[1279] | 1 | ! $Id: nuage.F 1279 2009-12-10 09:02:56Z evignon $ |
---|
[524] | 2 | ! |
---|
| 3 | SUBROUTINE nuage (paprs, pplay, |
---|
| 4 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 5 | . pch, pcl, pcm, pct, pctlwp, |
---|
| 6 | e ok_aie, |
---|
[1279] | 7 | e mass_solu_aero, mass_solu_aero_pi, |
---|
[524] | 8 | e bl95_b0, bl95_b1, |
---|
| 9 | s cldtaupi, re, fl) |
---|
[766] | 10 | USE dimphy |
---|
[524] | 11 | IMPLICIT none |
---|
| 12 | c====================================================================== |
---|
| 13 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 14 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 15 | c====================================================================== |
---|
| 16 | c Arguments: |
---|
| 17 | c t-------input-R-temperature |
---|
| 18 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 19 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 20 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
[1279] | 21 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
| 22 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
[524] | 23 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 24 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
| 25 | c |
---|
| 26 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 27 | c needed for the diagnostics of the aerosol indirect |
---|
| 28 | c radiative forcing (see radlwsw) |
---|
| 29 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 30 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 31 | c the averaging of the output. fl is the fraction of liquid |
---|
| 32 | c water clouds within a grid cell |
---|
| 33 | c |
---|
| 34 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 35 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 36 | c====================================================================== |
---|
| 37 | C |
---|
| 38 | #include "YOMCST.h" |
---|
| 39 | c |
---|
[766] | 40 | cym#include "dimensions.h" |
---|
| 41 | cym#include "dimphy.h" |
---|
[524] | 42 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 43 | REAL t(klon,klev) |
---|
| 44 | c |
---|
| 45 | REAL pclc(klon,klev) |
---|
| 46 | REAL pqlwp(klon,klev) |
---|
| 47 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 48 | c |
---|
| 49 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 50 | c |
---|
| 51 | LOGICAL lo |
---|
| 52 | c |
---|
| 53 | REAL cetahb, cetamb |
---|
| 54 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 55 | C |
---|
| 56 | INTEGER i, k |
---|
| 57 | REAL zflwp, zradef, zfice, zmsac |
---|
| 58 | c |
---|
| 59 | REAL radius, rad_froid, rad_chaud, rad_chau1, rad_chau2 |
---|
| 60 | PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 61 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 62 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 63 | REAL coef, coef_froi, coef_chau |
---|
| 64 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 65 | REAL seuil_neb, t_glace |
---|
| 66 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
| 67 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 68 | PARAMETER (nexpo=6) |
---|
| 69 | |
---|
| 70 | cjq for the aerosol indirect effect |
---|
| 71 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 72 | cjq |
---|
| 73 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 74 | |
---|
[1279] | 75 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols[ug m-3] |
---|
| 76 | REAL mass_solu_aero_pi(klon, klev) ! - " - pre-industrial value |
---|
[524] | 77 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 78 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 79 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 80 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 81 | |
---|
| 82 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 83 | |
---|
| 84 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 85 | |
---|
| 86 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 87 | cjq-end |
---|
| 88 | |
---|
| 89 | ccc PARAMETER (nexpo=1) |
---|
| 90 | c |
---|
| 91 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 92 | c |
---|
| 93 | DO k = 1, klev |
---|
| 94 | DO i = 1, klon |
---|
| 95 | rad_chaud = rad_chau1 |
