[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE ozonecm(rjour, rlat, paprs, o3) |
---|
[766] | 5 | USE dimphy |
---|
[524] | 6 | IMPLICIT none |
---|
[641] | 7 | C |
---|
| 8 | C The ozone climatology is based on an analytic formula which fits the |
---|
| 9 | C Krueger and Mintzner (1976) profile, as well as the variations with |
---|
| 10 | C altitude and latitude of the maximum ozone concentrations and the total |
---|
| 11 | C column ozone concentration of Keating and Young (1986). The analytic |
---|
| 12 | C formula have been established by J-F Royer (CRNM, Meteo France), who |
---|
| 13 | C also provided us the code. |
---|
| 14 | C |
---|
| 15 | C A. J. Krueger and R. A. Minzner, A Mid-Latitude Ozone Model for the |
---|
| 16 | C 1976 U.S. Standard Atmosphere, J. Geophys. Res., 81, 4477, (1976). |
---|
| 17 | C |
---|
| 18 | C Keating, G. M. and D. F. Young, 1985: Interim reference models for the |
---|
| 19 | C middle atmosphere, Handbook for MAP, vol. 16, 205-229. |
---|
| 20 | C |
---|
| 21 | |
---|
[766] | 22 | cym#include "dimensions.h" |
---|
| 23 | cym#include "dimphy.h" |
---|
[652] | 24 | #include "clesphys.h" |
---|
| 25 | #include "YOMCST.h" |
---|
[524] | 26 | REAL rlat(klon), paprs(klon,klev+1) |
---|
[652] | 27 | REAL o3(klon,klev) ! ozone concentration in kg/kg |
---|
[524] | 28 | REAL tozon, rjour, pi, pl |
---|
| 29 | INTEGER i, k |
---|
| 30 | C---------------------------------------------------------- |
---|
| 31 | REAL field(klon,klev+1) |
---|
| 32 | REAL ps |
---|
| 33 | PARAMETER (ps=101325.0) |
---|
| 34 | REAL an, unit, zo3q3 |
---|
| 35 | SAVE an, unit, zo3q3 |
---|
[766] | 36 | c$OMP THREADPRIVATE(an, unit, zo3q3) |
---|
[524] | 37 | REAL mu,gms, zslat, zsint, zcost, z, ppm, qpm, a |
---|
| 38 | REAL asec, bsec, aprim, zo3a3 |
---|
| 39 | C---------------------------------------------------------- |
---|
| 40 | c data an /365.25/ (meteo) |
---|
| 41 | DATA an /360.00/ |
---|
| 42 | DATA unit /2.1415e-05/ |
---|
| 43 | DATA zo3q3 /4.0e-08/ |
---|
| 44 | |
---|
| 45 | pi = 4.0 * ATAN(1.0) |
---|
| 46 | DO k = 1, klev |
---|
| 47 | DO i = 1, klon |
---|
| 48 | zslat = SIN(pi/180.*rlat(i)) |
---|
| 49 | zsint = SIN(2.*pi*(rjour+15.)/an) |
---|
| 50 | zcost = COS(2.*pi*(rjour+15.)/an) |
---|
| 51 | z = 0.0531+zsint*(-0.001595+0.009443*zslat) + |
---|
| 52 | . zcost*(-0.001344-0.00346*zslat) + |
---|
| 53 | . zslat**2*(.056222+zslat**2*(-.037609 |
---|
| 54 | . +.012248*zsint+.00521*zcost+.008890*zslat)) |
---|
| 55 | zo3a3 = zo3q3/ps/2. |
---|
| 56 | z = z-zo3q3*ps |
---|
| 57 | gms = z |
---|
| 58 | mu = ABS(sin(pi/180.*rlat(i))) |
---|
| 59 | ppm = 800.-(500.*zslat+150.*zcost)*zslat |
---|
| 60 | qpm = 1.74e-5-(7.5e-6*zslat+1.7e-6*zcost)*zslat |
---|
| 61 | bsec = 2650.+5000.*zslat**2 |
---|
| 62 | a = 4.0*(bsec)**(3./2.)*(ppm)**(3./2.)*(1.0+(bsec/ps)**(3./2.)) |
---|
| 63 | a = a/(bsec**(3./2.)+ppm**(3./2.))**2 |
---|
| 64 | aprim = (2.666666*qpm*ppm-a*gms)/(1.0-a) |
---|
| 65 | aprim = amax1(0.,aprim) |
---|
| 66 | asec = (gms-aprim)*(1.0+(bsec/ps)**(3./2.)) |
---|
| 67 | asec = AMAX1(0.0,asec) |
---|
| 68 | aprim = gms-asec/(1.+(bsec/ps)**(3./2.)) |
---|
| 69 | pl = paprs(i,k) |
---|
| 70 | tozon = aprim/(1.+3.*(ppm/pl)**2)+asec/(1.+(bsec/pl)**(3./2.)) |
---|
| 71 | . + zo3a3*pl*pl |
---|
| 72 | tozon = tozon / 9.81 ! en kg/m**2 |
---|
| 73 | tozon = tozon / unit ! en kg/m**2 > u dobson (10e-5 m) |
---|
| 74 | tozon = tozon / 1000. ! en cm |
---|
| 75 | field(i,k) = tozon |
---|
| 76 | ENDDO |
---|
| 77 | ENDDO |
---|
| 78 | c |
---|
| 79 | DO i = 1, klon |
---|
| 80 | field(i,klev+1) = 0.0 |
---|
| 81 | ENDDO |
---|
| 82 | DO k = 1, klev |
---|
[652] | 83 | DO i = 1, klon |
---|
| 84 | o3(i,k) = field(i,k) - field(i,k+1) |
---|
| 85 | ENDDO |
---|
[524] | 86 | ENDDO |
---|
| 87 | c |
---|
| 88 | RETURN |
---|
| 89 | END |
---|