|
166 | cgae(:,:,:)=0. |
---|
167 | !rv |
---|
168 | |
---|
169 | c |
---|
170 | c------------------------------------------- |
---|
171 | nb_gr = klon / kdlon |
---|
172 | IF (nb_gr*kdlon .NE. klon) THEN |
---|
173 | PRINT*, "kdlon mauvais:", klon, kdlon, nb_gr |
---|
174 | CALL abort |
---|
175 | ENDIF |
---|
176 | IF (kflev .NE. klev) THEN |
---|
177 | PRINT*, "kflev differe de klev, kflev, klev" |
---|
178 | CALL abort |
---|
179 | ENDIF |
---|
180 | c------------------------------------------- |
---|
181 | DO k = 1, klev |
---|
182 | DO i = 1, klon |
---|
183 | heat(i,k)=0. |
---|
184 | cool(i,k)=0. |
---|
185 | heat0(i,k)=0. |
---|
186 | cool0(i,k)=0. |
---|
187 | ENDDO |
---|
188 | ENDDO |
---|
189 | c |
---|
190 | zdist = dist |
---|
191 | c |
---|
192 | cIM anciennes valeurs |
---|
193 | c RCO2 = co2_ppm * 1.0e-06 * 44.011/28.97 |
---|
194 | c |
---|
195 | cIM : on met RCO2, RCH4, RN2O, RCFC11 et RCFC12 dans clesphys.h /lecture ds conf_phys.F90 |
---|
196 | c RCH4 = 1.65E-06* 16.043/28.97 |
---|
197 | c RN2O = 306.E-09* 44.013/28.97 |
---|
198 | c RCFC11 = 280.E-12* 137.3686/28.97 |
---|
199 | c RCFC12 = 484.E-12* 120.9140/28.97 |
---|
200 | cIM anciennes valeurs |
---|
201 | c RCH4 = 1.72E-06* 16.043/28.97 |
---|
202 | c RN2O = 310.E-09* 44.013/28.97 |
---|
203 | c |
---|
204 | c PRINT*,'IMradlwsw : solaire, co2= ', solaire, co2_ppm |
---|
205 | PSCT = solaire/zdist/zdist |
---|
206 | c |
---|
207 | DO 99999 j = 1, nb_gr |
---|
208 | iof = kdlon*(j-1) |
---|
209 | c |
---|
210 | DO i = 1, kdlon |
---|
211 | zfract(i) = fract(iof+i) |
---|
212 | zrmu0(i) = rmu0(iof+i) |
---|
213 | PALBD(i,1) = alb1(iof+i) |
---|
214 | ! PALBD(i,2) = alb1(iof+i) |
---|
215 | PALBD(i,2) = alb2(iof+i) |
---|
216 | PALBP(i,1) = alb1(iof+i) |
---|
217 | ! PALBP(i,2) = alb1(iof+i) |
---|
218 | PALBP(i,2) = alb2(iof+i) |
---|
219 | cIM cf. JLD pour etre en accord avec ORCHIDEE il faut mettre PEMIS(i) = 0.96 |
---|
220 | PEMIS(i) = 1.0 |
---|
221 | PVIEW(i) = 1.66 |
---|
222 | PPSOL(i) = paprs(iof+i,1) |
---|
223 | zx_alpha1 = (paprs(iof+i,1)-pplay(iof+i,2)) |
---|
224 | . / (pplay(iof+i,1)-pplay(iof+i,2)) |
---|
225 | zx_alpha2 = 1.0 - zx_alpha1 |
---|
226 | PTL(i,1) = t(iof+i,1) * zx_alpha1 + t(iof+i,2) * zx_alpha2 |
---|
227 | PTL(i,klev+1) = t(iof+i,klev) |
---|
228 | PDT0(i) = tsol(iof+i) - PTL(i,1) |
---|
229 | ENDDO |
---|
230 | DO k = 2, kflev |
---|
231 | DO i = 1, kdlon |
---|
232 | PTL(i,k) = (t(iof+i,k)+t(iof+i,k-1))*0.5 |
---|
233 | ENDDO |
---|
234 | ENDDO |
---|
235 | DO k = 1, kflev |
---|
236 | DO i = 1, kdlon |
---|
237 | PDP(i,k) = paprs(iof+i,k)-paprs(iof+i,k+1) |
---|
238 | PTAVE(i,k) = t(iof+i,k) |
---|
239 | PWV(i,k) = MAX (q(iof+i,k), 1.0e-12) |
---|
240 | PQS(i,k) = PWV(i,k) |
---|
241 | c wo: cm.atm (epaisseur en cm dans la situation standard) |
---|
242 | c POZON: kg/kg |
---|
243 | POZON(i,k) = MAX(wo(iof+i,k),1.0e-12)*RG/46.6968 |
---|
244 | . /(paprs(iof+i,k)-paprs(iof+i,k+1)) |
---|
245 | . *(paprs(iof+i,1)/101325.0) |
---|
246 | PCLDLD(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