---|
| 96 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 97 | |
---|
| 98 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
| 99 | zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
| 100 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
| 101 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 102 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 103 | zfice = zfice**nexpo |
---|
| 104 | |
---|
| 105 | IF (ok_aie) THEN |
---|
| 106 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 107 | ! |
---|
| 108 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1279] | 109 | . log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
[524] | 110 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 111 | ! to be within [20, 1000 cm^3] |
---|
| 112 | ! |
---|
| 113 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 114 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1279] | 115 | . log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
[524] | 116 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 117 | ! |
---|
| 118 | ! |
---|
| 119 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
| 120 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
| 121 | ! factor 1000 is the water density |
---|
| 122 | ! _chaud means that this is the CDR for liquid water clouds |
---|
| 123 | ! |
---|
| 124 | rad_chaud = |
---|
| 125 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
| 126 | . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) |
---|
| 127 | ! |
---|
| 128 | ! Convert to um. CDR shall be at least 3 um. |
---|
| 129 | ! |
---|
| 130 | rad_chaud = MAX(rad_chaud*1.e6, 3.) |
---|
| 131 | |
---|
| 132 | ! For output diagnostics |
---|
| 133 | ! |
---|
| 134 | ! Cloud droplet effective radius [um] |
---|
| 135 | ! |
---|
| 136 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 137 | ! clouds in the grid cell) to avoid problems in the |
---|
| 138 | ! averaging of the output. |
---|
| 139 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 140 | ! effective radius as re/fl |
---|
| 141 | ! |
---|
| 142 | fl(i,k) = pclc(i,k)*(1.-zfice) |
---|
| 143 | re(i,k) = rad_chaud*fl(i,k) |
---|
| 144 | |
---|
| 145 | ! Pre-industrial cloud opt thickness |
---|
| 146 | ! |
---|
| 147 | ! "radius" is calculated as rad_chaud above (plus the |
---|
| 148 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
| 149 | ! cdnc. |
---|
| 150 | radius = MAX(1.1e6 * ( (pqlwp(i,k)*pplay(i,k)/(RD*T(i,k))) |
---|
| 151 | . / (4./3.*RPI*1000.*cdnc_pi(i,k)) )**(1./3.), |
---|
| 152 | . 3.) * (1.-zfice) + rad_froid * zfice |
---|
| 153 | cldtaupi(i,k) = 3.0/2.0 * zflwp / radius |
---|
| 154 | . |
---|
| 155 | ENDIF ! ok_aie |
---|
| 156 | |
---|
| 157 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 158 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
| 159 | pcltau(i,k) = 3.0/2.0 * zflwp / radius |
---|
| 160 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp) |
---|
| 161 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
| 162 | IF (lo) pclc(i,k) = 0.0 |
---|
| 163 | IF (lo) pcltau(i,k) = 0.0 |
---|
| 164 | IF (lo) pclemi(i,k) = 0.0 |
---|
| 165 | |
---|
| 166 | IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) |
---|
| 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | ccc DO k = 1, klev |
---|
| 170 | ccc DO i = 1, klon |
---|
| 171 | ccc t(i,k) = t(i,k) |
---|
| 172 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 173 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 174 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 175 | ccc . /(rg*pclc(i,k)) |
---|
| 176 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 177 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 178 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 179 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 180 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 181 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 182 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 183 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 184 | ccc ENDDO |
---|
| 185 | ccc ENDDO |
---|
| 186 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 187 | cccccc DO k = 1, klev |
---|
