[1279] | 1 | ! $Id: newmicro.F 1286 2009-12-17 13:47:10Z fairhead $ |
---|
| 2 | ! |
---|
[524] | 3 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 4 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 5 | . pch, pcl, pcm, pct, pctlwp, |
---|
| 6 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
| 7 | e ok_aie, |
---|
[1279] | 8 | e mass_solu_aero, mass_solu_aero_pi, |
---|
[524] | 9 | e bl95_b0, bl95_b1, |
---|
[1279] | 10 | s cldtaupi, re, fl, reliq, reice) |
---|
| 11 | |
---|
[766] | 12 | USE dimphy |
---|
[524] | 13 | IMPLICIT none |
---|
| 14 | c====================================================================== |
---|
| 15 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 16 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 17 | c====================================================================== |
---|
| 18 | c Arguments: |
---|
| 19 | c t-------input-R-temperature |
---|
| 20 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 21 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 22 | c |
---|
| 23 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
[1279] | 24 | c mass_solu_aero-----input-R-total mass concentration for all soluble aerosols[ug/m^3] |
---|
| 25 | c mass_solu_aero_pi--input-R-dito, pre-industrial value |
---|
[524] | 26 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 27 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
| 28 | c |
---|
| 29 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 30 | c needed for the diagnostics of the aerosol indirect |
---|
| 31 | c radiative forcing (see radlwsw) |
---|
| 32 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 33 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 34 | c the averaging of the output. fl is the fraction of liquid |
---|
| 35 | c water clouds within a grid cell |
---|
| 36 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 37 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 38 | c====================================================================== |
---|
| 39 | C |
---|
| 40 | #include "YOMCST.h" |
---|
| 41 | c |
---|
[766] | 42 | cym#include "dimensions.h" |
---|
| 43 | cym#include "dimphy.h" |
---|
[524] | 44 | #include "nuage.h" |
---|
[685] | 45 | cIM cf. CR: include pour NOVLP et ZEPSEC |
---|
| 46 | #include "radepsi.h" |
---|
| 47 | #include "radopt.h" |
---|
[524] | 48 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 49 | REAL t(klon,klev) |
---|
| 50 | c |
---|
| 51 | REAL pclc(klon,klev) |
---|
| 52 | REAL pqlwp(klon,klev) |
---|
| 53 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 54 | c |
---|
| 55 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 56 | c |
---|
| 57 | LOGICAL lo |
---|
| 58 | c |
---|
| 59 | REAL cetahb, cetamb |
---|
| 60 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 61 | C |
---|
| 62 | INTEGER i, k |
---|
| 63 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
| 64 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
| 65 | cIM: 091003 rajout |
---|
| 66 | REAL xflwp(klon), xfiwp(klon) |
---|
| 67 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
| 68 | c |
---|
| 69 | REAL radius, rad_chaud |
---|
| 70 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 71 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 72 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 73 | REAL coef, coef_froi, coef_chau |
---|
| 74 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
[1286] | 75 | REAL seuil_neb |
---|
| 76 | PARAMETER (seuil_neb=0.001) |
---|
[524] | 77 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 78 | PARAMETER (nexpo=6) |
---|
| 79 | ccc PARAMETER (nexpo=1) |
---|
| 80 | |
---|
| 81 | c -- sb: |
---|
| 82 | logical ok_newmicro |
---|
| 83 | c parameter (ok_newmicro=.FALSE.) |
---|
| 84 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
| 85 | real rel, tc, rei, zfiwp(klon) |
---|
