[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE radlwsw(dist, rmu0, fract, |
---|
[888] | 5 | . paprs, pplay,tsol,alb1, alb2, t,q,wo, |
---|
[524] | 6 | . cldfra, cldemi, cldtaupd, |
---|
| 7 | . heat,heat0,cool,cool0,radsol,albpla, |
---|
| 8 | . topsw,toplw,solsw,sollw, |
---|
| 9 | . sollwdown, |
---|
| 10 | . topsw0,toplw0,solsw0,sollw0, |
---|
| 11 | . lwdn0, lwdn, lwup0, lwup, |
---|
| 12 | . swdn0, swdn, swup0, swup, |
---|
| 13 | . ok_ade, ok_aie, |
---|
| 14 | . tau_ae, piz_ae, cg_ae, |
---|
| 15 | . topswad, solswad, |
---|
[998] | 16 | . cldtaupi, topswai, solswai,qsat,flwc,fiwc) |
---|
[524] | 17 | c |
---|
[766] | 18 | USE dimphy |
---|
[524] | 19 | IMPLICIT none |
---|
| 20 | c====================================================================== |
---|
| 21 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19960719 |
---|
| 22 | c Objet: interface entre le modele et les rayonnements |
---|
| 23 | c Arguments: |
---|
| 24 | c dist-----input-R- distance astronomique terre-soleil |
---|
| 25 | c rmu0-----input-R- cosinus de l'angle zenithal |
---|
| 26 | c fract----input-R- duree d'ensoleillement normalisee |
---|
| 27 | c co2_ppm--input-R- concentration du gaz carbonique (en ppm) |
---|
| 28 | c solaire--input-R- constante solaire (W/m**2) |
---|
| 29 | c paprs----input-R- pression a inter-couche (Pa) |
---|
| 30 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 31 | c tsol-----input-R- temperature du sol (en K) |
---|
[888] | 32 | c alb1-----input-R- albedo du sol(entre 0 et 1) dans l'interval visible |
---|
| 33 | c alb2-----input-R- albedo du sol(entre 0 et 1) dans l'interval proche infra-rouge |
---|
[524] | 34 | c t--------input-R- temperature (K) |
---|
| 35 | c q--------input-R- vapeur d'eau (en kg/kg) |
---|
[652] | 36 | c wo-------input-R- contenu en ozone (en kg/kg) correction MPL 100505 |
---|
[524] | 37 | c cldfra---input-R- fraction nuageuse (entre 0 et 1) |
---|
| 38 | c cldtaupd---input-R- epaisseur optique des nuages dans le visible (present-day value) |
---|
| 39 | c cldemi---input-R- emissivite des nuages dans l'IR (entre 0 et 1) |
---|
| 40 | c ok_ade---input-L- apply the Aerosol Direct Effect or not? |
---|
| 41 | c ok_aie---input-L- apply the Aerosol Indirect Effect or not? |
---|
| 42 | c tau_ae, piz_ae, cg_ae-input-R- aerosol optical properties (calculated in aeropt.F) |
---|
| 43 | c cldtaupi-input-R- epaisseur optique des nuages dans le visible |
---|
| 44 | c calculated for pre-industrial (pi) aerosol concentrations, i.e. with smaller |
---|
| 45 | c droplet concentration, thus larger droplets, thus generally cdltaupi cldtaupd |
---|