| 188 | cccccc DO i = 1, klon |
---|
| 189 | cccccc pclc(i,k) = 0.0 |
---|
| 190 | cccccc pcltau(i,k) = 0.0 |
---|
| 191 | cccccc pclemi(i,k) = 0.0 |
---|
| 192 | cccccc ENDDO |
---|
| 193 | cccccc ENDDO |
---|
| 194 | C |
---|
| 195 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 196 | C |
---|
| 197 | DO i = 1, klon |
---|
| 198 | pct(i)=1.0 |
---|
| 199 | pch(i)=1.0 |
---|
| 200 | pcm(i) = 1.0 |
---|
| 201 | pcl(i) = 1.0 |
---|
| 202 | pctlwp(i) = 0.0 |
---|
| 203 | ENDDO |
---|
| 204 | C |
---|
| 205 | DO k = klev, 1, -1 |
---|
| 206 | DO i = 1, klon |
---|
| 207 | pctlwp(i) = pctlwp(i) |
---|
| 208 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 209 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
| 210 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
| 211 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 212 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 213 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
| 214 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 215 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
| 216 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | C |
---|
| 220 | DO i = 1, klon |
---|
| 221 | pct(i)=1.-pct(i) |
---|
| 222 | pch(i)=1.-pch(i) |
---|
| 223 | pcm(i)=1.-pcm(i) |
---|
| 224 | pcl(i)=1.-pcl(i) |
---|
| 225 | ENDDO |
---|
| 226 | C |
---|
| 227 | RETURN |
---|
| 228 | END |
---|
| 229 | SUBROUTINE diagcld1(paprs,pplay,rain,snow,kbot,ktop, |
---|
| 230 | . diafra,dialiq) |
---|
[766] | 231 | use dimphy |
---|
[524] | 232 | IMPLICIT none |
---|
| 233 | c |
---|
| 234 | c Laurent Li (LMD/CNRS), le 12 octobre 1998 |
---|
| 235 | c (adaptation du code ECMWF) |
---|
| 236 | c |
---|
| 237 | c Dans certains cas, le schema pronostique des nuages n'est |
---|
| 238 | c pas suffisament performant. On a donc besoin de diagnostiquer |
---|
| 239 | c ces nuages. Je dois avouer que c'est une frustration. |
---|
| 240 | c |
---|
[766] | 241 | cym#include "dimensions.h" |
---|
| 242 | cym#include "dimphy.h" |
---|
[524] | 243 | #include "YOMCST.h" |
---|
| 244 | c |
---|
| 245 | c Arguments d'entree: |
---|
| 246 | REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche |
---|
| 247 | REAL pplay(klon,klev) ! pression (Pa) au milieu de couche |
---|
| 248 | REAL t(klon,klev) ! temperature (K) |
---|
| 249 | REAL q(klon,klev) ! humidite specifique (Kg/Kg) |
---|
| 250 | REAL rain(klon) ! pluie convective (kg/m2/s) |
---|
| 251 | REAL snow(klon) ! neige convective (kg/m2/s) |
---|
| 252 | INTEGER ktop(klon) ! sommet de la convection |
---|
| 253 | INTEGER kbot(klon) ! bas de la convection |
---|
| 254 | c |
---|
| 255 | c Arguments de sortie: |
---|
| 256 | REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee |
---|
| 257 | REAL dialiq(klon,klev) ! eau liquide nuageuse |
---|
| 258 | c |
---|
| 259 | c Constantes ajustables: |
---|
| 260 | REAL CANVA, CANVB, CANVH |
---|
| 261 | PARAMETER (CANVA=2.0, CANVB=0.3, CANVH=0.4) |
---|
| 262 | REAL CCA, CCB, CCC |
---|
| 263 | PARAMETER (CCA=0.125, CCB=1.5, CCC=0.8) |
---|
| 264 | REAL CCFCT, CCSCAL |
---|
| 265 | PARAMETER (CCFCT=0.400) |
---|
| 266 | PARAMETER (CCSCAL=1.0E+11) |
---|
| 267 | REAL CETAHB, CETAMB |
---|
| 268 | PARAMETER (CETAHB=0.45, CETAMB=0.80) |
---|
| 269 | REAL CCLWMR |
---|
| 270 | PARAMETER (CCLWMR=1.E-04) |
---|
| 271 | REAL ZEPSCR |
---|
| 272 | PARAMETER (ZEPSCR=1.0E-10) |
---|
| 273 | c |
---|
| 274 | c Variables locales: |
---|
| 275 | INTEGER i, k |
---|
| 276 | REAL zcc(klon) |
---|
| 277 | c |
---|
| 278 | c Initialisation: |
---|
| 279 | c |
---|
| 280 | DO k = 1, klev |
---|
| 281 | DO i = 1, klon |
---|
| 282 | diafra(i,k) = 0.0 |
---|
| 283 | dialiq(i,k) = 0.0 |
---|
| 284 | ENDDO |
---|
| 285 | ENDDO |
---|
| 286 | c |
---|
| 287 | DO i = 1, klon ! Calculer la fraction nuageuse |
---|
| 288 | zcc(i) = 0.0 |
---|
| 289 | IF((rain(i)+snow(i)).GT.0.) THEN |
---|
| 290 | zcc(i)= CCA * LOG(MAX(ZEPSCR,(rain(i)+snow(i))*CCSCAL))-CCB |
---|
| 291 | zcc(i)= MIN(CCC,MAX(0.0,zcc(i))) |
---|
| 292 | ENDIF |
---|
| 293 | ENDDO |
---|
| 294 | c |
---|
| 295 | DO i = 1, klon ! pour traiter les enclumes |
---|
| 296 | diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)),zcc(i)*CCFCT) |