| 86 | real k_liq, k_ice0, k_ice, DF |
---|
| 87 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 88 | parameter (DF=1.66) ! diffusivity factor |
---|
| 89 | c sb -- |
---|
| 90 | cjq for the aerosol indirect effect |
---|
| 91 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 92 | cjq |
---|
| 93 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 94 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
| 95 | |
---|
[1279] | 96 | REAL mass_solu_aero(klon, klev) ! total mass concentration for all soluble aerosols [ug m-3] |
---|
| 97 | REAL mass_solu_aero_pi(klon, klev) ! - " - (pre-industrial value) |
---|
[524] | 98 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 99 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 100 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 101 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 102 | |
---|
| 103 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 104 | |
---|
| 105 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 106 | |
---|
| 107 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 108 | cjq-end |
---|
[685] | 109 | cIM cf. CR:parametres supplementaires |
---|
| 110 | REAL zclear(klon) |
---|
| 111 | REAL zcloud(klon) |
---|
[1146] | 112 | |
---|
| 113 | c ************************** |
---|
| 114 | c * * |
---|
| 115 | c * DEBUT PARTIE OPTIMISEE * |
---|
| 116 | c * * |
---|
| 117 | c ************************** |
---|
| 118 | |
---|
| 119 | REAL diff_paprs(klon, klev), zfice1, zfice2(klon, klev) |
---|
| 120 | REAL rad_chaud_tab(klon, klev), zflwp_var, zfiwp_var |
---|
| 121 | |
---|
[1279] | 122 | ! Abderrahmane oct 2009 |
---|
| 123 | Real reliq(klon, klev), reice(klon, klev) |
---|
| 124 | |
---|
[524] | 125 | c |
---|
| 126 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 127 | c |
---|
[1146] | 128 | c IM inversion des DO |
---|
| 129 | xflwp = 0.d0 |
---|
| 130 | xfiwp = 0.d0 |
---|
| 131 | xflwc = 0.d0 |
---|
| 132 | xfiwc = 0.d0 |
---|
| 133 | |
---|
[524] | 134 | DO k = 1, klev |
---|
[1146] | 135 | DO i = 1, klon |
---|
| 136 | diff_paprs(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 137 | ENDDO |
---|
| 138 | ENDDO |
---|
[524] | 139 | |
---|
[1146] | 140 | IF (ok_newmicro) THEN |
---|
[524] | 141 | |
---|
| 142 | |
---|
[1146] | 143 | DO k = 1, klev |
---|
| 144 | DO i = 1, klon |
---|
[1286] | 145 | c zfice2(i,k) = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 146 | zfice2(i,k) = 1.0 - (t(i,k)-t_glace_min) / |
---|
| 147 | & (t_glace_max-t_glace_min) |
---|
[1146] | 148 | zfice2(i,k) = MIN(MAX(zfice2(i,k),0.0),1.0) |
---|
| 149 | c IM Total Liquid/Ice water content |
---|
| 150 | xflwc(i,k) = (1.-zfice2(i,k))*pqlwp(i,k) |
---|
| 151 | xfiwc(i,k) = zfice2(i,k)*pqlwp(i,k) |
---|
| 152 | c IM In-Cloud Liquid/Ice water content |
---|
| 153 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 154 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 155 | ENDDO |
---|
| 156 | ENDDO |
---|
[524] | 157 | |
---|
[1146] | 158 | IF (ok_aie) THEN |
---|
| 159 | DO k = 1, klev |
---|
| 160 | DO i = 1, klon |
---|
| 161 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 162 | ! |
---|
| 163 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1279] | 164 | & log(MAX(mass_solu_aero(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
[1146] | 165 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 166 | ! to be within [20, 1000 cm^3] |
---|
| 167 | ! |
---|
| 168 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 169 | ! |
---|
| 170 | ! |
---|
| 171 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
[1279] | 172 | & log(MAX(mass_solu_aero_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
[1146] | 173 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 174 | ENDDO |
---|
| 175 | ENDDO |
---|
| 176 | DO k = 1, klev |
---|
| 177 | DO i = 1, klon |
---|
| 178 | ! rad_chaud_tab(i,k) = |
---|
| 179 | ! & MAX(1.1e6 |
---|