| 46 | c it is needed for the diagnostics of the aerosol indirect radiative forcing |
---|
| 47 | c |
---|
| 48 | c heat-----output-R- echauffement atmospherique (visible) (K/jour) |
---|
| 49 | c cool-----output-R- refroidissement dans l'IR (K/jour) |
---|
| 50 | c radsol---output-R- bilan radiatif net au sol (W/m**2) (+ vers le bas) |
---|
| 51 | c albpla---output-R- albedo planetaire (entre 0 et 1) |
---|
| 52 | c topsw----output-R- flux solaire net au sommet de l'atm. |
---|
| 53 | c toplw----output-R- ray. IR montant au sommet de l'atmosphere |
---|
| 54 | c solsw----output-R- flux solaire net a la surface |
---|
| 55 | c sollw----output-R- ray. IR montant a la surface |
---|
| 56 | c solswad---output-R- ray. solaire net absorbe a la surface (aerosol dir) |
---|
| 57 | c topswad---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol dir) |
---|
| 58 | c solswai---output-R- ray. solaire net absorbe a la surface (aerosol ind) |
---|
| 59 | c topswai---output-R- ray. solaire absorbe au sommet de l'atm. (aerosol ind) |
---|
| 60 | c |
---|
| 61 | c ATTENTION: swai and swad have to be interpreted in the following manner: |
---|
| 62 | c --------- |
---|
| 63 | c ok_ade=F & ok_aie=F -both are zero |
---|
| 64 | c ok_ade=T & ok_aie=F -aerosol direct forcing is F_{AD} = topsw-topswad |
---|
| 65 | c indirect is zero |
---|
| 66 | c ok_ade=F & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
| 67 | c direct is zero |
---|
| 68 | c ok_ade=T & ok_aie=T -aerosol indirect forcing is F_{AI} = topsw-topswai |
---|
| 69 | c aerosol direct forcing is F_{AD} = topswai-topswad |
---|
| 70 | c |
---|
| 71 | |
---|
| 72 | c====================================================================== |
---|
[766] | 73 | cym#include "dimensions.h" |
---|
| 74 | cym#include "dimphy.h" |
---|
| 75 | cym#include "raddim.h" |
---|
[524] | 76 | #include "YOETHF.h" |
---|
| 77 | c |
---|
| 78 | real rmu0(klon), fract(klon), dist |
---|
| 79 | cIM real co2_ppm |
---|
| 80 | cIM real solaire |
---|
| 81 | #include "clesphys.h" |
---|
| 82 | c |
---|
| 83 | real paprs(klon,klev+1), pplay(klon,klev) |
---|
[888] | 84 | real alb1(klon), alb2(klon), tsol(klon) |
---|
[524] | 85 | real t(klon,klev), q(klon,klev), wo(klon,klev) |
---|
| 86 | real cldfra(klon,klev), cldemi(klon,klev), cldtaupd(klon,klev) |
---|
| 87 | real heat(klon,klev), cool(klon,klev) |
---|
| 88 | real heat0(klon,klev), cool0(klon,klev) |
---|
| 89 | real radsol(klon), topsw(klon), toplw(klon) |
---|
| 90 | real solsw(klon), sollw(klon), albpla(klon) |
---|
| 91 | real topsw0(klon), toplw0(klon), solsw0(klon), sollw0(klon) |
---|
| 92 | real sollwdown(klon) |
---|
[644] | 93 | cIM output 3D |
---|
[524] | 94 | REAL*8 ZFSUP(KDLON,KFLEV+1) |