---|
| 297 | IF ((zcc(i).GE.CANVH) .AND. |
---|
| 298 | . (pplay(i,ktop(i)).LE.CETAHB*paprs(i,1))) |
---|
| 299 | . diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)), |
---|
| 300 | . MAX(zcc(i)*CCFCT,CANVA*(zcc(i)-CANVB))) |
---|
| 301 | dialiq(i,ktop(i))=CCLWMR*diafra(i,ktop(i)) |
---|
| 302 | ENDDO |
---|
| 303 | c |
---|
| 304 | DO k = 1, klev ! nuages convectifs (sauf enclumes) |
---|
| 305 | DO i = 1, klon |
---|
| 306 | IF (k.LT.ktop(i) .AND. k.GE.kbot(i)) THEN |
---|
| 307 | diafra(i,k)=MAX(diafra(i,k),zcc(i)*CCFCT) |
---|
| 308 | dialiq(i,k)=CCLWMR*diafra(i,k) |
---|
| 309 | ENDIF |
---|
| 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | c |
---|
| 313 | RETURN |
---|
| 314 | END |
---|
| 315 | SUBROUTINE diagcld2(paprs,pplay,t,q, diafra,dialiq) |
---|
[766] | 316 | use dimphy |
---|
[524] | 317 | IMPLICIT none |
---|
| 318 | c |
---|
[766] | 319 | cym#include "dimensions.h" |
---|
| 320 | cym#include "dimphy.h" |
---|
[524] | 321 | #include "YOMCST.h" |
---|
| 322 | c |
---|
| 323 | c Arguments d'entree: |
---|
| 324 | REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche |
---|
| 325 | REAL pplay(klon,klev) ! pression (Pa) au milieu de couche |
---|
| 326 | REAL t(klon,klev) ! temperature (K) |
---|
| 327 | REAL q(klon,klev) ! humidite specifique (Kg/Kg) |
---|
| 328 | c |
---|
| 329 | c Arguments de sortie: |
---|
| 330 | REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee |
---|
| 331 | REAL dialiq(klon,klev) ! eau liquide nuageuse |
---|
| 332 | c |
---|
| 333 | REAL CETAMB |
---|
| 334 | PARAMETER (CETAMB=0.80) |
---|
| 335 | REAL CLOIA, CLOIB, CLOIC, CLOID |
---|
| 336 | PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.6, CLOID=5.0) |
---|
| 337 | ccc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
---|
| 338 | REAL RGAMMAS |
---|
| 339 | PARAMETER (RGAMMAS=0.05) |
---|
| 340 | REAL CRHL |
---|
| 341 | PARAMETER (CRHL=0.15) |
---|
| 342 | ccc PARAMETER (CRHL=0.70) |
---|
| 343 | REAL t_coup |
---|
| 344 | PARAMETER (t_coup=234.0) |
---|
| 345 | c |
---|
| 346 | c Variables locales: |
---|
| 347 | INTEGER i, k, kb, invb(klon) |
---|
| 348 | REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
---|
| 349 | REAL zdelta, zcor |
---|
| 350 | c |
---|
| 351 | c Fonctions thermodynamiques: |
---|
| 352 | #include "YOETHF.h" |
---|
| 353 | #include "FCTTRE.h" |
---|
| 354 | c |
---|
| 355 | c Initialisation: |
---|
| 356 | c |
---|
| 357 | DO k = 1, klev |
---|
| 358 | DO i = 1, klon |
---|
| 359 | diafra(i,k) = 0.0 |
---|
| 360 | dialiq(i,k) = 0.0 |
---|
| 361 | ENDDO |
---|
| 362 | ENDDO |
---|
| 363 | c |
---|
| 364 | DO i = 1, klon |
---|
| 365 | invb(i) = klev |
---|
| 366 | zdthmin(i)=0.0 |
---|
| 367 | ENDDO |
---|
| 368 | |
---|
| 369 | DO k = 2, klev/2-1 |
---|
| 370 | DO i = 1, klon |
---|
| 371 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
---|
| 372 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
---|
| 373 | zdthdp = zdthdp * CLOIA |
---|
| 374 | IF (pplay(i,k).GT.CETAMB*paprs(i,1) .AND. |
---|
| 375 | . zdthdp.LT.zdthmin(i) ) THEN |
---|
| 376 | zdthmin(i) = zdthdp |
---|
| 377 | invb(i) = k |
---|
| 378 | ENDIF |
---|
| 379 | ENDDO |
---|
| 380 | ENDDO |
---|
| 381 | |
---|
| 382 | DO i = 1, klon |
---|
| 383 | kb=invb(i) |
---|
| 384 | IF (thermcep) THEN |
---|
| 385 | zdelta=MAX(0.,SIGN(1.,RTT-t(i,kb))) |
---|
| 386 | zqs= R2ES*FOEEW(t(i,kb),zdelta)/pplay(i,kb) |
---|
| 387 | zqs=MIN(0.5,zqs) |
---|
| 388 | zcor=1./(1.-RETV*zqs) |
---|
| 389 | zqs=zqs*zcor |
---|
| 390 | ELSE |
---|
| 391 | IF (t(i,kb) .LT. t_coup) THEN |
---|
| 392 | zqs = qsats(t(i,kb)) / pplay(i,kb) |
---|
| 393 | ELSE |
---|
| 394 | zqs = qsatl(t(i,kb)) / pplay(i,kb) |
---|
| 395 | ENDIF |
---|
| 396 | ENDIF |
---|
| 397 | zcll = CLOIB * zdthmin(i) + CLOIC |
---|
| 398 | zcll = MIN(1.0,MAX(0.0,zcll)) |
---|
| 399 | zrhb= q(i,kb)/zqs |
---|
| 400 | IF (zcll.GT.0.0.AND.zrhb.LT.CRHL) |
---|
| 401 | . zcll=zcll*(1.-(CRHL-zrhb)*CLOID) |
---|
| 402 | zcll=MIN(1.0,MAX(0.0,zcll)) |
---|
| 403 | diafra(i,kb) = MAX(diafra(i,kb),zcll) |
---|
| 404 | dialiq(i,kb)= diafra(i,kb) * RGAMMAS*zqs |
---|
| 405 | ENDDO |
---|
| 406 | c |
---|
| 407 | RETURN |
---|
| 408 | END |
---|