| 180 | ! & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 181 | ! & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.),5.) |
---|
| 182 | rad_chaud_tab(i,k) = |
---|
| 183 | & 1.1 |
---|
| 184 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 185 | & /(4./3*RPI*1000.*cdnc(i,k)) )**(1./3.) |
---|
| 186 | rad_chaud_tab(i,k) = MAX(rad_chaud_tab(i,k) * 1e6, 5.) |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | ELSE |
---|
| 190 | DO k = 1, MIN(3,klev) |
---|
| 191 | DO i = 1, klon |
---|
| 192 | rad_chaud_tab(i,k) = rad_chau2 |
---|
| 193 | ENDDO |
---|
| 194 | ENDDO |
---|
| 195 | DO k = MIN(3,klev)+1, klev |
---|
| 196 | DO i = 1, klon |
---|
| 197 | rad_chaud_tab(i,k) = rad_chau1 |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
[524] | 200 | |
---|
[1146] | 201 | ENDIF |
---|
| 202 | |
---|
| 203 | DO k = 1, klev |
---|
| 204 | ! IF(.not.ok_aie) THEN |
---|
| 205 | rad_chaud = rad_chau1 |
---|
| 206 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 207 | ! ENDIF |
---|
| 208 | DO i = 1, klon |
---|
| 209 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
| 210 | |
---|
| 211 | c -- effective cloud droplet radius (microns): |
---|
| 212 | |
---|
| 213 | c for liquid water clouds: |
---|
| 214 | ! For output diagnostics |
---|
| 215 | ! |
---|
| 216 | ! Cloud droplet effective radius [um] |
---|
| 217 | ! |
---|
| 218 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 219 | ! clouds in the grid cell) to avoid problems in the |
---|
| 220 | ! averaging of the output. |
---|
| 221 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 222 | ! effective radius as re/fl |
---|
| 223 | ! |
---|
| 224 | |
---|
| 225 | fl(i,k) = seuil_neb*(1.-zfice2(i,k)) |
---|
| 226 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
| 227 | |
---|
[1279] | 228 | rel = 0. |
---|
| 229 | rei = 0. |
---|
[1146] | 230 | pclc(i,k) = 0.0 |
---|
| 231 | pcltau(i,k) = 0.0 |
---|
| 232 | pclemi(i,k) = 0.0 |
---|
| 233 | cldtaupi(i,k) = 0.0 |
---|
| 234 | ELSE |
---|
[524] | 235 | |
---|
[1146] | 236 | c -- liquid/ice cloud water paths: |
---|
| 237 | |
---|
| 238 | zflwp_var= 1000.*(1.-zfice2(i,k))*pqlwp(i,k)/pclc(i,k) |
---|
| 239 | & *diff_paprs(i,k) |
---|
| 240 | zfiwp_var= 1000.*zfice2(i,k)*pqlwp(i,k)/pclc(i,k) |
---|
| 241 | & *diff_paprs(i,k) |
---|
| 242 | |
---|
| 243 | c -- effective cloud droplet radius (microns): |
---|
| 244 | |
---|
| 245 | c for liquid water clouds: |
---|
| 246 | |
---|
| 247 | IF (ok_aie) THEN |
---|
| 248 | radius = |
---|
| 249 | & 1.1 |
---|
| 250 | & *((pqlwp(i,k)*pplay(i,k)/(RD * T(i,k))) |
---|
| 251 | & /(4./3.*RPI*1000.*cdnc_pi(i,k)))**(1./3.) |
---|
| 252 | radius = MAX(radius*1e6, 5.) |
---|
| 253 | |
---|
| 254 | tc = t(i,k)-273.15 |
---|
| 255 | rei = 0.71*tc + 61.29 |
---|
| 256 | if (tc.le.-81.4) rei = 3.5 |
---|
| 257 | if (zflwp_var.eq.0.) radius = 1. |
---|
| 258 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 259 | cldtaupi(i,k) = 3.0/2.0 * zflwp_var / radius |
---|
| 260 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
[1279] | 261 | |
---|
[1146] | 262 | ENDIF ! ok_aie |
---|
| 263 | ! For output diagnostics |
---|
| 264 | ! |
---|
| 265 | ! Cloud droplet effective radius [um] |
---|
| 266 | ! |
---|
| 267 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 268 | ! clouds in the grid cell) to avoid problems in the |
---|
| 269 | ! averaging of the output. |
---|
| 270 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 271 | ! effective radius as re/fl |
---|
| 272 | ! |
---|
| 273 | |
---|
| 274 | fl(i,k) = pclc(i,k)*(1.-zfice2(i,k)) |
---|
| 275 | re(i,k) = rad_chaud_tab(i,k)*fl(i,k) |
---|
| 276 | |
---|
| 277 | rel = rad_chaud_tab(i,k) |
---|
| 278 | c for ice clouds: as a function of the ambiant temperature |
---|
| 279 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 280 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 281 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 282 | tc = t(i,k)-273.15 |