247 | PCLDLU(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
248 | PCLDSW(i,k) = cldfra(iof+i,k) |
---|
249 | PTAU(i,1,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
250 | PTAU(i,2,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
251 | POMEGA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i,1,k)) |
---|
252 | POMEGA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i,2,k)) |
---|
253 | PCG(i,1,k) = 0.865 |
---|
254 | PCG(i,2,k) = 0.910 |
---|
255 | c-OB |
---|
256 | cjq Introduced for aerosol indirect forcings. |
---|
257 | cjq The following values use the cloud optical thickness calculated from |
---|
258 | cjq present-day aerosol concentrations whereas the quantities without the |
---|
259 | cjq "A" at the end are for pre-industial (natural-only) aerosol concentrations |
---|
260 | cjq |
---|
261 | PTAUA(i,1,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
262 | PTAUA(i,2,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
263 | POMEGAA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i,1,k)) |
---|
264 | POMEGAA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i,2,k)) |
---|
265 | cjq-end |
---|
266 | ENDDO |
---|
267 | ENDDO |
---|
268 | c |
---|
269 | DO k = 1, kflev+1 |
---|
270 | DO i = 1, kdlon |
---|
271 | PPMB(i,k) = paprs(iof+i,k)/100.0 |
---|
272 | ENDDO |
---|
273 | ENDDO |
---|
274 | c |
---|
275 | DO kk = 1, 5 |
---|
276 | DO k = 1, kflev |
---|
277 | DO i = 1, kdlon |
---|
278 | PAER(i,k,kk) = 1.0E-15 |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | ENDDO |
---|
282 | c-OB |
---|
283 | DO k = 1, kflev |
---|
284 | DO i = 1, kdlon |
---|
285 | tauae(i,k,1)=tau_ae(iof+i,k,1) |
---|
286 | pizae(i,k,1)=piz_ae(iof+i,k,1) |
---|
287 | cgae(i,k,1) =cg_ae(iof+i,k,1) |
---|
288 | tauae(i,k,2)=tau_ae(iof+i,k,2) |
---|
289 | pizae(i,k,2)=piz_ae(iof+i,k,2) |
---|
290 | cgae(i,k,2) =cg_ae(iof+i,k,2) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | c |
---|
294 | c===== si iflag_rrtm=0 ================================================ |
---|
295 | cIM ctes ds clesphys.h CALL LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
296 | cIM ctes ds clesphys.h CALL SW(PSCT, RCO2, zrmu0, zfract, |
---|
297 | c |
---|
298 | if (iflag_rrtm.eq.0) then |
---|
299 | CALL LW_LMDAR4( |
---|
300 | . PPMB, PDP, |
---|
301 | . PPSOL,PDT0,PEMIS, |
---|
302 | . PTL, PTAVE, PWV, POZON, PAER, |
---|
303 | . PCLDLD,PCLDLU, |
---|
304 | . PVIEW, |
---|
305 | . zcool, zcool0, |
---|
306 | . ztoplw,zsollw,ztoplw0,zsollw0, |
---|
307 | . zsollwdown, |
---|
308 | . ZFLUP, ZFLDN, ZFLUP0,ZFLDN0) |
---|
309 | CALL SW_LMDAR4(PSCT, zrmu0, zfract, |
---|
310 | S PPMB, PDP, |
---|
311 | S PPSOL, PALBD, PALBP, |
---|
312 | S PTAVE, PWV, PQS, POZON, PAER, |
---|
313 | S PCLDSW, PTAU, POMEGA, PCG, |
---|
314 | S zheat, zheat0, |
---|
315 | S zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0, |
---|
316 | S ZFSUP,ZFSDN,ZFSUP0,ZFSDN0, |
---|
317 | S tauae, pizae, cgae, ! aerosol optical properties |
---|
318 | s PTAUA, POMEGAA, |