---|
| 95 | REAL*8 ZFSDN(KDLON,KFLEV+1) |
---|
| 96 | REAL*8 ZFSUP0(KDLON,KFLEV+1) |
---|
| 97 | REAL*8 ZFSDN0(KDLON,KFLEV+1) |
---|
[644] | 98 | c |
---|
[524] | 99 | REAL*8 ZFLUP(KDLON,KFLEV+1) |
---|
| 100 | REAL*8 ZFLDN(KDLON,KFLEV+1) |
---|
| 101 | REAL*8 ZFLUP0(KDLON,KFLEV+1) |
---|
| 102 | REAL*8 ZFLDN0(KDLON,KFLEV+1) |
---|
| 103 | c |
---|
| 104 | REAL*8 zx_alpha1, zx_alpha2 |
---|
| 105 | c |
---|
| 106 | #include "YOMCST.h" |
---|
| 107 | c |
---|
| 108 | INTEGER k, kk, i, j, iof, nb_gr |
---|
[998] | 109 | EXTERNAL LW_LMDAR4,SW_LMDAR4 |
---|
[524] | 110 | c |
---|
| 111 | cIM ctes ds clesphys.h REAL*8 RCO2, RCH4, RN2O, RCFC11, RCFC12 |
---|
| 112 | REAL*8 PSCT |
---|
| 113 | c |
---|
| 114 | REAL*8 PALBD(kdlon,2), PALBP(kdlon,2) |
---|
| 115 | REAL*8 PEMIS(kdlon), PDT0(kdlon), PVIEW(kdlon) |
---|
| 116 | REAL*8 PPSOL(kdlon), PDP(kdlon,klev) |
---|
| 117 | REAL*8 PTL(kdlon,kflev+1), PPMB(kdlon,kflev+1) |
---|
| 118 | REAL*8 PTAVE(kdlon,kflev) |
---|
| 119 | REAL*8 PWV(kdlon,kflev), PQS(kdlon,kflev), POZON(kdlon,kflev) |
---|
| 120 | REAL*8 PAER(kdlon,kflev,5) |
---|
| 121 | REAL*8 PCLDLD(kdlon,kflev) |
---|
| 122 | REAL*8 PCLDLU(kdlon,kflev) |
---|
| 123 | REAL*8 PCLDSW(kdlon,kflev) |
---|
| 124 | REAL*8 PTAU(kdlon,2,kflev) |
---|
| 125 | REAL*8 POMEGA(kdlon,2,kflev) |
---|
| 126 | REAL*8 PCG(kdlon,2,kflev) |
---|
| 127 | c |
---|
| 128 | REAL*8 zfract(kdlon), zrmu0(kdlon), zdist |
---|
| 129 | c |
---|
| 130 | REAL*8 zheat(kdlon,kflev), zcool(kdlon,kflev) |
---|
| 131 | REAL*8 zheat0(kdlon,kflev), zcool0(kdlon,kflev) |
---|
| 132 | REAL*8 ztopsw(kdlon), ztoplw(kdlon) |
---|
| 133 | REAL*8 zsolsw(kdlon), zsollw(kdlon), zalbpla(kdlon) |
---|
[644] | 134 | cIM |
---|
[524] | 135 | REAL*8 zsollwdown(kdlon) |
---|
[644] | 136 | c |
---|
[524] | 137 | REAL*8 ztopsw0(kdlon), ztoplw0(kdlon) |
---|
| 138 | REAL*8 zsolsw0(kdlon), zsollw0(kdlon) |
---|
| 139 | REAL*8 zznormcp |
---|
[644] | 140 | cIM output 3D : SWup, SWdn, LWup, LWdn |
---|
[524] | 141 | REAL swdn(klon,kflev+1),swdn0(klon,kflev+1) |
---|
| 142 | REAL swup(klon,kflev+1),swup0(klon,kflev+1) |
---|
| 143 | REAL lwdn(klon,kflev+1),lwdn0(klon,kflev+1) |
---|
| 144 | REAL lwup(klon,kflev+1),lwup0(klon,kflev+1) |
---|
[998] | 145 | REAL qsat(klon,klev),flwc(klon,klev),fiwc(klon,klev) |
---|
[524] | 146 | c-OB |
---|
| 147 | cjq the following quantities are needed for the aerosol radiative forcings |
---|
| 148 | |
---|
| 149 | real topswad(klon), solswad(klon) ! output: aerosol direct forcing at TOA and surface |
---|
| 150 | real topswai(klon), solswai(klon) ! output: aerosol indirect forcing atTOA and surface |
---|