---|
| 283 | rei = 0.71*tc + 61.29 |
---|
| 284 | if (tc.le.-81.4) rei = 3.5 |
---|
| 285 | c -- cloud optical thickness : |
---|
| 286 | |
---|
| 287 | c [for liquid clouds, traditional formula, |
---|
| 288 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 289 | |
---|
[1279] | 290 | if (zflwp_var.eq.0.) rel = 1. |
---|
| 291 | if (zfiwp_var.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 292 | pcltau(i,k) = 3.0/2.0 * ( zflwp_var/rel ) |
---|
[1146] | 293 | & + zfiwp_var * (3.448e-03 + 2.431/rei) |
---|
| 294 | c -- cloud infrared emissivity: |
---|
| 295 | |
---|
| 296 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 297 | c as a function of the effective cld droplet radius] |
---|
| 298 | |
---|
| 299 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 300 | k_ice = k_ice0 + 1.0/rei |
---|
| 301 | |
---|
| 302 | pclemi(i,k) = 1.0 |
---|
| 303 | & - EXP( -coef_chau*zflwp_var - DF*k_ice*zfiwp_var) |
---|
[524] | 304 | |
---|
[1146] | 305 | ENDIF |
---|
[1279] | 306 | reliq(i,k)=rel |
---|
| 307 | reice(i,k)=rei |
---|
| 308 | ! if (i.eq.1) then |
---|
| 309 | ! print*,'Dans newmicro rel, rei :',rel, rei |
---|
| 310 | ! print*,'Dans newmicro reliq, reice :', |
---|
| 311 | ! $ reliq(i,k),reice(i,k) |
---|
| 312 | ! endif |
---|
| 313 | |
---|
[1146] | 314 | ENDDO |
---|
| 315 | ENDDO |
---|
[524] | 316 | |
---|
[1146] | 317 | DO k = 1, klev |
---|
| 318 | DO i = 1, klon |
---|
| 319 | xflwp(i) = xflwp(i)+ xflwc(i,k) * diff_paprs(i,k) |
---|
| 320 | xfiwp(i) = xfiwp(i)+ xfiwc(i,k) * diff_paprs(i,k) |
---|
| 321 | ENDDO |
---|
| 322 | ENDDO |
---|
[524] | 323 | |
---|
[1146] | 324 | ELSE |
---|
| 325 | DO k = 1, klev |
---|
| 326 | rad_chaud = rad_chau1 |
---|
| 327 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 328 | DO i = 1, klon |
---|
| 329 | |
---|
| 330 | IF (pclc(i,k) .LE. seuil_neb) THEN |
---|
[524] | 331 | |
---|
[1146] | 332 | pclc(i,k) = 0.0 |
---|
| 333 | pcltau(i,k) = 0.0 |
---|
| 334 | pclemi(i,k) = 0.0 |
---|
| 335 | cldtaupi(i,k) = 0.0 |
---|
[524] | 336 | |
---|
[1146] | 337 | ELSE |
---|
[524] | 338 | |
---|
[1146] | 339 | zflwp_var = 1000.*pqlwp(i,k)*diff_paprs(i,k) |
---|
| 340 | & /pclc(i,k) |
---|
| 341 | |
---|
| 342 | zfice1 = MIN( |
---|
[1286] | 343 | & MAX( 1.0 - (t(i,k)-t_glace_min) / |
---|
| 344 | & (t_glace_max-t_glace_min),0.0),1.0)**nexpo |
---|
[1146] | 345 | |
---|
| 346 | radius = rad_chaud * (1.-zfice1) + rad_froid * zfice1 |
---|
| 347 | coef = coef_chau * (1.-zfice1) + coef_froi * zfice1 |
---|
[524] | 348 | |
---|
[1146] | 349 | pcltau(i,k) = 3.0 * zflwp_var / (2.0 * radius) |
---|
| 350 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp_var) |
---|
[524] | 351 | |
---|
[1146] | 352 | ENDIF |
---|
| 353 | |
---|
| 354 | ENDDO |
---|
| 355 | ENDDO |
---|
| 356 | ENDIF |
---|
| 357 | |
---|
| 358 | IF (.NOT.ok_aie) THEN |
---|
| 359 | DO k = 1, klev |
---|
| 360 | DO i = 1, klon |
---|
| 361 | cldtaupi(i,k)=pcltau(i,k) |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | ENDIF |
---|
[524] | 365 | |
---|
[1146] | 366 | ccc DO k = 1, klev |
---|
| 367 | ccc DO i = 1, klon |
---|
| 368 | ccc t(i,k) = t(i,k) |
---|
| 369 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 370 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 371 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 372 | ccc . /(rg*pclc(i,k)) |
---|
| 373 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 374 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 375 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 376 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 377 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 378 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 379 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 380 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 381 | ccc ENDDO |