---|
319 | s ztopswad,zsolswad,ztopswai,zsolswai, ! diagnosed aerosol forcing |
---|
320 | J ok_ade, ok_aie) ! apply aerosol effects or not? |
---|
321 | else |
---|
322 | c===== si iflag_rrtm=1, on passe dans SW via RECMWFL =============== |
---|
323 | PRINT*, "Cette option ne fonctionne pas encore !!!" |
---|
324 | CALL abort |
---|
325 | endif ! if(iflag_rrtm=0) |
---|
326 | |
---|
327 | c====================================================================== |
---|
328 | DO i = 1, kdlon |
---|
329 | radsol(iof+i) = zsolsw(i) + zsollw(i) |
---|
330 | topsw(iof+i) = ztopsw(i) |
---|
331 | toplw(iof+i) = ztoplw(i) |
---|
332 | solsw(iof+i) = zsolsw(i) |
---|
333 | sollw(iof+i) = zsollw(i) |
---|
334 | sollwdown(iof+i) = zsollwdown(i) |
---|
335 | cIM |
---|
336 | DO k = 1, kflev+1 |
---|
337 | lwdn0 ( iof+i,k) = ZFLDN0 ( i,k) |
---|
338 | lwdn ( iof+i,k) = ZFLDN ( i,k) |
---|
339 | lwup0 ( iof+i,k) = ZFLUP0 ( i,k) |
---|
340 | lwup ( iof+i,k) = ZFLUP ( i,k) |
---|
341 | ENDDO |
---|
342 | c |
---|
343 | topsw0(iof+i) = ztopsw0(i) |
---|
344 | toplw0(iof+i) = ztoplw0(i) |
---|
345 | solsw0(iof+i) = zsolsw0(i) |
---|
346 | sollw0(iof+i) = zsollw0(i) |
---|
347 | albpla(iof+i) = zalbpla(i) |
---|
348 | cIM |
---|
349 | DO k = 1, kflev+1 |
---|
350 | swdn0 ( iof+i,k) = ZFSDN0 ( i,k) |
---|
351 | swdn ( iof+i,k) = ZFSDN ( i,k) |
---|
352 | swup0 ( iof+i,k) = ZFSUP0 ( i,k) |
---|
353 | swup ( iof+i,k) = ZFSUP ( i,k) |
---|
354 | ENDDO !k=1, kflev+1 |
---|
355 | ENDDO |
---|
356 | cjq-transform the aerosol forcings, if they have |
---|
357 | cjq to be calculated |
---|
358 | IF (ok_ade) THEN |
---|
359 | DO i = 1, kdlon |
---|
360 | topswad(iof+i) = ztopswad(i) |
---|
361 | solswad(iof+i) = zsolswad(i) |
---|
362 | ENDDO |
---|
363 | ELSE |
---|
364 | DO i = 1, kdlon |
---|
365 | topswad(iof+i) = 0.0 |
---|
366 | solswad(iof+i) = 0.0 |
---|
367 | ENDDO |
---|
368 | ENDIF |
---|
369 | IF (ok_aie) THEN |
---|
370 | DO i = 1, kdlon |
---|
371 | topswai(iof+i) = ztopswai(i) |
---|
372 | solswai(iof+i) = zsolswai(i) |
---|
373 | ENDDO |
---|
374 | ELSE |
---|
375 | DO i = 1, kdlon |
---|
376 | topswai(iof+i) = 0.0 |
---|
377 | solswai(iof+i) = 0.0 |
---|
378 | ENDDO |
---|
379 | ENDIF |
---|
380 | cjq-end |
---|
381 | DO k = 1, kflev |
---|
382 | c DO i = 1, kdlon |
---|
383 | c heat(iof+i,k) = zheat(i,k) |
---|
384 | c cool(iof+i,k) = zcool(i,k) |
---|
385 | c heat0(iof+i,k) = zheat0(i,k) |
---|
386 | c cool0(iof+i,k) = zcool0(i,k) |
---|
387 | c ENDDO |
---|
388 | DO i = 1, kdlon |
---|
389 | C scale factor to take into account the difference between |
---|
390 | C dry air and watter vapour scpecific heat capacity |
---|
391 | zznormcp=1.0+RVTMP2*PWV(i,k) |
---|
392 | heat(iof+i,k) = zheat(i,k)/zznormcp |
---|
393 | cool(iof+i,k) = zcool(i,k)/zznormcp |
---|
394 | heat0(iof+i,k) = zheat0(i,k)/zznormcp |
---|
395 | cool0(iof+i,k) = zcool0(i,k)/zznormcp |
---|
396 | ENDDO |
---|
397 | ENDDO |
---|
398 | c |
---|
399 | 99999 CONTINUE |
---|
400 | RETURN |
---|
401 | END |
---|