| 151 | real tau_ae(klon,klev,2), piz_ae(klon,klev,2), cg_ae(klon,klev,2) ! aerosol optical properties (see aeropt.F) |
---|
| 152 | real cldtaupi(klon,klev) ! cloud optical thickness for pre-industrial aerosol concentrations |
---|
| 153 | ! (i.e., with a smaller droplet concentrationand thus larger droplet radii) |
---|
| 154 | logical ok_ade, ok_aie ! switches whether to use aerosol direct (indirect) effects or not |
---|
| 155 | real*8 tauae(kdlon,kflev,2) ! aer opt properties |
---|
| 156 | real*8 pizae(kdlon,kflev,2) |
---|
| 157 | real*8 cgae(kdlon,kflev,2) |
---|
| 158 | REAL*8 PTAUA(kdlon,2,kflev) ! present-day value of cloud opt thickness (PTAU is pre-industrial value), local use |
---|
| 159 | REAL*8 POMEGAA(kdlon,2,kflev) ! dito for single scatt albedo |
---|
| 160 | REAL*8 ztopswad(kdlon), zsolswad(kdlon) ! Aerosol direct forcing at TOAand surface |
---|
| 161 | REAL*8 ztopswai(kdlon), zsolswai(kdlon) ! dito, indirect |
---|
| 162 | cjq-end |
---|
[557] | 163 | !rv |
---|
| 164 | tauae(:,:,:)=0. |
---|
| 165 | pizae(:,:,:)=0. |
---|
| 166 | cgae(:,:,:)=0. |
---|
| 167 | !rv |
---|
[524] | 168 | |
---|
| 169 | c |
---|
| 170 | c------------------------------------------- |
---|
| 171 | nb_gr = klon / kdlon |
---|
| 172 | IF (nb_gr*kdlon .NE. klon) THEN |
---|
| 173 | PRINT*, "kdlon mauvais:", klon, kdlon, nb_gr |
---|
| 174 | CALL abort |
---|
| 175 | ENDIF |
---|
| 176 | IF (kflev .NE. klev) THEN |
---|
| 177 | PRINT*, "kflev differe de klev, kflev, klev" |
---|
| 178 | CALL abort |
---|
| 179 | ENDIF |
---|
| 180 | c------------------------------------------- |
---|
| 181 | DO k = 1, klev |
---|
| 182 | DO i = 1, klon |
---|
| 183 | heat(i,k)=0. |
---|
| 184 | cool(i,k)=0. |
---|
| 185 | heat0(i,k)=0. |
---|
| 186 | cool0(i,k)=0. |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | c |
---|
| 190 | zdist = dist |
---|
| 191 | c |
---|
| 192 | cIM anciennes valeurs |
---|
| 193 | c RCO2 = co2_ppm * 1.0e-06 * 44.011/28.97 |
---|
| 194 | c |
---|
| 195 | cIM : on met RCO2, RCH4, RN2O, RCFC11 et RCFC12 dans clesphys.h /lecture ds conf_phys.F90 |
---|
| 196 | c RCH4 = 1.65E-06* 16.043/28.97 |
---|
| 197 | c RN2O = 306.E-09* 44.013/28.97 |
---|
| 198 | c RCFC11 = 280.E-12* 137.3686/28.97 |
---|
| 199 | c RCFC12 = 484.E-12* 120.9140/28.97 |
---|
| 200 | cIM anciennes valeurs |
---|
| 201 | c RCH4 = 1.72E-06* 16.043/28.97 |
---|
| 202 | c RN2O = 310.E-09* 44.013/28.97 |
---|
| 203 | c |
---|
| 204 | c PRINT*,'IMradlwsw : solaire, co2= ', solaire, co2_ppm |
---|
| 205 | PSCT = solaire/zdist/zdist |
---|
| 206 | c |
---|
| 207 | DO 99999 j = 1, nb_gr |
---|
| 208 | iof = kdlon*(j-1) |
---|
| 209 | c |
---|
| 210 | DO i = 1, kdlon |
---|