---|
| 382 | ccc ENDDO |
---|
| 383 | ccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 384 | ccccc DO k = 1, klev |
---|
| 385 | ccccc DO i = 1, klon |
---|
| 386 | ccccc pclc(i,k) = 0.0 |
---|
| 387 | ccccc pcltau(i,k) = 0.0 |
---|
| 388 | ccccc pclemi(i,k) = 0.0 |
---|
| 389 | ccccc ENDDO |
---|
| 390 | ccccc ENDDO |
---|
| 391 | C |
---|
| 392 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 393 | C |
---|
| 394 | c IM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 395 | c initialisations |
---|
[685] | 396 | DO i=1,klon |
---|
| 397 | zclear(i)=1. |
---|
| 398 | zcloud(i)=0. |
---|
[524] | 399 | pch(i)=1.0 |
---|
| 400 | pcm(i) = 1.0 |
---|
| 401 | pcl(i) = 1.0 |
---|
| 402 | pctlwp(i) = 0.0 |
---|
| 403 | ENDDO |
---|
| 404 | C |
---|
[685] | 405 | cIM cf CR DO k=1,klev |
---|
[524] | 406 | DO k = klev, 1, -1 |
---|
[1146] | 407 | DO i = 1, klon |
---|
| 408 | pctlwp(i) = pctlwp(i) |
---|
| 409 | & + pqlwp(i,k)*diff_paprs(i,k) |
---|
| 410 | ENDDO |
---|
| 411 | ENDDO |
---|
| 412 | c IM cf. CR |
---|
| 413 | IF (NOVLP.EQ.1) THEN |
---|
| 414 | DO k = klev, 1, -1 |
---|
| 415 | DO i = 1, klon |
---|
[685] | 416 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
[1279] | 417 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
[685] | 418 | pct(i)=1.-zclear(i) |
---|
[1146] | 419 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
[685] | 420 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
[1279] | 421 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
[1146] | 422 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 423 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
[685] | 424 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
[1279] | 425 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
[1146] | 426 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
[685] | 427 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
[1279] | 428 | & /(1.-MIN(real(zcloud(i), kind=8),1.-ZEPSEC)) |
---|
[685] | 429 | endif |
---|
| 430 | zcloud(i)=pclc(i,k) |
---|
[1146] | 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 434 | DO k = klev, 1, -1 |
---|
| 435 | DO i = 1, klon |
---|
[685] | 436 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
| 437 | pct(i)=zcloud(i) |
---|
[1146] | 438 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
[685] | 439 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
[1146] | 440 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 441 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
[685] | 442 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
[1146] | 443 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
[685] | 444 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
| 445 | endif |
---|
[1146] | 446 | ENDDO |
---|
| 447 | ENDDO |
---|
| 448 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 449 | DO k = klev, 1, -1 |
---|
| 450 | DO i = 1, klon |
---|
[685] | 451 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
| 452 | pct(i)=1-zclear(i) |
---|
[1146] | 453 | IF (pplay(i,k).LE.cetahb*paprs(i,1)) THEN |
---|
| 454 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 455 | ELSE IF (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 456 | & pplay(i,k).LE.cetamb*paprs(i,1)) THEN |
---|
| 457 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 458 | ELSE IF (pplay(i,k).GT.cetamb*paprs(i,1)) THEN |
---|
| 459 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
[685] | 460 | endif |
---|
[1146] | 461 | ENDDO |
---|
[685] | 462 | ENDDO |
---|
[1146] | 463 | ENDIF |
---|
| 464 | |
---|
| 465 | C |
---|
[524] | 466 | DO i = 1, klon |
---|
[1146] | 467 | c IM cf. CR pct(i)=1.-pct(i) |
---|
[524] | 468 | pch(i)=1.-pch(i) |
---|
| 469 | pcm(i)=1.-pcm(i) |
---|
| 470 | pcl(i)=1.-pcl(i) |
---|
| 471 | ENDDO |
---|
[1146] | 472 | |
---|
[524] | 473 | C |
---|
| 474 | RETURN |
---|
| 475 | END |
---|