| 211 | zfract(i) = fract(iof+i) |
---|
| 212 | zrmu0(i) = rmu0(iof+i) |
---|
[888] | 213 | PALBD(i,1) = alb1(iof+i) |
---|
| 214 | ! PALBD(i,2) = alb1(iof+i) |
---|
| 215 | PALBD(i,2) = alb2(iof+i) |
---|
| 216 | PALBP(i,1) = alb1(iof+i) |
---|
| 217 | ! PALBP(i,2) = alb1(iof+i) |
---|
| 218 | PALBP(i,2) = alb2(iof+i) |
---|
[524] | 219 | cIM cf. JLD pour etre en accord avec ORCHIDEE il faut mettre PEMIS(i) = 0.96 |
---|
| 220 | PEMIS(i) = 1.0 |
---|
| 221 | PVIEW(i) = 1.66 |
---|
| 222 | PPSOL(i) = paprs(iof+i,1) |
---|
| 223 | zx_alpha1 = (paprs(iof+i,1)-pplay(iof+i,2)) |
---|
| 224 | . / (pplay(iof+i,1)-pplay(iof+i,2)) |
---|
| 225 | zx_alpha2 = 1.0 - zx_alpha1 |
---|
| 226 | PTL(i,1) = t(iof+i,1) * zx_alpha1 + t(iof+i,2) * zx_alpha2 |
---|
| 227 | PTL(i,klev+1) = t(iof+i,klev) |
---|
| 228 | PDT0(i) = tsol(iof+i) - PTL(i,1) |
---|
| 229 | ENDDO |
---|
| 230 | DO k = 2, kflev |
---|
| 231 | DO i = 1, kdlon |
---|
| 232 | PTL(i,k) = (t(iof+i,k)+t(iof+i,k-1))*0.5 |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | DO k = 1, kflev |
---|
| 236 | DO i = 1, kdlon |
---|
| 237 | PDP(i,k) = paprs(iof+i,k)-paprs(iof+i,k+1) |
---|
| 238 | PTAVE(i,k) = t(iof+i,k) |
---|
| 239 | PWV(i,k) = MAX (q(iof+i,k), 1.0e-12) |
---|
| 240 | PQS(i,k) = PWV(i,k) |
---|
| 241 | c wo: cm.atm (epaisseur en cm dans la situation standard) |
---|
| 242 | c POZON: kg/kg |
---|
[699] | 243 | POZON(i,k) = MAX(wo(iof+i,k),1.0e-12)*RG/46.6968 |
---|
[524] | 244 | . /(paprs(iof+i,k)-paprs(iof+i,k+1)) |
---|
| 245 | . *(paprs(iof+i,1)/101325.0) |
---|
| 246 | PCLDLD(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
| 247 | PCLDLU(i,k) = cldfra(iof+i,k)*cldemi(iof+i,k) |
---|
| 248 | PCLDSW(i,k) = cldfra(iof+i,k) |
---|
| 249 | PTAU(i,1,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
| 250 | PTAU(i,2,k) = MAX(cldtaupi(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
| 251 | POMEGA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAU(i,1,k)) |
---|
| 252 | POMEGA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAU(i,2,k)) |
---|
| 253 | PCG(i,1,k) = 0.865 |
---|
| 254 | PCG(i,2,k) = 0.910 |
---|
| 255 | c-OB |
---|
| 256 | cjq Introduced for aerosol indirect forcings. |
---|
| 257 | cjq The following values use the cloud optical thickness calculated from |
---|
| 258 | cjq present-day aerosol concentrations whereas the quantities without the |
---|
| 259 | cjq "A" at the end are for pre-industial (natural-only) aerosol concentrations |
---|
| 260 | cjq |
---|
| 261 | PTAUA(i,1,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! 1e-12 serait instable |
---|
| 262 | PTAUA(i,2,k) = MAX(cldtaupd(iof+i,k), 1.0e-05)! pour 32-bit machines |
---|
| 263 | POMEGAA(i,1,k) = 0.9999 - 5.0e-04 * EXP(-0.5 * PTAUA(i,1,k)) |
---|
| 264 | POMEGAA(i,2,k) = 0.9988 - 2.5e-03 * EXP(-0.05 * PTAUA(i,2,k)) |
---|
| 265 | cjq-end |
---|
| 266 | ENDDO |
---|
| 267 | ENDDO |
---|
| 268 | c |
---|
| 269 | DO k = 1, kflev+1 |
---|
| 270 | DO i = 1, kdlon |
---|
| 271 | PPMB(i,k) = paprs(iof+i,k)/100.0 |
---|
| 272 | ENDDO |
---|
| 273 | ENDDO |
---|
| 274 | c |
---|
| 275 | DO kk = 1, 5 |
---|
| 276 | DO k = 1, kflev |
---|
| 277 | DO i = 1, kdlon |
---|
| 278 | PAER(i,k,kk) = 1.0E-15 |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | ENDDO |
---|
| 282 | c-OB |
---|
| 283 | DO k = 1, kflev |
---|
| 284 | DO i = 1, kdlon |
---|
| 285 | tauae(i,k,1)=tau_ae(iof+i,k,1) |
---|
| 286 | pizae(i,k,1)=piz_ae(iof+i,k,1) |
---|
| 287 | cgae(i,k,1) =cg_ae(iof+i,k,1) |
---|
| 288 | tauae(i,k,2)=tau_ae(iof+i,k,2) |
---|
| 289 | pizae(i,k,2)=piz_ae(iof+i,k,2) |
---|
| 290 | cgae(i,k,2) =cg_ae(iof+i,k,2) |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | c |
---|
[998] | 294 | c===== si iflag_rrtm=0 ================================================ |
---|
[524] | 295 | cIM ctes ds clesphys.h CALL LW(RCO2,RCH4,RN2O,RCFC11,RCFC12, |
---|
[998] | 296 | cIM ctes ds clesphys.h CALL SW(PSCT, RCO2, zrmu0, zfract, |
---|
| 297 | c |
---|
| 298 | if (iflag_rrtm.eq.0) then |
---|
| 299 | CALL LW_LMDAR4( |
---|
[524] | 300 | . PPMB, PDP, |
---|
| 301 | . PPSOL,PDT0,PEMIS, |
---|
| 302 | . PTL, PTAVE, PWV, POZON, PAER, |
---|
| 303 | . PCLDLD,PCLDLU, |
---|
| 304 | . PVIEW, |
---|
| 305 | . zcool, zcool0, |
---|
| 306 | . ztoplw,zsollw,ztoplw0,zsollw0, |
---|
| 307 | . zsollwdown, |
---|
| 308 | . ZFLUP, ZFLDN, ZFLUP0,ZFLDN0) |
---|
[998] | 309 | CALL SW_LMDAR4(PSCT, zrmu0, zfract, |
---|
[524] | 310 | S PPMB, PDP, |
---|
| 311 | S PPSOL, PALBD, PALBP, |
---|
| 312 | S PTAVE, PWV, PQS, POZON, PAER, |
---|
| 313 | S PCLDSW, PTAU, POMEGA, PCG, |
---|
| 314 | S zheat, zheat0, |
---|
| 315 | S zalbpla,ztopsw,zsolsw,ztopsw0,zsolsw0, |
---|
| 316 | S ZFSUP,ZFSDN,ZFSUP0,ZFSDN0, |
---|
| 317 | S tauae, pizae, cgae, ! aerosol optical properties |
---|
| 318 | s PTAUA, POMEGAA, |
---|
| 319 | s ztopswad,zsolswad,ztopswai,zsolswai, ! diagnosed aerosol forcing |
---|
| 320 | J ok_ade, ok_aie) ! apply aerosol effects or not? |
---|
[998] | 321 | else |
---|
| 322 | c===== si iflag_rrtm=1, on passe dans SW via RECMWFL =============== |
---|
| 323 | PRINT*, "Cette option ne fonctionne pas encore !!!" |
---|
| 324 | CALL abort |
---|
| 325 | endif ! if(iflag_rrtm=0) |
---|
[524] | 326 | |
---|
| 327 | c====================================================================== |
---|
| 328 | DO i = 1, kdlon |
---|
| 329 | radsol(iof+i) = zsolsw(i) + zsollw(i) |
---|
| 330 | topsw(iof+i) = ztopsw(i) |
---|
| 331 | toplw(iof+i) = ztoplw(i) |
---|
| 332 | solsw(iof+i) = zsolsw(i) |
---|
| 333 | sollw(iof+i) = zsollw(i) |
---|
| 334 | sollwdown(iof+i) = zsollwdown(i) |
---|
| 335 | cIM |
---|
| 336 | DO k = 1, kflev+1 |
---|
| 337 | lwdn0 ( iof+i,k) = ZFLDN0 ( i,k) |
---|
| 338 | lwdn ( iof+i,k) = ZFLDN ( i,k) |
---|
| 339 | lwup0 ( iof+i,k) = ZFLUP0 ( i,k) |
---|
| 340 | lwup ( iof+i,k) = ZFLUP ( i,k) |
---|
| 341 | ENDDO |
---|
[644] | 342 | c |
---|
[524] | 343 | topsw0(iof+i) = ztopsw0(i) |
---|
| 344 | toplw0(iof+i) = ztoplw0(i) |
---|
| 345 | solsw0(iof+i) = zsolsw0(i) |
---|
| 346 | sollw0(iof+i) = zsollw0(i) |
---|
| 347 | albpla(iof+i) = zalbpla(i) |
---|
[644] | 348 | cIM |
---|
[524] | 349 | DO k = 1, kflev+1 |
---|
| 350 | swdn0 ( iof+i,k) = ZFSDN0 ( i,k) |
---|
| 351 | swdn ( iof+i,k) = ZFSDN ( i,k) |
---|
| 352 | swup0 ( iof+i,k) = ZFSUP0 ( i,k) |
---|
| 353 | swup ( iof+i,k) = ZFSUP ( i,k) |
---|
| 354 | ENDDO !k=1, kflev+1 |
---|
| 355 | ENDDO |
---|
| 356 | cjq-transform the aerosol forcings, if they have |
---|
| 357 | cjq to be calculated |
---|
| 358 | IF (ok_ade) THEN |
---|
| 359 | DO i = 1, kdlon |
---|
| 360 | topswad(iof+i) = ztopswad(i) |
---|
| 361 | solswad(iof+i) = zsolswad(i) |
---|
| 362 | ENDDO |
---|
| 363 | ELSE |
---|
| 364 | DO i = 1, kdlon |
---|
| 365 | topswad(iof+i) = 0.0 |
---|
| 366 | solswad(iof+i) = 0.0 |
---|
| 367 | ENDDO |
---|
| 368 | ENDIF |
---|
| 369 | IF (ok_aie) THEN |
---|
| 370 | DO i = 1, kdlon |
---|
| 371 | topswai(iof+i) = ztopswai(i) |
---|
| 372 | solswai(iof+i) = zsolswai(i) |
---|
| 373 | ENDDO |
---|
| 374 | ELSE |
---|
| 375 | DO i = 1, kdlon |
---|
| 376 | topswai(iof+i) = 0.0 |
---|
| 377 | solswai(iof+i) = 0.0 |
---|
| 378 | ENDDO |
---|
| 379 | ENDIF |
---|
| 380 | cjq-end |
---|
| 381 | DO k = 1, kflev |
---|
| 382 | c DO i = 1, kdlon |
---|
| 383 | c heat(iof+i,k) = zheat(i,k) |
---|
| 384 | c cool(iof+i,k) = zcool(i,k) |
---|
| 385 | c heat0(iof+i,k) = zheat0(i,k) |
---|
| 386 | c cool0(iof+i,k) = zcool0(i,k) |
---|
| 387 | c ENDDO |
---|
| 388 | DO i = 1, kdlon |
---|
| 389 | C scale factor to take into account the difference between |
---|
| 390 | C dry air and watter vapour scpecific heat capacity |
---|
| 391 | zznormcp=1.0+RVTMP2*PWV(i,k) |
---|
| 392 | heat(iof+i,k) = zheat(i,k)/zznormcp |
---|
| 393 | cool(iof+i,k) = zcool(i,k)/zznormcp |
---|
| 394 | heat0(iof+i,k) = zheat0(i,k)/zznormcp |
---|
| 395 | cool0(iof+i,k) = zcool0(i,k)/zznormcp |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
| 398 | c |
---|
| 399 | 99999 CONTINUE |
---|
| 400 | RETURN |
---|
| 401 | END |
---|